πgg ζ^* -CLOSED SETS AND QUASI g ζ^* -NORMAL SPACES

 ¹Hamant Kumar and ²Jitendra Kumar Department of Mathematics
¹Government Degree College, Bilaspur-Rampur, 244921, U. P. (India)
²Shyamlal Sarswati Mahavidhalaya, Shikarpur-203395, U. P. (India)

Abstract: In this paper, we introduce a new class of sets called $\pi gg\zeta^*$ -closed sets in topological spaces. Also we study and investigate the relationship with other existing closed sets. Moreover, we introduce some functions such as $g\zeta^*$ -closed, $\pi gg\zeta^*$ -closed, almost $g\zeta^*$ -closed, almost $\pi gg\zeta^*$ -closed, $\pi gg\zeta^*$ -continuous and almost $\pi gg\zeta^*$ -continuous. We also study a new class of normal space called, quasi $g\zeta^*$ -normal space. The relationships among normal, π -normal, quasi normal, softly normal, mildly normal, α -normal, $\pi\alpha$ -normal, quasi α -normal, softly α -normal, mildly α -normal, $g\zeta^*$ -normal, $\pi g\zeta^*$ -normal, quasi $g\zeta^*$ -normal, softly $g\zeta^*$ -normal spaces are investigated. Further we show that this property is a topological property and it is a hereditary property only with respect to closed domain subspaces. Utilizing $\pi gg\zeta^*$ -closed sets and some functions, we obtained some characterizations and preservation theorems for quasi $g\zeta^*$ -normal spaces.

2010 AMS Subject classification : 54D15, 54D10, 54A05, 54C08.

Keywords : π -open, $g\zeta^*$ -open, $\pi gg\zeta^*$ -open, π -closed, $g\zeta^*$ -closed, and $\pi gg\zeta^*$ -closed sets; $\pi gg\zeta^*$ -closed, almost $\pi gg\zeta^*$ -closed, $\pi gg\zeta^*$ -continuous and almost $\pi gg\zeta^*$ -continuous functions; quasi $g\zeta^*$ -normal spaces.

1. Introduction

In 1965, Njastad [13] introduced the concept of α -open sets in topological spaces. In 1968, the notion of quasi normal space was introduced by Zaitsev [21]. In 1970, Levine [11] initiated the study of so called generalized closed (briefly g-closed) sets in order to extend many of the most important properties of closed sets to a large family. In 1973, Singal and Singal [20] introduced the notion of mildly normal spaces in topological spaces. In 1990, Lal and Rahman [10] have further studied notions of quasi normal and mildly normal spaces. In 1994, H. Maki et al. [12] introduced the notion of αg -closed sets. In 2000, Dontchev and Noiri [4] introduced the notion of π g-closed sets and by using these sets, obtained a new characterization of quasi normal space. In 2001, A. V. Arhangel'skii and Ludwig [1] introduced the concepts of α-normal and β -normal spaces. In 2004, Nono et al. [15] introduced the notion of $g^{\dagger}\alpha$ -closed sets in topological spaces. In 2007, Arockiarani and C. Janaki [2] introduced the notion of $\pi g\alpha$ -closed sets in topological spaces and by using $\pi g\alpha$ -closed sets, obtained a new characterization of quasi α -normal spaces. In 2008, Kalantan [6] introduced a weaker version of normality called π -normality and proved that π -normality is a property which lies between normality and almost normality. In 2009, R. Devi et al. [3] introduced the notion of $^{\#}g\alpha$ closed sets in topological spaces. In 2013, Kokilavani [7] introduced the notion of $g\zeta^*$ -closed sets in topological spaces and investigated some of their properties. In 2015, T. C. K. Raman [16] introduced the concepts of $\pi\alpha$ -normal spaces. In 2018, Hamant Kumar [5] introduced some normal spaces such as $g\zeta^*$ normal, $\pi g \zeta^*$ -normal, quasi $g \zeta^*$ -normal and mildly $g \zeta^*$ -normal, and the relationships among these normal spaces are investigated.

2. Preliminaries

Throughout this paper, spaces (X, \Im), (Y, σ), and (Z, γ) (or simply X, Y and Z) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. The closure of A and interior of A are denoted by cl(A) and int(A) respectively. A subset A is said to be **regular open** (resp. **regular closed**) if A = int(cl(A)) (resp. A = cl(int(A)). The finite union of regular open sets is said to be π -**closed**. A is said to be α -**open** [13] if A \subset int(cl(int(A))). The complement of a α -open set is said to be α -**closed**. The intersection of all α -closed sets containing A is called α -**closure** [13] of A, and is denoted by α -cl(A)). The α -interior [13] of A, denoted by α -int(A), is defined as union of all α -open sets contained in A.

2.1 Definition. A subset A of a space (X, \Im) is said to be

(1) generalized closed (briefly g-closed) [11] if $cl(A) \subset U$ whenever $A \subset U$ and $U \in \mathfrak{I}$.

(2) π **g-closed** [4] if cl(A) \subset U whenever A \subset U and U is π -open in X.

(3) α -generalized closed (briefly α g-closed) [12] if α -cl(A) \subset U whenever A \subset U and U $\in \mathfrak{I}$.

(4) π ga-closed [2] if α cl(A) \subset U whenever A \subset U and U is π -open in X.

(5) generalized [#] α -closed (briefly g[#] α -closed) [15] if α -cl(A) \subset U whenever A \subset U and is g-open in X.

(6) *generalized α -closed (briefly *g α -closed) [3] if α -cl(A) \subset U whenever A \subset U and U is g* α -open in X. (7) g ζ *-closed [7] if α -cl(A) \subset U whenever A \subset U and U is *g α -open in X.

(8) g-open (resp. π g-open, α g-open, π g α -open, $g^{*}\alpha$ -open, $g\zeta^{*}$ -open) set if the complement of A is g-closed (resp. π g-closed, α g-closed, π g α -closed, $g^{*}\alpha$ -closed, $g\zeta^{*}$ -closed).

The intersection of all $g\zeta^*$ -closed sets containing A is called $g\zeta^*$ -closure of A, and is denoted by $g\zeta^*$ -cl(A). The $g\zeta^*$ -interior of A, denoted by $g\zeta^*$ -int(A), is defined as union of all $g\zeta^*$ -open sets contained in A. The family of all $g\zeta^*$ -closed (resp. $g\zeta^*$ -open) sets of a space X is denoted by $g\zeta^*$ -C(X) (resp. $g\zeta^*$ -O(X)).

2.2 Definition. A subset A of a space (X, \Im) is said to be

(1) generalized $g\zeta^*$ -closed [9] (briefly $gg\zeta^*$ -closed) if $g\zeta^*$ -cl(A) $\subset U$ whenever A $\subset U$ and $U \in \mathfrak{I}$.

(2) π -generalized $g\zeta^*$ -closed (briefly $\pi gg\zeta^*$ -closed) if $g\zeta^*$ -cl(A) $\subset U$ whenever A $\subset U$ and U is π -open in X.

2.3 Remark. We have the following implications for the properties of subsets:

closed	\Rightarrow	g-closed	\Rightarrow	π g-closed
\Downarrow		\Downarrow		\Downarrow
α -closed	\Rightarrow	ag-closed	\Rightarrow	$\pi g \alpha$ -closed
\Downarrow		\Downarrow		\Downarrow
$g\zeta^*$ -closed	\Rightarrow	ggζ*-closed	\Rightarrow	πggζ*-closed

Where none of the implications is reversible as can be seen from the following examples:

2.4 Example. Let $X = \{a, b, c\}$ and $\mathfrak{I} = \{\phi, \{a\}, X\}$. Then $A = \{b\}$ is g-closed as well as α g-closed. Hence A is $gg\zeta^*$ -closed. But it is not closed.

2.5 Example. Let $X = \{a, b, c, d\}$ and $\mathfrak{I} = \{\phi, \{a\}, \{d\}, \{a, d\}, \{c, d\}, \{a, c, d\}, X\}$. Then $A = \{c\}$ is $\pi g \alpha$ -closed as well as $\pi g g \zeta^*$ -closed but not g-closed.

2.6 Example. Let $X = \{a, b, c, d\}$ and $\mathfrak{I} = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, X\}$. Then $A = \{a\}$ is $\pi g \alpha$ -closed as well as $\pi g g \zeta^*$ -closed but not closed.

2.7 Example. Let $X = \{a, b, c, d\}$ and $\Im = \{\phi, \{c\}, \{d\}, \{a, c\}, \{c, d\}, \{a, c, d\}, X\}$. Then $A = \{a\}$ is α -closed as well as α g-closed. Hence A is $g\zeta^*$ -closed. But it is not closed.

2.8 Example. Let $X = \{a, b, c\}$ and $\mathfrak{I} = \{\phi, \{a\}, \{b, c\}, X\}$. Then $A = \{b\}$ is αg -closed as well as $gg\zeta^*$ -closed. But it is not $g\zeta^*$ -closed.

2.9 Theorem. For $\pi gg\zeta^*$ -closed sets of a space X, the following properties hold:

(a) Every finite union of $\pi gg\zeta^*$ -closed sets is always a $\pi gg\zeta^*$ -closed set.

(b) Even a countable union of $\pi gg\zeta^*$ -closed sets need not be a $\pi gg\zeta^*$ -closed set.

(c) Even a finite intersection of $\pi gg\zeta^*$ -closed sets may fail to be a $\pi gg\zeta^*$ -closed set.

Proof.

(a) Let A and B be any two $\pi gg\zeta^*$ -closed sets. Therefore $g\zeta^*$ -cl(A) \subset U and $g\zeta^*$ -cl(B) \subset U whenever A \subset U, B \subset U and U is π -open. Let A \cup B \subset U where U is π -open.

Since, $g\zeta^*-cl(A \cup B) \subset g\zeta^*-cl(A) \cup g\zeta^*-cl(B) \subset U$, we have $A \cup B$ is $\pi gg\zeta^*-closed$.

(b) Let R be the real line with the usual topology. Every singleton is $\pi gg\zeta^*$ -closed. However, A = {1 / i : i = 2, 3,} is not $\pi gg\zeta^*$ -closed, since A \subset (0, 1) which is π -open but $g\zeta^*$ -cl(A) $\not\subset$ (0, 1).

(c) Let X = {a, b, c, d} and let $\mathfrak{I} = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}$. Let A = {a, b, c} and B = {a, b, d} are $\pi gg\zeta^*$ -closed sets. But A \cap B = {a, b} \subset {a, b} which is π -open. $g\zeta^*$ -cl(A \cap B) $\not\subset$ {a, b}. Hence A \cap B is not $\pi gg\zeta^*$ -closed.

2.10 Theorem: If A is $\pi gg\zeta^*$ -closed and A \subset B $\subset g\zeta^*$ -cl(A) then B is $\pi gg\zeta^*$ -closed. **Proof:** Since A is $\pi gg\zeta^*$ -closed, $g\zeta^*$ -cl(A) \subset U whenever A \subset U and U is π -open. Let B \subset U and U is π open. Since B $\subset g\zeta^*$ -cl(A), $g\zeta^*$ -cl(B) $\subset g\zeta^*$ -cl(A) \subset U. Hence B is $\pi gg\zeta^*$ -closed.

2.11 Theorem. Let A be a $\pi gg\zeta^*$ -closed set in X. Then $g\zeta^*$ -cl(A) – A does not contain any nonempty π -closed set.

Proof. Let F be a nonempty π -closed set such that $F \subset g\zeta^*$ -cl(A) – A. Then $F \subset g\zeta^*$ -cl(A) $\cap (X - A) \subset (X - A)$ implies $A \subset X - F$ where X - F is π -open. Therefore $g\zeta^*$ -cl(A) $\subset X - F$ implies $F \subset (g\zeta^*$ -cl(A)^c. Now $F \subset g\zeta^*$ -cl(A) $\cap (g\zeta^*$ -cl(A))^c implies F is empty.

Reverse implication does not hold.

2.12 Example. Let $X = \{a, b, c, d, e\}$ and let $\mathfrak{I} = \{\emptyset, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$. Let $A = \{c\}$ then $g\zeta^*$ -cl(A) = $\{c, d, e\}, g\zeta^*$ -cl(A) – A = $\{d, e\}$ does not contain any nonempty regular closed set but A is not $\pi gg\zeta^*$ -closed set.

2.13 Corollary. Let A be $\pi gg\zeta^*$ -closed. A is $g\zeta^*$ -closed iff $g\zeta^*$ -cl(A) – A is π -closed. **Proof.** Let A be $g\zeta^*$ -closed set then A = $g\zeta^*$ -cl(A) implies $g\zeta^*$ -cl(A) – A = \emptyset which is π -closed.

Conversely, if $g\zeta^*$ -cl(A) – A is π -closed then A is $g\zeta^*$ -closed.

2.14 Theorem. If A is π -open and $\pi gg\zeta^*$ -closed. Then A is $g\zeta^*$ -closed and hence clopen.

Proof. Let A be regular open. Since A is $\pi gg\zeta^*$ -closed, $g\zeta^*$ -cl(A) \subset A implies A is $g\zeta^*$ -closed. Hence A is closed. (Since every π -open $g\zeta^*$ -closed set is closed). Therefore A is clopen.

2.15 Theorem. For a space X, the following are equivalent:

(a) X is extremally disconnected,

(b) Every subset of X is $\pi gg \zeta^*$ -closed

(c) The topology on X generated by $\pi gg \zeta^*$ -closed set is the discrete one.

Proof. (a) \Rightarrow (b).

Assume that X is extremally disconnected. Let $A \subset U$ where U is π -open in X. Since U is π -open, it is the finite union of regular open sets and X is extremally disconnected, U is finite union of clopen sets and hence U is clopen. Therefore $g\zeta^*-cl(A) \subset cl(A) \subset cl(U) \subset U$ implies A is $\pi gg\zeta^*-closed$.

$(b) \Rightarrow (a)$

Let A be a regular open set of X. Since A is $\pi gg\zeta^*$ -closed by **Theorem 2.14**, A is clopen. Hence X is extremally disconnected.

(b) \Leftrightarrow (c) is obvious.

3. π gg ζ *-open sets

3.1 Definition. A subset A of a space X is called π -generalized $g\zeta^*$ -open (briefly $\pi gg\zeta^*$ -open) iff its complement is $\pi gg\zeta^*$ -closed set.

3.2 Lemma. If A be a subset of X, then (a) $g\zeta^*$ -cl(X - A) = X - $g\zeta^*$ -int(A). (b) $g\zeta^*$ -int(X - A) = X - $g\zeta^*$ -cl(A).

3.3 Theorem. A subset A of a space X is $\pi gg\zeta^*$ -open iff $F \subset g\zeta^*$ -int(A) whenever F is π -closed and $F \subset A$. **Proof.** Let F be π -closed set such that $F \subset A$. Since X – A is $\pi gg\zeta^*$ -closed and X – A \subset X – F where $F \subset g\zeta^*$ -int(A). Conversely.

Let $F \subset g\zeta^*$ -int(A) where F is π -closed and $F \subset A$. Since $F \subset A$ and X - F is π -open, $g\zeta^*$ -cl(X - A) = X - C

 $g\zeta^*$ -int(A) \subset X – F. Therefore A is $\pi gg\zeta^*$ -open.

3.4 Theorem. If $g\zeta^*$ -int(A) \subset B \subset A and A $\pi gg\zeta^*$ -open then B is $\pi gg\zeta^*$ -open. **Proof:** Since $g\zeta^*$ -int(A) \subset B \subset A, by **Theorem 2.10**, $g\zeta^*$ -cl(X – A) \supset (X – B) implies B is $\pi gg\zeta^*$ -open.

3.5 Remark. For any $A \subset X$, $g\zeta^*$ -int $(g\zeta^*$ -cl $(A) - A) = \emptyset$.

3.6 Theorem. If $A \subset X$ is $\pi gg\zeta^*$ -closed then $g\zeta^*$ -cl(A) – A is $\pi gg\zeta^*$ -open. **Proof.** Let A be $\pi gg\zeta^*$ -closed and F be a π -closed set such that $F \subset g\zeta^*$ -cl(A) – A. By **Theorem 2.11**, $F = \emptyset$

implies $F \subset g\zeta^*$ -int $(g\zeta^*$ -cl(A) - A). By **Theorem 3.3**, $g\zeta^*$ -cl(A) - A is $\pi gg\zeta^*$ -open.

Converse of the above theorem is not true.

3.7 Example. Let $X = \{a, b, c\}$ and let $\mathfrak{I} = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Let $A = \{b\}$. Then A is not $\pi gg\zeta^*$ -closed but $g\zeta^*$ -cl(A) – A = $\{a, b\}$ is $\pi gg\zeta^*$ -open.

4. Quasi $g\zeta^*$ -normal spaces

4.1 Definition. A space X is said to be $g\zeta^*$ -normal [18] (resp. α -normal [1]) if for every pair of disjoint closed subsets A, B of X, there exist disjoint $g\zeta^*$ -open (resp. α -open) sets U, V of X such that $A \subset U$ and B $\subset V$.

4.2 Definition. A space X is said to be $\pi g \zeta^*$ -normal [5] (resp. π -normal [6], $\pi \alpha$ -normal [16]) if for every pair of disjoint closed subsets A, B of X, one of which is π -closed, there exist disjoint $g \zeta^*$ -open (resp. open, α -open) sets U, V of X such that $A \subset U$ and $B \subset V$.

4.3 Definition. A space X is said to be **quasi** $g\zeta^*$ -normal [5] (resp. **quasi normal** [21], **quasi** α -normal [2]) if for every pair of disjoint π -closed subsets H, K of X, there exist disjoint $g\zeta^*$ -open (resp. open, α -open) sets U, V of X such that $H \subset U$ and $K \subset V$.

4.4 Definition. A space X is said to be **softly** $g\zeta^*$ -normal [5] (resp. **softly normal** [17], **softly** α -normal) if for every pair of disjoint subsets A, B of X, one of which is π -closed and the other is regularly closed, there exist disjoint $g\zeta^*$ -open (resp. open, α -open) sets U, V of X such that $A \subset U$ and $B \subset V$.

4.5 Definition. A space X is said to be **mildly** $g\zeta^*$ -normal [18] (resp. mildly-normal [20], mildly α -normal [2]) if for every pair of disjoint regular closed subsets H, K of X, there exist disjoint $g\zeta^*$ -open (resp. open, α -open) sets U, V of X such that $H \subset U$ and $K \subset V$.

By the definitions stated above, we have the following diagram:

normal $\Rightarrow \pi$ -normal \Rightarrow quasi-normal \Rightarrow softly normal \Rightarrow mildly-normal

$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$	\downarrow
--	--------------

α-normal =	$\Rightarrow \pi \alpha$ -normal	\Rightarrow quasi α -normal	\Rightarrow softly α -normal	\Rightarrow	mildly α -normal
11	JL	11	11		11

 $g\zeta^*$ -normal $\Rightarrow \pi g\zeta^*$ -normal $\Rightarrow quasi g\zeta^*$ -normal $\Rightarrow softly g\zeta^*$ -normal $\Rightarrow mildly g\zeta^*$ -normal

Where none of the implications is reversible as can be seen from the following examples:

4.6 Example. Let $X = \{a, b, c, d\}$ and $\mathfrak{I} = \{\emptyset, \{a, b\}, \{c, d\}, X\}$. The pair of disjoint closed subsets of X are $A = \{a, b\}$ and $B = \{c, d\}$. Also $U = \{a, b\}$ and $V = \{c, d\}$ are open sets such that $A \subset U$ and $B \subset V$. Hence the space X is normal as well as α -normal. It is also $g\zeta^*$ -normal.

4.7 Example. Let $X = \{a, b, c, d\}$ and $\mathfrak{I} = \{\emptyset, \{a\}, \{c\}, \{a, c\}, \{a, b, d\}, \{b, c, d\}, X\}$. The pair of disjoint closed subsets of X are $A = \{a\}$ and $B = \{c\}$. Also $U = \{a\}$ and $V = \{c\}$ are open sets such that $A \subset U$ and $B \subset V$. Hence the space X is normal as well as α -normal, since every open set is α -open.

4.8 Theorem. For a space X, the following are equivalent:

(a) X is quasi $g\zeta^*$ -normal.

(b) For every pair of π -open subsets U and V of X whose union is X, there exist $g\zeta^*$ -closed subsets G and H of X such that $G \subset U$, $H \subset V$ and $G \cup H = X$.

(c) For any π -closed set A and every π -open set B in X such that $A \subset B$, there exists a $g\zeta^*$ -open subset U of X such that $A \subset U \subset g\zeta^*$ -cl(U) $\subset B$.

(d) For every pair of disjoint π -closed subsets A and B of X, there exist $g\zeta^*$ -open subsets U and V of X such that $A \subset U$, $B \subset V$ and $g\zeta^*$ -cl(U) $\cap g\zeta^*$ -cl(V) = \emptyset . **Proof.** (a) \Rightarrow (b), (b) \Rightarrow (c), (c) \Rightarrow (d) and (d) \Rightarrow (a).

(a) \Rightarrow (b).Let U and V be any π -open subsets of a quasi $g\zeta^*$ -normal space X such that $U \cup V = X$. Then, X - U and X - V are disjoint π -closed subsets of X. By quasi $g\zeta^*$ -normality of X, there exist disjoint $g\zeta^*$ -open subsets U₁ and V₁ of X such that $X - U \subset U_1$ and $X - V \subset V_1$. Let $G = X - U_1$ and $H = X - V_1$. Then, G and H are $g\zeta^*$ -closed subsets of X such that $G \subset U$, $H \subset V$ and $G \cup H = X$.

(b) \Rightarrow (c). Let A be a π -closed and B is a π -open subsets of X such that A \subset B. Then, X – A and B are π -open subsets of X such that $(X - A) \cup B = X$. Then, by part (b), there exist $g\zeta^*$ -closed sets G and H of X such that G \subset (X – A), H \subset B and G \cup H = X. Then, A \subset (X – G), (X – B) \subset (X – H) and (X – G) \cap (X – H) = \emptyset . Let U = X – G and V = (X – H). Then U and V are disjoint $g\zeta^*$ -open sets such that A \subset U \subset X – V \subset B. Since X – V is $g\zeta^*$ -closed, then we have $g\zeta^*$ -cl(U) \subset (X – V). Thus, A \subset U \subset $g\zeta^*$ -cl(U) \subset B.

(c) \Rightarrow (d). Let A and B be any disjoint π -closed subset of X. Then A \subset X – B, where X – B is π -open. By the part (c), there exists a $g\zeta^*$ -open subset U of X such that A \subset U $\subset g\zeta^*$ -cl(U) \subset X – B. Let V = X – $g\zeta^*$ -cl(U). Then, V is a $g\zeta^*$ -open subset of X. Thus, we obtain A \subset U, B \subset V and $g\zeta^*$ -cl(U) $\cap g\zeta^*$ -cl(V) = \emptyset .

(d) \Rightarrow (a). It is obvious.

4.9 Proposition. Let $f : X \rightarrow Y$ be a function, then:

(a) The image of $g\zeta^*$ -open subset under an open continuous function is $g\zeta^*$ -open.

(b) The inverse image of $g\zeta^*$ -open (resp. $g\zeta^*$ -closed) subset under an open continuous function is $g\zeta^*$ -open (resp. $g\zeta^*$ -closed) subset.

(c) The image of $g\zeta^*$ -closed subset under an open and a closed continuous surjective function is $g\zeta^*$ -open.

4.10 Theorem. The image of a quasi $g\zeta^*$ -normal space under an open continuous injective function is a quasi $g\zeta^*$ -normal.

Proof. Let X be a quasi $g\zeta^*$ -normal space and let $f : X \to Y$ be an open continuous injective function. We need to show that f(X) is a quasi $g\zeta^*$ -normal. Let A and B be any two disjoint π -closed sets in f(X). Since the inverse image of a π -closed set under an open continuous function is a π -closed. Then, $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint π -closed sets in X. By quasi $g\zeta^*$ -normality of X, there exist $g\zeta^*$ -open subsets U and V of X such that $f^{-1}(A) \subset U$, $f^{-1}(B) \subset V$ and $U \cap V = \emptyset$. Since f is an open continuous injective function, we have $A \subset f(U)$, $B \subset f(V)$ and $f(U) \cap f(V) = \emptyset$. By **Proposition 4.9**, we obtain f(U) and f(V) are disjoint $g\zeta^*$ -open sets in f(X) such that $A \subset f(U)$ and $B \subset f(V)$. Hence f(X) is quasi $g\zeta^*$ -normal.

From the above theorem, we have the following corollary.

4.11 Corollary. Quasi $g\zeta^*$ -normality is a topological property.

The following lemma helps us to show that quasi $g\zeta^*$ -normality is a hereditary with respect to closed domain subspaces.

4.12 Lemma. Let M be a closed domain subspace of a space X. If A is a $g\zeta^*$ -open set in X, then $A \cap M$ is $g\zeta^*$ -open set in M.

4.13 Theorem. Quasi $g\zeta^*$ -normality is a hereditary with respect to closed domain subspaces.

Proof. Let M be a closed domain subspace of a quasi $g\zeta^*$ -normal space X. Let A and B be any disjoint π -closed sets in M. Since M is a closed domain subspace of X, then we have A and B be any disjoint π -closed sets of X. By quasi $g\zeta^*$ -normal of X, there exist disjoint $g\zeta^*$ -open subsets U and V of X such that $A \subset U$ and $B \subset V$. By the **Lemma 4.12**, we obtain $U \cap M$ and $V \cap M$ are disjoint $g\zeta^*$ -open sets in M such that $A \subset U \cap M$ and $B \subset V \cap M$. Hence, M is quasi $g\zeta^*$ -normal subspace.

Since every closed and open (clopen) subset is a closed domain, then we have the following corollary.

4.14 Corollary. Quasi $g\zeta^*$ -normality is a hereditary with respect to clopen subspaces.

The following result is useful for giving some other characterizations of quasi $g\zeta^*$ -normal spaces.

4.15 Theorem. For a space X, the following are equivalent:

(a) X is quasi $g\zeta^*$ -normal.

(b) For any disjoint π -closed sets H and K, there exist disjoint $gg\zeta^*$ -open sets U and V such that $H \subset U$ and $K \subset V$

(c) For any disjoint π -closed sets H and K, there exist disjoint $\pi gg\zeta^*$ -open sets U and V such that $H \subset U$ and $K \subset V$.

(d) For any π -closed set H and any π -open set V containing H, there exists a $gg\zeta^*$ -open set U of X such that $H \subset U \subset g\zeta^*$ -cl(U) $\subset V$.

(e) For any π -closed set H and any π -open set V containing H, there exists a $\pi gg\zeta^*$ -open set U of X such that $H \subset U \subset g\zeta^*$ -cl(U) $\subset V$.

Proof. (a) \Rightarrow (b), (b) \Rightarrow (c), (c) \Rightarrow (d), (d) \Rightarrow (e) and (e) \Rightarrow (a).

(a) \Rightarrow (b). Let X be quasi $g\zeta^*$ -normal space. Let H, K be disjoint π -closed sets of X. By assumption, there exist disjoint $g\zeta^*$ -open sets U, V such that $H \subset U$ and $K \subset V$. Since every $g\zeta^*$ -open set is $gg\zeta^*$ -open, U and V are $gg\zeta^*$ -open sets such that $H \subset U$ and $K \subset V$.

(b) \Rightarrow (c). Let H, K be two disjoint π -closed sets. By assumption, there exist disjoint $gg\zeta^*$ -open sets U and V such that H \subset U and K \subset V. Since $gg\zeta^*$ -open set is $\pi gg\zeta^*$ -open, U and V are $\pi gg\zeta^*$ -open sets such that H \subset U and K \subset V.

(c) \Rightarrow (d). Let H be any π -closed set and V be any π -open set containing H. By assumption, there exist disjoint $\pi gg\zeta^*$ -open sets U and W such that $H \subset U$ and $X - V \subset W$. By **Theorem 3.3**, we get $X - V \subset g\zeta^*$ -int(W) and $g\zeta^*$ -cl(U) $\cap g\zeta^*$ -int(W) = \emptyset . Hence $H \subset U \subset g\zeta^*$ -cl(U) $\subset X - g\zeta^*$ -int(W) $\subset V$.

(d) \Rightarrow (e). Let H be any π -closed set and V be any π -open set containing H. By assumption, there exist $gg\zeta^*$ -open set U of X such that $H \subset U \subset g\zeta^*$ -cl(U) $\subset V$. Since, every $gg\zeta^*$ -open set is $\pi gg\zeta^*$ -open, there exists $\pi gg\zeta^*$ -open sets U of X such that $H \subset U \subset g\zeta^*$ -cl(U) $\subset V$.

(e) \Rightarrow (a). Let H, K be any two disjoint π -closed sets of X. Then $H \subset X - K$ and X - K is π -open. By assumption, there exists $\pi gg\zeta^*$ -open set G of X such that $H \subset G \subset g\zeta^*$ -cl(G) $\subset X - K$. Put $U = g\zeta^*$ -int(G), $V = X - g\zeta^*$ -cl(G). Then U and V are disjoint $g\zeta^*$ -open sets of X such that $H \subset U$ and $K \subset V$.

5. Preservation Theorems

5.1 Definition. A function $f : X \rightarrow Y$ is said to be

(a) $g\zeta^*$ -closed [8] (resp. $\pi gg\zeta^*$ -closed) if f(F) is $g\zeta^*$ -closed (resp. $\pi gg\zeta^*$ -closed) in Y for every closed set F of X.

(b) rc-preserving [14] (resp. almost closed [19], almost $g\zeta^*$ -closed, almost $\pi gg\zeta^*$ -closed) if f(F) is regular closed (resp. closed, $g\zeta^*$ -closed, $\pi gg\zeta^*$ -closed) in Y for every $F \in RC(X)$.

(c) π -continuous [4] (resp. almost π -continuous [4]) if f⁻¹(F) is π -closed in X for every closed (resp. regular closed) set F of Y.

(d) **almost continuous** [19] if $f^{-1}(V)$ is open in X for every regular open set V of Y.

(e) $\pi gg\zeta^*$ -continuous (resp. almost $\pi gg\zeta^*$ -continuous) if f⁻¹(F) is $\pi gg\zeta^*$ -closed in X for every closed (resp. regular closed) set F of Y.

5.2 Theorem. If $f: X \to Y$ is an almost π -continuous and $\pi gg\zeta^*$ -closed function, then f(A) is $\pi gg\zeta^*$ -closed in Y for every $\pi gg\zeta^*$ -closed set A of X.

Proof. Let A be any $\pi gg\zeta^*$ -closed set of X and V be any π -open set of Y containing f(A). Since f is almost π -continuous, f⁻¹(V) is π -open in X and A \subset f⁻¹(V). Therefore, we have $g\zeta^*$ -cl(A) \subset f⁻¹(V) and hence f(g\zeta^*-cl(A)) \subset V. Since f is $\pi gg\zeta^*$ -closed, f(g\zeta^*-cl(A)) is $\pi gg\zeta^*$ -closed in Y and hence we obtain $g\zeta^*$ -cl(f(A)) \subset g ζ^* -cl(f(g ζ^* -cl(A))) \subset V. Hence f(A) is $\pi gg\zeta^*$ -closed in Y.

5.3 Theorem. A surjection $f : X \to Y$ is almost $\pi gg\zeta^*$ -closed if and only if for each subset S of Y and each $U \in RO(X)$ containing $f^{-1}(S)$, there exists a $\pi gg\zeta^*$ -open set V of Y such that $S \subset V$ and $f^{-1}(V) \subset U$. **Proof. Necessity**. Suppose that f is almost $\pi gg\zeta^*$ -closed. Let S be a subset of Y and $U \in RO(X)$ containing f $^{-1}(S)$. If V = Y - f(X - U), then V is a $\pi gg\zeta^*$ -open set of Y such that $S \subset V$ and $f^{-1}(V) \subset U$.

Sufficiency. Let F be any regular closed set of X. Then $f^{-1}(Y - f(F)) \subset (X - F)$ and $(X - F) \in RO(X)$. There exists a $\pi gg\zeta^*$ -open set V of Y such that $Y - f(F) \subset V$ and $f^{-1}(V) \subset (X - F)$. Therefore, we have $f(F) \supset (Y - V)$ and $F \subset X - f^{-1}(V) \subset f^{-1}(Y - V)$. Hence we obtain f(F) = Y - V and f(F) is $\pi gg\zeta^*$ -closed in Y, which shows that f is almost $\pi gg\zeta^*$ -closed.

5.4 Theorem. If $f : X \to Y$ is an almost $\pi gg\zeta^*$ -continuous, rc-preserving injection and Y is quasi $g\zeta^*$ -normal, then X is quasi $g\zeta^*$ -normal.

Proof. Let A and B be any disjoint π -closed sets of X. Since f is an rc-preserving injection, f(A) and f(B) are disjoint π -closed sets of Y. Since Y is quasi $g\zeta^*$ -normal, there exist disjoint $g\zeta^*$ -open sets U and V of Y such that $f(A) \subset U$ and $f(B) \subset V$.

Now if G = int(cl(U)) and H = int(cl(V)). Then G and H are regular open sets such that $f(A) \subset G$ and $f(B) \subset H$. Since f is almost $\pi gg\zeta^*$ -continuous, f⁻¹(G) and f⁻¹(H) are disjoint $\pi gg\zeta^*$ -open sets containing A and B, respectively. It follows from **Theorem 4.15**, that X is quasi $g\zeta^*$ -normal.

5.5 Theorem. If $f: X \to Y$ is a π -continuous, almost $g\zeta^*$ -closed surjection and X is quasi $g\zeta^*$ -normal space then Y is $g\zeta^*$ -normal.

Proof. Let A and B be any two disjoint closed sets of Y. Then $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint π -closed sets of X. Since X is quasi $g\zeta^*$ -normal, there exist disjoint $g\zeta^*$ -open sets U and V such that $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$.

Let G = int(cl(U)) and H = int(cl(V)). Then G and H are disjoint regular open sets of X such that $f^{-1}(A) \subset G$ and $f^{-1}(B) \subset H$. Now, we set K = Y - f(X - G) and L = Y - f(X - H). Then K and L are $g\zeta^*$ -open sets of Y such that $A \subset K$, $B \subset L$, $f^{-1}(K) \subset G$ and $f^{-1}(L) \subset H$. Since G and H are disjoint, so are K and L. Since K and L are $g\zeta^*$ -open and we obtain $A \subset g\zeta^*$ -int(K), $B \subset g\zeta^*$ -int(L) and $g\zeta^*$ -int(K) $\cap g\zeta^*$ -int(L) = \emptyset . Therefore, Y is $g\zeta^*$ -normal.

5.6 Theorem. Let $f : X \to Y$ be an almost π -continuous and almost $\pi gg\zeta^*$ -closed surjection. If X is quasi $g\zeta^*$ -normal space then Y is quasi $g\zeta^*$ -normal.

Proof. Let A and B be any disjoint π -closed sets of Y. Since f is almost π -continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint π -closed sets of X. Since X is quasi $g\zeta^*$ -normal, there exist disjoint $g\zeta^*$ -open sets U and V of X such that $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$.

Put G = int(cl(U)) and H = int(cl(V)). Then G and H are disjoint regular open sets of X such that $f^{-1}(A) \subset$ G and $f^{-1}(B) \subset$ H. By **Theorem 5.3**, there exist $\pi gg\zeta^*$ -open sets K and L of Y such that $A \subset K$, $B \subset L$, $f^{-1}(K) \subset$ G and $f^{-1}(L) \subset$ H. Since G and H are disjoint, so are K and L by **Theorem 3.3**, $A \subset g\zeta^*$ -int(K), $B \subset g\zeta^*$ -int(L) and $g\zeta^*$ -int(K) $\cap g\zeta^*$ -int(L) = \emptyset . Therefore, Y is quasi $g\zeta^*$ -normal.

5.7 Corollary. If $f: X \to Y$ is an almost continuous and almost closed surjection and X is a normal space, then Y is quasi $g\zeta^*$ -normal.

Proof. Since every almost closed function is almost $\pi gg\zeta^*$ -closed. Therefore, by **Theorem 5.6**, Y is quasi $g\zeta^*$ -normal.

REFERENCES

1. A. V. Arhangel'skii and L. Ludwig, On α -normal and β -normal spaces, Comment. Math. Univ. Carolin., 42(3) (2001), 507-519.

2. Arockiarani and C. Janaki, πgα-closed set and Quasi α-normal spaces, Acta Ciencia Indica Vol. **XXXIII** M. no. **2**, (2007), 657-666.

3. R. Devi, H. Maki and V. Kokilavani, The group structure of ${}^{\#}g\alpha$ -closed sets in topological spaces, Int. Jour. of General Topology, **2**(2009), 21-30.

4. J. Dontchev and T. Noiri, Quasi normal spaces and π g-closed sets, Acta Math Hungar. **89**(3)(2000), 211-219.

5. Hamant Kumar, Some weaker forms of normal spaces in topological spaces, Ph. D. Thesis, C. C. S. university, Meerut, (2018)

6. L. Kalantan, π -normal topological spaces, Filomat, Vol. 22 No. 1 (2008), 173-181.

7. V. Kokilavani, M. Myvizhi and M. Vivek Prabu, Generalized ζ^* -closed sets in topological spaces, Int. Jour. of Mathematical Archive, **4950**(2013), 274-279.

8. V. Kokilavani and M. Myvizhi, $g\zeta^*$ -closed maps and $g\zeta^*$ -open maps in topological spaces, International Journal of Sci. and Research.

9. V. Kokilavani, M. Myvizhi and M. Vivek Prabu, Generalized $g\zeta^*$ -closed sets in topological spaces, Int. Jour. of Mathematical Archive, **4**(5), (2013), 241-273.

10. S. Lal and M. S. Rahman, A note on quasi-normal spaces, Indian J. Math., 32(1990), 87-94.

11. N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2),19(1970), 89-96.

12. H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α -open and α -generalized closed sets, Mem. Fac. Sci. Kochi Univ. Math. **1**(1994), 51-63.

13. Njastad, O., On some class of nearly open sets, Pacific. J. Math., 15(1965), 961-970.

14. T. Noiri, Mildly normal spaces and some functions, Kyungpook Math. J. 36(1996), 183-190.

15. K. Nono, R. Devi, M. Devipriya, K. Muthukumaraswamy and H. Maki, On $g^{\#}\alpha$ -closed sets and the Digital plane, Bull. Fukuoka Univ. Ed. Part III, **53**, (2004), 15-24.

16. T. C. K. Raman, A perspective on $\pi\beta$ -normal topological spaces, Int. Jour. of Mathematical Archive, **4950**(2013), 274-279.

17. M. C. Sharma and Hamant Kumar, Softly normal topological spaces, Acta Ciencia Indica, Vol. XLI M. No. **2**, (2015), 81-84.

18. M. C. Sharma and Hamant Kumar, Almost $g\zeta^*$ -normal spaces and $gg\zeta^*$ -closed sets, Int. Jour. of Science and Research Vol. **5**, Issue 6, (2016), 1288-1291.

19. M. K. Singal and A. R. Singal, Almost continuous functions, Yokohama Math.J. 1(1968), 63-73.

20. M. K. Singal and A. R. Singal, Mildly normal spaces, Kyungpook Math. J. 13(1973), 27-31.

21. V. Zaitsev, On certain classes of topological spaces and their bicompactifications, Dokl. Akad. Nauk SSSR, **178**(1968), 778-779.

