GENERALIZATION OF R₀ SPACES VIA IDEALS

P. GOMATHI SUNDARI*, V. HELAN SINTHIYA** AND N. RAJESH*

*Assistant Professors of Mathematics, Rajah Serfoji Govt.College, Thanjavur – 613005, TamilNadu, India.

**Swami Dayananda College of Arts and Science, Manjakkudi-612610, Tamilnadu, India.

Abstract: In this paper, we introduce and study a generalization of R₀ space called pre-I-R₀ space.

2000 Mathematics Subject Classification. 54D10.

Key words and phrases: Topological Spaces, pre-I-R₀ spaces.

1. INTRODUCTION

The concept of ideals in topological spaces has been introduced and studied by Kuratowski [6] and Vaidyanathaswamy, [11]. An ideal I on an ideal topological space (X,τ) is a nonempty collection of subsets of X which satisfies (i) $A \in I$ and $B \subset A$ implies $B \in I$ and (ii) $A \in I$ and $B \in I$ implies $A \cup B \in I$. Given an ideal topological space (X, τ) with an ideal I on X and if $\mathcal{P}(X)$ is the set of all subsets of X, a set operator $(.)^* : \mathcal{P}(X) \to \mathcal{P}(X)$, called the local function [11] of A with respect to τ and I, is defined as follows: for $A \subset X$, $A^*(\tau, I) = \{x \in X | U \cap A \notin I \text{ for every } U \in \tau(x)\}$, where $\tau(x) = \{U \in \tau | x \in U\}$. A Kuratowski closure operator $Cl^*(.)$ for a topology $\tau^*(\tau, I)$ called the *-topology, finer than τ is defined by $Cl^*(A) = A \cup A^*(\tau, I)$ when there is no chance of confusion, $A^*(I)$ is denoted by A^* . If I is an ideal on X, then (X, τ, I) is called an ideal topological space. In this paper, we introduce and study a generalization of R_0 space called pre-I- R_0 space.

2. PRELIMINARIES

For a subset A of (X, τ) , Cl(A) and Int(A) denote the closure of A with respect to τ and the interior of A with respect to τ , respectively. A subset S of an ideal topological space (X, τ, I) is pre-I-open [1] if S \subset Int(Cl*(S). The complement of a pre-I-open set is called a pre-I-closed set. The intersection of all pre-I-closed sets containing S is called the pre-I-closure of S and is denoted by pICl(S). The family of all pre-I-open (resp. pre-I-closed) sets of (X, τ, I) is denoted by PIO(X) (resp. PIC(X)). The family of all pre-I-open (resp. pre-I-closed) sets of (X, τ, I) containing a point $x \in X$ is denoted by PIO(X, x) (resp. PIC(X, x)). Recall, that a subset B_x of an ideal topological space (X,τ) is said to be a pre-I-neighbourhood of a point $x \in X$ [9] if there exists a pre-I-open set U such that $x \in U \subseteq B_x$. A subset of an ideal topological space X is pre-I-open in X if and only if it is pre-I-neighbourhood of each of its points.

3. Pre-I-R₀ SPACES

Definition 3.1. Let (X,τ, I) be an ideal topological space and $A \subseteq X$. Then the pre-I-kernel of A, denoted by pIker (A) is defined to be the set pIKer (A) = $\cap \{G \in PIO(X) \mid A \subseteq G\}$.

Lemma 3.2. Let (X,τ, I) be an ideal topological space and $x \in X$. Then, $y \in pIKer(\{x\})$ if and only if $x \in pICl(\{y\})$.

Proof. Suppose that $y \in pIKer(\{x\})$. Then there exists a pre-I-open set V of X containing x such that $y \in V$. Then we have $x \in pICl(\{y\})$. The proof of the converse case can be done similarly.

Lemma 3.3. Let (X,τ, I) be an ideal topological space and A a subset of X. Then, pIKer $(A) = \{x \in X \mid pICl(\{x\}) \cap A \neq \phi\}$.

Proof. Let $x \in pIKer(A)$ and $pICl(\{x\}) \cap A \neq \phi$. Hence $x \in X \setminus pICl(\{x\})$ which is a pre-I-open set containing A. This is impossible, since $x \in pIKer(A)$. Consequently, $pICl(\{x\}) \cap A \neq \phi$. Next, let $x \in X$ such that $pICl(\{x\}) \cap A \neq \phi$ and suppose that $x \in pIKer(A)$. Then, there exists a pre-I-open set U containing A and $x \in U$. Let $y \in pICl(\{x\}) \cap A$. Hence, U is a pre-I-neighbourhood of y which does not contain x. By this contradiction $x \in pIKer(A)$ and the claim.

Definition 3.4. An ideal topological space (X,τ, I) is said to be a pre-I-R₀ space if every pre-I-open set contains the pre-I-closure of each of its singletons.

Proposition 3.5. For an ideal topological space (X, τ, I) , the following properties are equivalent:

- (1) (X,τ, I) is pre-I-R₀ space.
- (2) For any $F \in PIC(X)$, $x \in F$ implies $F \subseteq U$ and $x \in U$ for some $U \in PIO(X)$;
- (3) For any $F \in PIC(X)$, $x \in F$ implies $F \cap pICl(\{x\}) = \varphi$;
- (4) For any distinct points x and y of X, either $pICl(\{x\}) = C1(\{y\})$ or $pICl(\{x\}) \cap pICl(\{y\}) = \varphi$.

Proof. (1) => (2): Let $F \in PIC(X)$, and $x \in F$. Then by (1) $pICl(\{x\}) \subseteq X \setminus F$. Set $U=X \setminus pICl(\{x\})$, then $U \in PIO(X)$, $F \subseteq U$ and $x \in U$.

(2) => (3): Let $F \in PIC(X)$ and $x \in F$. There exists $U \in PIO(X)$ such that $F \subseteq U$ and $x \in U$. Since $U \in PIO(X)$, $U \cap pICl(\{x\}) = \varphi$ and $F \cap pICl(\{x\}) = \varphi$.

(3) => (4): Suppose that $pICl(\{x\}) \neq pICl(\{y\})$ for distinct points x, y \in X. There exists z \in $pICl(\{x\})$ such that z \in $pICl(\{y\})$ (or z \in $pICl(\{y\})$ such that z \in $pICl(\{x\})$). There exists V \in PIO(X), such that y \in V and z \in V; hence x \in V. Therefore, we have x \in $pICl(\{y\})$. By (3), we obtain $pICl(\{x\}) \cap pICl(\{y\}) = \varphi$. The proof for otherwise is similar.

(4) => (1): Let V \in PIO(X) and x \in V. For each y \in V, x \neq y and x \in pICl({y}). Then pICl({x}) \neq pICl({y}). By (4), pICl({x}) \cap pICl({y}) = φ for each y \in X \ V, and hence pICl({x}) \cap (U_y \in X \ V pICl({y})) = φ . On other hand, since V \in PIO(X) and y \in X \ V, we have pICl({y}) \subseteq X \ V and hence X \ V = U_y \in X \ V pICl({y}). Therefore, we obtain (X \ V) \cap pICl({x}) = φ and pICl({x}) \subseteq V. This shows that (X, τ , I) is a pre-I-R₀ space.

Theorem 3.6. An ideal topological space (X,τ, I) is a pre-I-R₀ space if and only if for any x and y in X, pICl({x}) \neq pICl({y}) implies pICl({x}) \cap pICl({y}) = φ .

Proof. Suppose that (X,τ, I) is pre-I-R₀ and x, y $\in X$ such that pICl({x}) \neq pICl({y}). Then, there exist z \in pICl({x}) such that z \in pICl({y}) (or z \in pICl({y}) such that z \in pICl({x}). There exists V \in PIO(X) such that y \in V and z \in V; hence x \in V. Therefore, we have x \in pICl({y}). Thus x \in X \ pICl({y}) \in PIO(X), which implies pICl({x}) \subseteq X \ pICl({y}) and pICl({x}) \cap pICl({y}) = φ . The proof for otherwise is similar. Conversely let V \in PIO(X) and let x \in V. We will show that pICl({x}) \subseteq V. Let y \in X \ V. Then x \neq y and x not in pICl({y}). This shows that pICl({x}) \neq pICl({y}) By assumption, pICl({x}) \cap pICl({y}) = φ . Hence y # pICl({x}) and therefore pICl({x}) \subseteq V.

Lemma 3.7. The following statements are equivalent for any points x and y in an ideal topological space (X, τ, I) :

- (1) $pIKer({x}) \neq pIKer({y});$
- (2) $pICl(\{x\}) \neq pICl(\{y\})$.

Proof. (1) => (2): Suppose that $pIKer(\{x\}) \neq pIKer(\{y\})$, then there exists a point z in X such that z \in $pIKer(\{x\})$ and z \in $pIKer(\{y\})$. It follows from z \in $pIKer(\{x\})$ that $\{x\} \cap pICl(\{z\}) = \varphi$. This implies that x \in $pICl(\{z\})$. By z \in $pIKer(\{y\})$, we have $\{y\} \cap pICl(\{z\}) = \varphi$. Since x \in $pICl(\{z\})$, $pICl(\{x\}) \subseteq pICl(\{z\})$ and $\{y\} \cap pICl(\{x\}) = \varphi$. Therefore, it follows that $pICl(\{x\}) \neq pICl(\{y\})$. Now $pIKer(\{x\}) \neq pIKer(\{y\})$ implies that $pICl(\{x\}) \neq pICl(\{y\})$.

(2) => (1): Suppose that $pICl(\{x\}) \neq pICl(\{y\})$. Then there exists a point z in X such that $z \in pICl(\{x\})$ and z $\epsilon pICl(\{y\})$. Then, there exists a pre-I-open set containing z and therefore x but not y, namely, y $\epsilon pIKer(\{x\})$ and thus $pIKer(\{x\}) \neq pIKer(\{y\})$.

Theorem 3.8. An ideal topological space (X,τ, I) is a pre-I-R₀ space if and only if for any point x and y in X, pIKer($\{x\}$) \neq pIKer($\{y\}$) implies pIKer($\{x\}$) \cap pIKer($\{y\}$) = φ .

Proof. Suppose that (X,τ, I) is a pre-I-R₀ space. Thus by Lemma 3.7, for any points x and y in X if $pIKer(\{x\}) \neq pIKer(\{y\})$, then $pICl(\{x\}) \neq pICl(\{y\})$. Now we prove that $pIKer(\{x\}) \cap pIKer(\{y\}) = \varphi$. Assume that $z \in pIKer(\{x\}) \cap pIKer(\{y\})$. By $z \in pIKer(\{x\})$ and Lemma 3.2, it follows that $x \in pICl(\{z\})$. Since $x \in pICl(\{x\})$, by Theorem 3.6 $pICl(\{x\}) = pICl(\{z\})$. Similarly, we have $pICl(\{y\}) = pICl(\{z\}) = pICl(\{x\})$. This is a contradiction. Therefore, we have $pIKer(\{x\}) \cap pIKer(\{y\}) = \varphi$. Conversely, let (X, τ, I) be an ideal topological space such that for any points x and y in X, $pIKer(\{x\}) \neq pIKer(\{y\})$ implies $pIKer(\{x\}) \cap pIKer(\{y\}) = \varphi$. If $pICl(\{x\}) \neq pICl(\{y\})$, then by Lemma 3.2, $pIKer(\{x\}) \neq pIKer(\{y\})$. Hence, $pIKer(\{x\}) \cap pIKer(\{y\}) = \phi$ which implies $pICl(\{x\}) \cap pICl(\{y\}) = \phi$. Because $z \in pICl(\{x\})$ implies that $x \in pIKer(\{z\})$ and therefore $pIKer(\{x\}) \cap pIKer(\{y\}) = \phi$. By hypothesis, we have $pIKer(\{x\}) = pIKer(\{z\})$. Then $z \in pICl(\{x\}) \cap pICl(\{y\})$ implies that $pIKer(\{x\}) = pIKer(\{z\}) = pIKer(\{y\})$. This is a contradiction. Therefore, $pICl(\{x\}) \cap pICl(\{y\}) = \phi$ and by Theorem 3.6 (X, τ, I) is a pre-I-R₀ space.

Theorem 3.9. For an ideal topological space (X, τ, I) , the following properties are equivalent:

- (1) (X,τ, I) is a pre-I-R₀ space;
- (2) For any nonempty set A and G \in PIO(X) such that A \cap G $\neq \phi$, there exists F \in PIC(X) such that A \cap F $\neq 0$ and F \subseteq G;
- (3) Any $G \in PIO(X)$, $G = U \{ F \in PIC(X) | F \subseteq G \}$;
- (4) Any $F \in PIC(X)$, $F = \cap \{G \in PIO(X) | F \subseteq G\}$;
- (5) For any $x \in X$, pICl($\{x\}$) # pIKer($\{x\}$).

Proof. (1) => (2): Let A be a nonempty set of X and G \in PIO(X) such that A \cap G $\neq \phi$. There exists x \in A \cap G. Since x \in G \in PIO(X), pICl({x}) \subseteq G. Set F = pICl({x}), then F \in PIC(X), F \subseteq G and A \cap F $\neq \phi$.

(2) => (3): Let G \in PIO(X), then G \subseteq U { F \in PIC(X) | F \subseteq G}. Let x be any point of G. There exists F \in PIC(X) such that x \in F # and F \subseteq G. Therefore, we have x \in F \subseteq u { F \in PIC(X) | F \subseteq G} and hence G = U { F \in PIC(X) | F \subseteq G}.

 $(3) \Rightarrow (4)$: This is obvious.

(4) => (5): Let x be any point of X and y \in pIKer({x}). There exists V \in PIO(X) such that x \in V and y \in V; hence pICl({y}) \cap V = φ . By (4) (\cap { G \in PIO(X) | pICl({y}) \subseteq G}) \cap V = φ and there exists G \in PIO(X) such that x \in G and pICl({y}) \subseteq G. Therefore, pICl({x}) \cap G $\neq \varphi$ and y \in pICl({x}). Consequently, we obtain pICl({x}) \subseteq pIKer({x}).

(5) =>(1): Let G \in PIO(X) and x \in G. Let y \in pIKer({x}), then x \in pICl({y}) and y \in G. This implies that pIKer({x}) \subseteq G. Therefore, we obtain x \in pICl({x}) \subseteq pIKer({x}) \subseteq G. This shows that (X, τ , I), is pre-I-R₀ space.

Corollary 3.10. For an ideal topological space (X, τ, I) , the following properties are equivalent:

- (1) (X,τ, I) is pre-I-R₀ space;
- (2) $pICl({x}) = pIKer({x})$ for all $x \in X$.

Proof. (1) => (2): Suppose that (X, τ, I) is pre-I-R₀ space. By Theorem 3.9, pICl({x}) \subseteq pIKer({x}) for each x \in X. Let y \in pIKer({x}), then x \in pICl({y}) and by Theorem 3.6 pICl({x}) = pICl({y}). Therefore, y \in pICl({x}) and hence pIKer({x}) \subseteq pICl({x}). This shows that pICl({x}) = pIKer({x}).

(2) \Rightarrow (1): This is obvious by Theorem 3.9.

Theorem 3.11. For an ideal topological space (X, τ, I) , the following properties are equivalent:

- (1) (X,τ, I) is pre-I-R₀ space;
- (2) $x \in pICl(\{y\})$ if and only if $y \in pICl(\{x\})$ for any points x and y in X.

Proof. (1) => (2): Assume that X is pre-I-R₀. Let $x \in pICl(\{y\})$ and D be any pre-I-open set such that $y \in D$. Now by hypothesis, $x \in D$. Therefore, every pre-I-open set containing y contains x. Hence $y \in pICl(\{x\})$.

(2) => (1): Let U be a pre-I-open set and $x \in U$. If $y \in U$, then $x \in pICl(\{y\})$ and hence $y \in pICl(\{x\})$. This implies that $pICl(\{x\}) \subseteq U$. Hence (X,τ, I) is pre-I-R₀.

Theorem 3.12. For an ideal topological space (X, τ, I) , the following properties are equivalent:

- (1) (X,τ, I) is pre-I-R₀ space;
- (2) If F is a pre-I-closed subset of X, then F = pIKer(F);
- (3) If F is a pre-I-closed subset of X and $x \in F$, then $pIKer({x}) \subseteq F$;
- (4) If $x \in X$, then $pIKer(\{x\}) \subseteq pICl(\{x\})$.

Proof. (1) => (2): Let F be pre-I-closed subset of X and x \in F. Thus X \ F is pre-I-open and contains x. Since (X, τ , I) is pre-I-R₀, pICl({x}) \subseteq X \ F. Thus pICl({x}) \cap F = ϕ and Lemma 3.3 x \in pIKer(F). Therefore, pIKer(F) = F.

(2) => (3): In general, $A \subseteq B$ implies $pIKer(A) \subseteq pIKer(B)$. Therefore, it follows from (2) that $pIKer(\{x\}) \subseteq pIKer(F) = F$.

(3) => (4): Since $x \in pICl(\{x\})$ and $pICl(\{x\})$ is pre-I-closed, by (3) $pIKer(\{x\})$ and $pICl(\{x\})$.

(4) => (1): We show the implication by using Theorem 3.11. Let $x \in pICl(\{y\})$. Then by Lemma 3.2 $y \in pIKer(\{x\})$. Since $x \in pICl(\{x\})$ and $pICl(\{x\})$ is pre-I-closed, by (4) we obtain $y \in pIKer(\{x\}) \subseteq preC1(\{x\})$. Therefore, $x \in pICl(\{x\})$ implies $y \in pICl(\{x\})$. The converse is obvious and (X,τ, I) is pre-I- R_0 .

Definition 3.13. A filterbase F is called pre-I-convergent to a point x in X, if for any pre-I-open set U of X containing x, there exists B in F such that B is a subset of U.

Lemma 3.14. Let (X,τ, I) be an ideal topological space and let x and y be any two points in X such that every net in X pre-I-converging to y pre-I-converge to x. Then $x \in pICl(\{y\})$.

Proof. Suppose that $x_n = y$ for each $n \in N$. Then $\{x_n\}_n \in N$ is a net in preC1($\{y\}$). Since $\{x_n\}_{n \in N}$ pre-I-converges to x and this implies that $x \in pICl(\{y\})$.

Theorem 3.15. For an ideal topological space (X, τ, I) , the following properties are equivalent:

- (1) (X,τ, I) is pre-I-R₀ space;
- (2) If $y \in X$, then $y \in pICl(\{x\})$ if and only if every net in X pre-I-converging to y pre-I-converges to x.

Proof. (1) => (2): Let x,y \in X such that y \in pICl({x}). Suppose that { $x_{\alpha} \}_{\alpha \in \mathbb{N}}$ be a net in X such that { $x_{\alpha} \}_{\alpha \in \mathbb{N}}$ pre-I-converges to y. Since y \in pICl({x}), by Theorem 3.6 we have pICl({x}) = pICl({y}). Therefore x \in pICl({y}). This means that { $x_{\alpha} \}_{\alpha \in \mathbb{N}}$ pre-I-converges to y. Conversely, let x,y \in X such that every net in X pre-I-converging to y pre-I-converges to x. Then x \in pICl({y}) by Lemma 3.3. By Theorem 3.6, we have pICl({x}) = pICl({y}). Therefore y \in pICl({x}).

(2) => (1): Assume that x and y are any two points of X such that $pICl(\{x\}) \cap pICl(\{y\}) \neq \phi$. Let z ϵ $pICl(\{x\}) \cap pICl(\{y\})$. So there exists a net $\{x_{\alpha}\}_{\alpha \in \mathbb{N}}$ in $pICl(\{x\})$ such that $\{x_{\alpha}\}_{\alpha \in \mathbb{N}}$ pre-I-converges to z. Since z ϵ $pICl(\{y\})$, then $\{x_{\alpha}\}_{\alpha \in \mathbb{N}}$ pre-I-converges to y. It follows that y ϵ $pICl(\{x\})$. By the same manner we obtain x ϵ $pICl(\{y\})$. Therefore $pICl(\{x\}) = pICl(\{y\})$ and by Theorem 3.6 (X, τ , I) is pre-I-R₀.

REFERENCES

- [1] J. Dontchev, On pre-I-open sets and a decomposition of I-continuity, Banyan Math.J., 2 (1996).
- [2] M. Akdag, On upper and lower semi-I-continuous multifunctions, Far East J. math. Sci., 25(1)(2007), 49-57.
- [3] E. Hatir and T. Noiri, On decomposition of continuity via idealization, Acta Math. Hungar., 96(2002), 341-349.
- [4] D. Jankovic and T. R. Hamlett, New toplogies from old via ideals, Amer. Math. Monthly, 97 (4) (1990), 295-310.
- [5] K. Kuratowski, Topology, Academic Press, New York, 1966.
- [6] R. Vaidyanathaswamy, The localisation theory in set topology, Proc. Indian Acad. Sci., 20(1945), 51-61.
- [7] S. Yuksel, A. Acikgoz and E. Gursel, A new type of continuous functions in ideal topological spaces, J. Indian Acad. Math., 28 (2007), 427-438.