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Abstract: In this paper, we introduce a new class of sets called gg-closed sets in topological spaces. 

Also we study and investigate the relationship with other existing closed sets. Moreover, we introduce some 

functions such as g-closed, gg-closed, almost g-closed, almost gg-closed, gg-continuous and 

almost gg-continuous. We also study a new class of normal space called, quasi g-normal space. The 

relationships among normal, -normal, quasi normal, softly normal, mildly normal, -normal, -normal, 

quasi -normal, softly -normal, mildly -normal, g-normal, g-normal, quasi g-normal, softly g-

normal and mildly g-normal spaces are investigated. Further we show that this property is a topological 

property and it is a hereditary property only with respect to closed domain subspaces. Utilizing gg-closed 

sets and some functions, we obtained some characterizations and preservation theorems for quasi g-

normal spaces. 
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1. Introduction 

 

In 1965, Njastad [13] introduced the concept of -open sets in topological spaces. In 1968, the notion of 

quasi normal space was introduced by Zaitsev [21]. In 1970, Levine [11] initiated the study of so called 

generalized closed (briefly g-closed) sets in order to extend many of the most important properties of closed 

sets to a large family. In 1973, Singal and Singal [20] introduced the notion of mildly normal spaces in 

topological spaces. In 1990, Lal and Rahman [10] have further studied notions of quasi normal and mildly 

normal spaces. In 1994, H. Maki et al. [12] introduced the notion of g-closed sets. In 2000, Dontchev and 

Noiri [4] introduced the notion of g-closed sets and by using these sets, obtained a new characterization of 

quasi normal space. In 2001, A. V. Arhangel’skii and Ludwig [1] introduced the concepts of -normal and 

-normal spaces. In 2004, Nono et al. [15] introduced the notion of g#-closed sets in topological spaces. In 

2007, Arockiarani and C. Janaki [2] introduced the notion of g-closed sets in topological spaces and by 

using g-closed sets, obtained a new characterization of quasi -normal spaces. In 2008, Kalantan [6] 

introduced a weaker version of normality called -normality and proved that -normality is a property  

which lies between normality and almost normality. In 2009, R. Devi et al. [3] introduced the notion of #g-

closed sets in topological spaces. In 2013, Kokilavani [7] introduced the notion of g-closed sets in 

topological spaces and investigated some of their properties. In 2015, T. C. K. Raman [16] introduced the 

concepts of -normal spaces. In 2018, Hamant Kumar [5] introduced some normal spaces such as g-

normal, g-normal, quasi g-normal and mildly g-normal, and the relationships among these normal 

spaces are investigated. 
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2. Preliminaries 

 

Throughout this paper, spaces (X, ), (Y, ), and (Z, ) (or simply X, Y and Z) always mean topological 

spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. 

The closure of A and interior of A are denoted by cl(A) and int(A)  respectively. A subset A is said to be 

regular open (resp. regular closed) if A  int(cl(A))  (resp. A  cl(int(A)). The finite union of regular open 

sets is said to be -open. The complement of a -open set is said to be -closed. A is said to be -open [13] 

if A  int(cl(int(A))). The complement of a -open set is said to be -closed. The intersection of all -

closed sets containing A is called -closure [13] of A, and is denoted by -cl(A)). The -interior [13] of A, 

denoted by -int(A), is defined as union of all -open sets contained in A. 

  

2.1 Definition. A subset A of a space (X,) is said to be 

(1) generalized closed (briefly g-closed) [11] if cl(A) U whenever A U and U  

(2) g-closed [4] if cl(A)  U whenever A U and U is -open in X. 

(3) -generalized closed (briefly g-closed) [12] if -cl(A)U whenever A  U and U  

(4) g-closed [2] if cl(A)  U whenever A U and U is -open in X. 

(5) generalized #-closed (briefly g#-closed) [15] if -cl(A)U whenever A  U and is g-open in X. 

(6) #generalized -closed (briefly #g-closed) [3] if -cl(A)U whenever A  U and U is g#-open in X. 

(7) g-closed [7] if -cl(A) U whenever A U and U is #g-open in X. 

(8) g-open (resp. g-open, g-open, g-open, g#-open, #g-open, g-open) set if the complement of A 

is g-closed (resp. g-closed, g-closed, g-closed, g#-closed, #g-closed, g-closed). 

 

The intersection of all g-closed sets containing A is called g-closure of A, and is denoted by g-cl(A). 

The g-interior of A, denoted by g-int(A), is defined as union of all g-open sets contained in A. The 

family of all g-closed (resp. g-open) sets of a space X is denoted by g-C(X) (resp. g-O(X)). 

 

2.2 Definition. A subset A of a space (X,) is said to be 

(1) generalized g-closed [9] (briefly gg-closed) if g-cl(A) U whenever A U and U   

(2) -generalized g-closed (briefly gg-closed) if g-cl(A)  U whenever A U and U is -open in 

X. 

  

2.3 Remark. We have the following implications for the properties of subsets: 

 

              closed        g-closed    g-closed 

 

                           



          -closed        g-closed   g-closed  

 

                                              



                   g-closed        gg-closed  gg-closed 

 

Where none of the implications is reversible as can be seen from the following examples: 
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2.4 Example. Let X = {a, b, c} and  = {, {a}, X}. Then A = {b} is g-closed as well as g-closed. Hence 

A is gg-closed. But it is not closed. 

 

2.5 Example. Let X = {a, b, c, d} and  = {, {a}, {d}, {a, d}, {c, d}, {a, c, d}, X}. Then A = {c} is g-

closed as well as gg-closed but not g-closed. 

 

2.6 Example. Let X = {a, b, c, d} and = {, {a}, {c}, {a, b}, {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, c, d}, 

X}. Then A = {a} is g-closed as well as gg-closed but not closed.

 

2.7 Example. Let X = {a, b, c, d} and  = {, {c}, {d}, {a, c}, {c, d}, {a, c, d}, X}. Then A = {a} is -

closed as well as g-closed. Hence A is g-closed. But it is not closed. 

 

2.8 Example. Let X = {a, b, c} and  = {, {a}, {b, c}, X}. Then A = {b} is g-closed as well as gg-

closed. But it is not g-closed. 

 

2.9 Theorem. For gg-closed sets of a space X, the following properties hold: 

(a) Every finite union of gg-closed sets is always a gg-closed set. 

(b) Even a countable union of gg-closed sets need not be a gg-closed set. 

(c) Even a finite intersection of gg-closed sets may fail to be a gg-closed set. 

Proof.  

(a) Let A and B be any two gg-closed sets. Therefore g-cl(A)  U and g-cl(B)  U whenever A  U, 

B  U and U is π-open. Let A  B  U where U is π-open. 

 

Since, g-cl(A  B)  g-cl(A)  g-cl(B)  U, we have A  B is πgg-closed. 

 

(b) Let R be the real line with the usual topology. Every singleton is πgg-closed. However, A = {1 / i : i = 

2, 3, …….} is not πgg-closed, since A  (0, 1) which is π-open but g-cl(A)   (0, 1). 

 

(c) Let X = {a, b, c, d} and let   = {, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}, X}. Let A = {a, b, c} and B = 

{a, b, d} are πgg-closed sets. But A  B = {a, b}  {a, b} which is π-open. g-cl(A  B)  {a, b}. 

Hence A  B is not πgg-closed. 

 

2.10 Theorem: If A is πgg-closed and A  B  g-cl(A) then B is πgg-closed. 

Proof: Since A is πgg-closed, g-cl(A)  U whenever A  U and U is π-open. Let B  U and U is π-

open. Since B  g-cl(A), g-cl(B)  g-cl(A)  U. Hence B is πgg-closed. 

 

2.11 Theorem. Let A be a πgg-closed set in X. Then g-cl(A) – A does not contain any nonempty π-

closed set. 

Proof. Let F be a nonempty π-closed set such that F  g-cl(A) – A. Then F  g-cl(A)  (X – A)  (X – 

A) implies A  X – F where X – F is π-open. Therefore g-cl(A)   X – F implies F  (g-cl(A)c. Now F 

  g-cl(A)  ( g-cl(A))c implies F is empty. 
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Reverse implication does not hold. 

 

2.12 Example. Let X = {a, b, c, d, e} and let  = {, {a, b}, {c, d}, {a, b, c, d}, X}. Let A = {c} then g-

cl(A) = {c, d, e}, g-cl(A) – A = {d, e} does not contain any nonempty regular closed set but A is not 

πgg*-closed set. 

 

2.13 Corollary. Let A be πgg-closed. A is g-closed iff g-cl(A) – A is π-closed. 

Proof.  Let A be g-closed set then A = g-cl(A) implies g-cl(A) – A  =  which is π-closed. 

Conversely, if g-cl(A) – A is π-closed then A is g-closed. 

 

2.14 Theorem. If A is π-open and πgg-closed. Then A is g-closed and hence clopen. 

Proof. Let A be regular open. Since A is πgg-closed, g-cl(A)  A implies A is g-closed. Hence A is 

closed. (Since every π-open g*-closed set is closed). Therefore A is clopen. 

 

2.15 Theorem.  For a space X, the following are equivalent:  

(a) X is extremally disconnected, 

(b) Every subset of X is πgg-closed 

(c) The topology on X generated by πgg-closed set is the discrete one. 

Proof.  (a)  (b). 

Assume that X is extremally disconnected. Let A  U where U is π-open in X. Since U is π-open, it is the 

finite union of regular open sets and X is extremally disconnected, U is finite union of clopen sets and hence 

U is clopen. Therefore g-cl(A)  cl(A)  cl(U)  U implies A is πgg-closed. 

 

(b)  (a) 

Let A be a regular open set of X. Since A is πgg-closed by Theorem 2.14, A is clopen. Hence X is 

extremally disconnected. 

 

(b)  (c) is obvious. 

 

3. gg-open sets 

 

3.1 Definition. A subset A of a space X is called -generalized g-open (briefly gg-open) iff its 

complement is πgg-closed set. 

 

3.2 Lemma. If A be a subset of X, then 

(a) g-cl(X – A) = X – g-int(A). 

(b) g-int(X – A) = X – g-cl(A). 

 

3.3 Theorem. A subset A of a space X is πgg-open iff F  g-int(A) whenever F is π-closed and F   A. 

Proof. Let F be π-closed set such that F  A. Since X – A is πgg-closed and X – A  X – F where F  

g-int(A). Conversely. 

 

Let F  g-int(A) where F is π-closed and F  A. Since F  A and X – F is π-open, g-cl(X – A) = X – 
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g-int(A)  X – F. Therefore A is πgg-open. 

 

3.4 Theorem. If g-int(A)  B  A and A πgg-open then B is πgg-open. 

Proof: Since g-int(A)  B  A, by Theorem 2.10, g-cl(X – A)  (X – B) implies B is πgg-open. 

 

3.5 Remark. For any A  X, g-int(g-cl(A) – A ) = . 

 

3.6 Theorem. If A   X is πgg-closed then g-cl(A) – A is πgg-open. 

Proof. Let A be πgg-closed and F be a π-closed set such that F  g-cl(A) – A. By Theorem 2.11, F =  

implies F  g-int(g-cl(A) – A). By Theorem 3.3, g-cl(A) – A is πgg-open. 

Converse of the above theorem is not true. 

3.7 Example. Let X = {a, b, c} and let  = {, {a}, {b}, {a, b}, X}. Let A = {b}. Then A is not πgg-

closed but g-cl(A) – A = {a, b} is πgg-open. 

 

 

4. Quasi g*-normal spaces 

 

 

4.1 Definition. A space X is said to be g*-normal [18] (resp. -normal [1]) if for every pair of disjoint  

closed subsets A, B of X, there exist disjoint g*-open  (resp. -open) sets U, V of X such that A  U and  B 

 V. 

 

4.2 Definition. A space X is said to be g*–normal [5] (resp. -normal [6], -normal [16])  if for every 

pair of disjoint closed subsets A, B of X, one of which is -closed, there exist disjoint g*-open (resp. open, 

-open) sets U, V of X such that A  U and B  V. 

 

4.3 Definition. A space X is said to be quasi g*-normal [5] (resp. quasi normal [21], quasi -normal 

[2]) if for every pair of disjoint -closed subsets H, K of X, there exist disjoint g*-open (resp. open, -

open) sets U, V of X such that H  U and K  V. 

 

4.4 Definition. A space X is said to be softly g*–normal [5] (resp. softly normal [17], softly -normal) if 

for every pair of disjoint subsets A, B of X, one of which is -closed and the other is regularly closed, there 

exist disjoint  g*-open (resp. open, -open) sets U, V of X such that A  U and B  V. 

 

4.5 Definition. A space X is said to be mildly g*-normal [18] (resp. mildly-normal [20], mildly -

normal [2])  if for every pair of disjoint regular closed subsets H, K of X, there exist disjoint g*-open 

(resp. open,  -open) sets U, V of X  such that H  U and K  V. 

 

By the definitions stated above, we have the following diagram: 

 

    normal        -normal      quasi-normal      softly normal               mildly-normal 
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  -normal     -normal     quasi -normal        softly -normal            mildly -normal 

 

      

                

 g*-normal  g*-normal   quasi g*-normal  softly g*-normal    mildly g*-normal 

 

Where none of the implications is reversible as can be seen from the following examples: 

 

4.6 Example. Let X = {a, b, c, d} and  = {, {a, b}, {c, d}, X}. The pair of disjoint closed subsets of X 

are A = {a, b} and B = {c, d}. Also U = {a, b} and V = {c, d} are open sets such that A  U and B  V. 

Hence the space X is normal as well as -normal. It is also g*-normal. 

 

4.7 Example. Let X = {a, b, c, d} and  = {, {a}, {c}, {a, c}, {a, b, d}, {b, c, d}, X}. The pair of disjoint 

closed subsets of X are A = {a} and B = {c}. Also U = {a} and V = {c} are open sets such that A  U and B 

 V. Hence the space X is normal as well as -normal, since every open set is -open. 

 

4.8 Theorem. For a space X, the following are equivalent: 

(a) X is quasi g*-normal. 

(b) For every pair of -open subsets U and V of X whose union is X, there exist g*-closed subsets G and  H 

of X such that G U, H V  and G  H = X.  

(c) For any -closed set A and every -open set B in X such that A  B, there exists a g*-open  subset U  

of X such that A U  g*-cl(U)  B. 

(d) For every pair of disjoint -closed subsets A and B of X, there exist g*-open subsets U and V of X  

such that A U,  B V and  g*-cl(U) g*-cl(V) = . 

Proof. (a) (b), (b) (c), (c) (d) and (d) (a). 

 

(a)(b).Let U and V be any -open subsets of a quasi g*-normal space X such that U  V = X. Then, X – 

U and X – V are disjoint -closed subsets of X. By quasi g*-normality of X, there exist disjoint g*-open 

subsets U1 and V1 of X such that X – U  U1 and X – V  V1. Let G = X – U1 and H = X – V1.  Then, G and 

H are g*-closed subsets of X such that G U, H V and G H = X. 

 

(b) (c). Let A be a -closed and B is a -open subsets of X such that A B. Then, X – A and B are -

open subsets of X such that (X – A)  B = X. Then, by part (b), there exist g*-closed sets G and H of X 

such that G  (X – A), H B and G  H = X. Then, A  (X – G), (X – B) X – H) and (X – G)  (X – 

H) = . Let U = X – G and V = (X – H). Then U and V are disjoint g*-open sets such that A  U X – V 

 B. Since X – V is g*-closed, then we have g*-cl(U)  (X – V). Thus, A  U  g*-cl(U)  B. 

 

(c) (d). Let A and B be any disjoint -closed subset of X. Then A X – B, where X – B is -open. By 

the part (c), there exists a g*-open subset U of X such that A  U  g*-cl(U)  X – B. Let V = X – g*-

cl(U). Then, V is a g*-open subset of X. Thus, we obtain A U, B V and g*-cl(U)  g*-cl(V) = .   
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(d) (a). It is obvious. 

 

4.9 Proposition. Let f : X Y be a function, then: 

(a) The image of g*-open subset under an open continuous function is g*-open. 

(b) The inverse image of g*-open (resp. g*-closed) subset under an open continuous function is g*-open 

(resp. g*-closed) subset. 

(c) The image of g*-closed subset under an open and a closed continuous surjective function is g*-open. 

 

4.10 Theorem. The image of a quasi g*-normal space under an open continuous injective function is a 

quasi g*-normal. 

Proof. Let X be a quasi g*-normal space and let f : X Y be an open continuous injective function. We 

need to show that f(X) is a quasi g*-normal. Let A and B be any two disjoint -closed sets in f(X). Since 

the inverse image of a -closed set under an open continuous function is a -closed. Then, f –1(A) and f –1 

(B)  are disjoint -closed sets in X. By quasi g*-normality of X, there exist g*-open subsets U and V of X 

such that f –1(A) U, f –1(B) V and U V = . Since f is an open continuous injective function, we have 

A f(U), B f(V) and f(U) f(V) = . By Proposition 4.9, we obtain f(U) and f(V) are disjoint g*-open 

sets in f(X) such that A f(U) and B f(V). Hence f(X) is quasi g*-normal. 

 

From the above theorem, we have the following corollary. 

4.11 Corollary. Quasi g*-normality is a topological property. 

The following lemma helps us to show that quasi g*-normality is a hereditary with respect to closed 

domain subspaces. 

 

4.12 Lemma. Let M be a closed domain subspace of a space X. If A is a g*-open set in X, then A M is 

g*-open set in M. 

 

4.13 Theorem. Quasi g*-normality is a hereditary with respect to closed domain subspaces. 

Proof. Let M be a closed domain subspace of a quasi g*-normal space X. Let A and B be any disjoint -

closed sets in M. Since M is a closed domain subspace of X, then we have A and B be any disjoint -closed 

sets of X. By quasi g*-normal of X, there exist disjoint g*-open subsets U and V of X such that A  U  

and B  V. By the Lemma 4.12, we obtain U M and V M are disjoint g*-open sets in M such that A 

U M and B  V M. Hence, M is quasi g*-normal subspace. 

 

Since every closed and open (clopen) subset is a closed domain, then we have the following corollary. 

 

4.14 Corollary. Quasi g*-normality is a hereditary with respect to clopen subspaces. 

 

The following result is useful for giving some other characterizations of quasi g*-normal spaces. 

 

4.15 Theorem. For a space X, the following are equivalent: 

(a) X is quasi g*-normal. 
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(b) For any disjoint -closed sets H and K, there exist disjoint gg*-open sets U and V such that H U and 

K V  

(c) For any disjoint -closed sets H and K, there exist disjoint gg*-open sets U and V such that H  U and 

K V. 

(d) For any -closed set H and any -open set V containing H, there exists a gg*-open set U of X such that  

H U  g*-cl(U)  V. 

(e) For any -closed set H and any -open set V containing H, there exists a gg*-open set U of X such 

that H  U  g*-cl(U)  V. 

Proof.  (a)  (b), (b)  (c), (c)  (d), (d)  (e) and (e)  (a). 

 

(a)  (b). Let X be quasi g*-normal space. Let H, K be disjoint -closed sets of X. By assumption, there 

exist disjoint g*-open sets U, V such that H  U and K  V. Since every g*-open set is gg*-open, U and 

V are gg*-open sets such that H  U and K  V. 

 

(b)  (c). Let H, K be two disjoint -closed sets. By assumption, there exist disjoint gg*-open sets U and 

V such that H  U and K  V. Since gg*-open set is gg*-open, U and V are gg*-open sets such that H 

 U and K  V. 

 

(c)  (d). Let H be any -closed set and V be any -open set containing H. By assumption, there exist 

disjoint gg*-open sets U and W such that H  U and X – V  W. By Theorem 3.3, we get X – V  g*-

int(W) and g*-cl(U)  g*-int(W) = . Hence H  U  g*-cl(U)  X – g*-int(W)  V. 

 

(d)  (e). Let H be any -closed set and V be any -open set containing H. By assumption, there exist gg*-

open set U of X such that H  U  g*-cl(U)  V. Since, every gg*-open set is gg*-open, there exists 

gg*-open sets U of X such that H  U  g*-cl(U)  V. 

 

(e)  (a). Let H, K be any two disjoint -closed sets of X. Then H  X – K and X – K is -open. By 

assumption, there exists gg*-open set G of X such that H  G   g*-cl(G)  X – K. Put U = g*-int(G), 

V = X – g*-cl(G). Then U and V are disjoint g*-open sets of X such that H  U and K  V. 

 

5. Preservation Theorems 

 

 

5.1 Definition. A function f : X  Y is said to be  

(a) g*-closed [8] (resp. gg*-closed) if f(F) is g*-closed (resp. πgg*-closed) in Y for every closed set F 

of X.  

(b) rc-preserving [14] (resp. almost closed [19], almost g*-closed, almost gg*-closed) if f(F) is regular 

closed (resp. closed, g*-closed, gg*-closed)  in  Y  for  every  F  RC(X). 

(c) -continuous [4] (resp. almost -continuous [4]) if f –1(F) is -closed in X for every closed (resp. 

regular closed) set F of Y. 

(d) almost continuous [19]  if f –1(V) is open in X for every regular open set V of Y. 

(e) gg*-continuous (resp. almost gg*-continuous) if f –1(F) is gg*-closed in X for every closed (resp. 

regular closed) set F of Y. 
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5.2 Theorem. If f : X Y is an almost -continuous and gg*-closed function, then f(A) is gg*-closed  

in Y for every gg*-closed set A of X. 

Proof. Let A be any gg*-closed set of X and V be any -open set of Y containing f(A). Since f is almost 

-continuous, f –1(V) is -open in X and A f –1(V). Therefore, we have g*-cl(A)  f –1(V) and hence 

f(g*-cl(A))  V. Since f is gg*-closed, f(g*-cl(A)) is gg*-closed in Y and hence we obtain g*-

cl(f(A))  g*-cl(f(g*-cl(A)))V. Hence f(A) is gg*-closed in Y.  

 

5.3 Theorem. A surjection f : X Y is almost gg*-closed if and only if for each subset S of Y and each 

U RO(X) containing f –1(S), there exists a  gg*-open set V of Y such that S  V and f –1(V) U. 

Proof. Necessity. Suppose that f is almost gg*-closed. Let S be a subset of Y and U  RO(X) containing f 
–1(S). If  V = Y – f (X – U),  then V is a  gg*-open set of Y such that S V and f –1(V) U. 

 

Sufficiency. Let F be any regular closed set of X. Then f –1(Y – f(F))  (X – F) and (X – F) RO(X). There 

exists a gg*-open set V of Y such that Y – f(F) V and f –1(V)  (X – F). Therefore, we have f(F)  (Y –

V) and F  X – f –1(V)  f –1 (Y – V) . Hence we obtain f(F) = Y – V and f(F) is gg*-closed in Y, which 

shows that f is almost gg*-closed.  

 

5.4 Theorem. If f : X  Y is an almost gg*-continuous, rc-preserving injection and Y is quasi g*-

normal, then X is quasi g*-normal. 

Proof. Let A and B be any disjoint -closed sets of X. Since f is an rc-preserving injection, f(A) and f(B) are  

disjoint -closed sets of Y. Since Y is quasi g*-normal, there exist disjoint g*-open sets U and V of Y such 

that f(A)  U and f(B)   V. 

 

Now if G = int(cl(U)) and H = int(cl(V)). Then G and H are regular open sets such that f(A)  G and f(B)  

H. Since f is almost gg*-continuous, f –1(G) and f –1(H) are disjoint gg*-open sets containing A and B, 

respectively. It follows from Theorem 4.15, that X is quasi g*-normal. 

 

5.5 Theorem. If f : X Y is a -continuous, almost g*-closed surjection and X is quasi g*-normal space  

then Y is  g*-normal . 

Proof. Let A and B be any two disjoint closed sets of Y. Then f –1(A) and f –1(B) are disjoint -closed sets 

of X. Since X is quasi g*-normal, there exist disjoint g*-open sets U and V such that f –1(A)  U and f –

1(B) V.  

 

Let G = int(cl(U)) and H = int(cl(V)). Then G and H are disjoint regular open sets of X such that f –1(A) G 

and f –1(B)  H . Now, we set K =Y – f(X – G) and L = Y – f (X – H). Then K and L are g*-open sets of Y 

such that A  K, B  L, f –1(K)  G and f –1(L)  H. Since G and H are disjoint, so are K and L. Since K 

and L are g*-open and we obtain A  g*-int(K), B  g*-int(L) and g*-int(K)  g*-int(L) = . 

Therefore, Y is g*-normal.  

 

5.6 Theorem. Let f : X  Y be an almost -continuous and almost gg*-closed surjection. If X is quasi 

g*-normal space then Y is quasi g*-normal.  
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Proof. Let A and B be any disjoint -closed sets of Y. Since f is almost -continuous, f –1(A) and f –1(B) are 

disjoint -closed sets of X. Since X is quasi g*-normal, there exist disjoint g*-open sets U and V of X such 

that f –1(A)  U and f –1(B)  V.  

 

Put G = int(cl(U)) and H = int(cl(V)). Then G and H are disjoint regular open sets of X such that f –1(A) 

G and f –1(B)  H. By Theorem 5.3, there exist gg*-open sets K and L of Y such that A  K, B  L, f –

1(K)  G and f –1(L)  H. Since G and H are disjoint, so are K and L by Theorem 3.3, A  g*-int(K), B   

g*-int(L) and  g*-int(K)    g*-int(L) =  . Therefore, Y is quasi g*-normal. 

 

5.7 Corollary. If f : X  Y is an almost continuous and almost closed surjection and X is a normal space, 

then Y is quasi g*-normal. 

Proof. Since every almost closed function is almost gg*-closed. Therefore, by Theorem 5.6, Y is quasi 

g*-normal. 
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