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I. INTRODUCTION 

 

 In order to deal with  uncertainties,  the notions  of   fuzzy sets  and  fuzzy set operations were  introduced by 

L.A.Zadeh [11] in his classical paper in the year 1965, describing  fuzziness  mathematically for  the first time. In 1968, 

C.L.Chang [1] defined fuzzy  topological  spaces  by  using  fuzzy  sets.   
  In 1989, A.Kandil [2] introduced  and  studied  fuzzy  bitopological  spaces  as a natural generalization of fuzzy 

topological spaces. The concept of pairwise fuzzy -residual sets in  fuzzy   bitopological   spaces    is   introduced and   
studied  by   the   authors  in   [6], [7], [8]  and  [9]. The purpose  of  this  paper  is   to  introduce the concept of pairwise fuzzy 

σ-Baire sets. Besides characterizations of these sets, several properties of these sets are studied. 

 

II. PRELIMINARIES 

  In order to make the exposition self-contained, some basic notations and results used in the sequel are given. In this work 

by (X, T) or simply by X, we will denote a fuzzy topological space due to Chang (1968). By a fuzzy bitopological space (Kandil, 

1989) we mean an ordered triple (X, T1, T2), where T1 and T2 are fuzzy topologies on the non-empty  set X. Let X be a non-empty 

set and I the unit interval [0,1]. A fuzzy set  λ  in  X  is  a mapping  from  X  into I. 

 

Definition 2.1 [4] A fuzzy set λ  in a fuzzy bitopological space (X, T1, T2) is called a  pairwise fuzzy open set if  λ ∈ Ti ( i = 1, 2). 
The complement of  pairwise  fuzzy open set   in  (X, T1, T2)  is  called   a   pairwise   fuzzy   closed   set   in  (X, T1, T2). 

 

Definition 2.2 [4] A fuzzy set λ  in a fuzzy bitopological space (X,T1,T2) is called a pairwise  fuzzy  Gδ-set  if  λ  = ˄i=1
∞( λi), 

where  (λi)’ s are  pairwise  fuzzy open sets  in (X,T1,T2). 

 

Definition 2.3 [4] A fuzzy set λ  in a fuzzy bitopological space (X,T1,T2) is called a pairwise fuzzy F-set if λ = ˅i=1
∞ (λi), where 

(λi)’s are pairwise fuzzy closed sets in (X,T1,T2). 

 

Definition 2.4 [3] A fuzzy set λ  in a fuzzy bitopological space (X,T1,T2) is called a pairwise  fuzzy  dense  set if cl T1
 cl T2

 ( λ )   

=  cl T2
 cl T1

 (λ)  = 1, in  (X,T1,T2). 

 

Definition 2.5 [5]  A fuzzy set λ  in a fuzzy bitopological space (X,T1,T2) is called a pairwise   fuzzy   nowhere   dense  set   if   

intT1
cl T2

 (λ ) =  intT2
 cl T1

(λ) =  0, in (X,T1,T2). 

 

Definition 2.6 [4] A fuzzy set λ  in a fuzzy bitopological space (X, T1, T2) is called  a pairwise fuzzy -nowhere dense set if λ is a 

pairwise fuzzy Fσ-set  in   (X, T1, T2)  such that    intT1
intT2

( λ ) = intT2
 intT1

( λ ) =  0. 

 

Definition 2.7 [6]  Let  (X, T1, T2)  be   a  fuzzy  bitopological   space. A fuzzy  set  λ  in (X,T1,T2) is called  a  pairwise fuzzy  

 -first category set if  λ= ˅k=1
∞ (λk), where (λk)’s are pairwise fuzzy -nowhere dense sets in (X,T1,T2). Any other fuzzy set                         

in  (X, T1, T2)   is  said  to  be   a   pairwise   fuzzy    -second   category  set   in  (X,T1,T2). 

 

Definition 2.8 [6] If  λ  is  a pairwise   fuzzy  -first category  set  in  a  fuzzy   bitopological  space (X, T1, T2), then the fuzzy set 

1 − λ  is called  a   pairwise  fuzzy -residual  set    in (X, T1, T2). 
 

 

 

 
 

 

 

 

 

 

http://www.jetir.org/


© 2019 JETIR May 2019, Volume 6, Issue 5                                                              www.jetir.org (ISSN-2349-5162) 

JETIR1905P36 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 237 
 

III. Pairwise Fuzzy σ –Baire Sets 
 

Definition 3.1. Let (X,T1,T2) be a fuzzy bitopological space. A fuzzy set  λ  defined on  X  is called a pairwise fuzzy σ -Baire set 

if  λ = µ ˄ δ, where µ is a pairwise fuzzy open set and δ  is a pairwise fuzzy σ -residual set in (X,T1,T2). 

 

Example.3.1. 

Let X = { a, b, c}. The fuzzy sets α,β,δ and µ are defined on X  as follows :  

α : X → [0, 1]   is defined  as α(a) = 0.2;  α(b) = 0.4;  α(c) = 0.7. 

β : X → [0, 1]   is defined  as β(a) = 0.2;  β(b) = 0.2;  β(c) = 0.6. 

δ : X → [0, 1]   is defined  as δ(a) = 0.1;  δ(b) = 0.3;  δ(c) = 0.5. 
µ : X → [0, 1]   is defined as µ(a) = 0.4;  µ(b) = 0.3;  µ(c) = 0.5. 

Clearly T1 = {0, α , β , δ , α˅β ,β˅δ , α˄β , α˄δ ,β˄δ , α˄[β˅δ], 1} and T2= {0, α , β , µ , α˅β , α˅µ ,β˅µ , α˄β , α˄µ , β˄µ, 

β˅[α˄µ], α˄[β˅µ], µ˄[α˅β], α˄β˄µ , 1 } are fuzzy topologies on X. The fuzzy sets {α , β , α˅β , α˄β , β˅δ , α˄[β˅µ], 1} are 

pairwise fuzzy open sets in (X,T1,T2). Now the fuzzy sets 1-β and 1-(α˄β) are pairwise fuzzy Fσ-sets in (X,T1,T2). Also 

intT1intT2(1-β) = intT2intT1(1-β) = 0 and intT1intT2(1-(α˄β)) = intT2intT1(1-(α˄β)) = 0. Hence 1-β and 1-(α˄β) are pairwise fuzzy 

σ-nowhere dense sets in (X,T1,T2). The fuzzy set γ = [(1-β)˅[1-(α˄β)] is a pairwise fuzzy σ -first category set in (X,T1,T2). Let 

η = 1- γ is a pairwise fuzzy σ-residual set in (X,T1,T2). Thus, β = α ˄ (1- γ) is a pairwise fuzzy σ -Baire set in  (X,T1,T2). 

 

Proposition 3.1. 

If λ is a pairwise fuzzy σ-Baire set in a fuzzy bitopological space  (X,T1,T2), then 1 - λ = α ˅ β where α is a pairwise 

fuzzy closed set in (X,T1,T2) and β  is a pairwise fuzzy σ -first category set in (X,T1,T2). 
Proof. Let λ be a pairwise fuzzy σ -Baire set in (X,T1,T2). Then λ = µ ˄ δ, where µ is a pairwise fuzzy open set and δ is a pairwise 

fuzzy σ -residual set in (X,T1,T2). Then 1- λ = 1 - (µ ˄ δ)  =  (1-µ) ˅ (1-δ). Since µ is a pairwise fuzzy open set, 1-µ is a pairwise 

fuzzy closed set in (X,T1,T2). Also since δ is a pairwise fuzzy σ -residual set, 1-δ is a pairwise fuzzy σ -first category set in 

(X,T1,T2). Let α=1-µ and β=1-δ. Hence 1-λ=α ˅ β, where α is a pairwise fuzzy closed set in (X,T1,T2) and β is a pairwise fuzzy  

σ -first category set in (X,T1,T2). 

 

Proposition 3.2. 

If intTiintTj(α)=0  (i,j=1,2 and  i ≠ j), for any pairwise fuzzy σ -residual set α in (X,T1,T2) and if  λ  is a pairwise fuzzy  

σ -Baire set in (X,T1,T2), then intTiintTj(λ)=0 in (X,T1,T2). 

Proof. Let λ be a pairwise fuzzy σ -Baire set in (X,T1,T2). Then λ = µ ˄ δ, where µ is a pairwise fuzzy open set and δ is a pairwise 

fuzzy σ-residual set in (X,T1,T2). Now intTiintTj(λ) = intTiintTj(µ˄δ) = intTiintTj(µ) ˄ intTiintTj(δ) = µ ˄ intTiintTj(δ). [Since µ is a 

pairwise fuzzy open set, intTiintTj(µ) = µ in (X,T1,T2)]. By hypothesis, intTiintTj(δ)=0 for the pairwise fuzzy σ -residual set δ in 
(X,T1,T2). Then, intTiintTj(λ) = µ ˄ 0 = 0 in (X,T1,T2). 

 

Proposition 3.3.  

If each pairwise fuzzy σ -first category set is a pairwise fuzzy dense set in a fuzzy bitopological space (X,T1,T2) and if λ 

is a pairwise fuzzy σ -Baire set in (X,T1,T2), then 1-λ is  a pairwise fuzzy dense set in (X,T1,T2). 

Proof. Let λ be a pairwise fuzzy σ -Baire set in (X,T1,T2). Then by proposition 3.1, 1-λ=α ˅ β, where α is a pairwise fuzzy closed 

set  and β is a pairwise fuzzy σ -first category set in (X,T1,T2). By hypothesis, the pairwise fuzzy σ -first category set is a pairwise 

fuzzy dense set in (X,T1,T2). That is clTiclTj(β) = 1 in (X,T1,T2). Now, clTiclTj (1-λ) = clTiclTj (α ˅ β) = clTiclTj (α) ˅ clTiclTj (β) = 

clTiclTj (α) ˅ 1 =1. Then 1-λ is a pairwise fuzzy dense set in (X,T1,T2). 

 

Theorem 3.1. [9]  
If (λk)'s are pairwise fuzzy dense sets and pairwise fuzzy Gδ-sets in a fuzzy bitopological space (X,T1,T2), then ˄k=1

∞(λk) 

is a pairwise fuzzy σ -residual set in (X,T1,T2). 

 

Proposition 3.4.  

If λ = µ ˄ [˄k=1
∞δk], where µ is a pairwise open set and (δk)'s are pairwise fuzzy dense and pairwise fuzzy Gδ-sets in a 

fuzzy bitopological space (X,T1,T2), then λ is a pairwise fuzzy σ-Baire set in (X,T1,T2). 

Proof. Let (δk)'s (k=1 to ∞) be pairwise fuzzy dense and pairwise fuzzy Gδ-sets in (X,T1,T2). Then by theorem 3.1, ˄k=1
∞(δk) is a 

pairwise fuzzy σ-residual set in (X,T1,T2). Let λ = µ ˄ [˄k=1
∞(δk)], where µϵT. Then λ = µ ˄ [˄k=1

∞(δk)], where µ is a pairwise 

fuzzy open set and ˄k=1
∞(δk) is a pairwise fuzzy σ-residual set in (X,T1,T2), implies that λ is a pairwise fuzzy σ-Baire set in 

(X,T1,T2). 

 

Proposition 3.5.  
If each pairwise fuzzy σ-first category set is a pairwise fuzzy dense set in a fuzzy bitopological space (X,T1,T2) and if 

(λk)'s are pairwise fuzzy σ-Baire and pairwise fuzzy Fσ-sets in (X,T1,T2), then ˄k=1
∞(1-λk) is  a pairwise fuzzy σ-residual set in 

(X,T1,T2). 

Proof. Let (λk)'s (k=1 to ∞) be pairwise fuzzy σ-Baire and pairwise fuzzy Fσ-sets in (X,T1,T2). Then by proposition 3.3, (1-λk)'s 

are pairwise fuzzy dense sets in (X,T1,T2).  Since (λk)'s are pairwise fuzzy Fσ-sets, (1-λk)'s are pairwise fuzzy Gδ-sets in (X,T1,T2). 

Hence, (1-λk)'s are pairwise fuzzy dense and pairwise fuzzy Gδ-sets in (X,T1,T2). Then by theorem 3.1, ˄k=1
∞(1-λk) is a pairwise 

fuzzy σ-residual set in (X,T1,T2). 
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Proposition. 3.6. 

If each pairwise fuzzy σ-first category set is a pairwise fuzzy dense set in a fuzzy bitopological space (X,T1,T2) and if 

(λk)'s are pairwise fuzzy σ-Baire and pairwise fuzzy Fσ-sets in (X,T1,T2), then ˅k=1
∞(λk) is  a pairwise fuzzy σ-first category set in 

(X,T1,T2). 

Proof. Let (λk)'s (k=1 to ∞) be pairwise fuzzy σ-Baire sets and pairwise fuzzy dense sets in (X,T1,T2). Then by proposition 3.5, 

˄k=1
∞(1-λk) is a pairwise fuzzy σ-residual set in (X,T1,T2). Since ˄k=1

∞(1-λk) = 1 - ˅k=1
∞(λk),  1 - ˅k=1

∞(λk) is a pairwise fuzzy σ-

residual set in (X,T1,T2) and then ˅k=1
∞(λk) is  a pairwise fuzzy σ-first category set in (X,T1,T2). 

 

IV.  Pairwise Fuzzy σ –Baire Sets and Fuzzy Bitopological Spaces.  
 

Definition 4.1 [4] A  fuzzy  bitopological space  (X,T1,T2) is called  a  pairwise   fuzzy  -Baire   space   if  intTi
 ( ˅k=1

∞ (λk) ) = 0, 

( i = 1, 2) ,where  (λk)’s are   pairwise  fuzzy   -nowhere   dense   sets   in   (X, T1, T2). 

 

Theorem 4.1 [6]  

Let (X,T1,T2) be a fuzzy bitopological space. Then the following are equivalent:  

    (1). (X,T1,T2)   is   a   pairwise   fuzzy   σ-Baire   space. 

    (2). intTi( λ) = 0, ( i = 1,2),  for every pairwise  fuzzy  σ-first  category  set  λ   in  (X,T1,T2). 
    (3) .clTi(μ) = 1, (i = 1,2) , for every   pairwise   fuzzy   σ-residual  set  μ  in  (X,T1,T2).  

 

Proposition 4.1. 

If intTi(˅k=1
∞(λk)) = 0 (i,j=1,2 and i≠j), where (λk)'s are pairwise fuzzy σ-Baire sets and pairwise fuzzy Fσ-sets in a fuzzy 

bitopological space (X,T1,T2) in which each pairwise fuzzy σ-first category set is a pairwise fuzzy dense set, then (X,T1,T2) is a 

pairwise fuzzy σ-Baire spaces. 

Proof. Let (λk)'s (k=1 to ∞) be pairwise fuzzy σ-Baire sets and pairwise fuzzy Fσ-sets in (X,T1,T2) in which each pairwise fuzzy  

σ-first category set is a pairwise fuzzy dense set. Then by proposition 3.6, ˅k=1
∞(λk) is  a pairwise fuzzy σ-first category set in 

(X,T1,T2). From the hypothesis, intTi(˅k=1
∞(λk)) = 0. Let µ = ˅k=1

∞(λk),Then intTi (µ) = 0, where µ is the pairwise fuzzy σ-first 

category set in (X,T1,T2). Then by theorem 4.1, (X,T1,T2) is a pairwise fuzzy σ-Baire spaces. 

 

Theorem. 4.2. [6]   

If the fuzzy bitopological space (X,T1,T2) is a pairwise fuzzy σ -Baire   space, then (X,T1,T2) is   a    pairwise fuzzy    

σ -second category space. 

 

Proposotion 4.2. 

If intTi(˅k=1
∞(λk)) = 0 (i,j=1,2 and i≠j), where (λk)'s are pairwise fuzzy σ-Baire sets and pairwise fuzzy Fσ-sets in a fuzzy 

bitopological space (X,T1,T2) in which each pairwise fuzzy σ-first category set is a pairwise fuzzy dense set, then (X,T1,T2) is a 

pairwise fuzzy σ-second category space. 

Proof. Let (λk)'s (k=1 to ∞) be pairwise fuzzy σ-Baire sets and pairwise fuzzy Fσ-sets such that intTi(˅k=1
∞(λk)) = 0 (i,j=1,2 and i≠j)  

in (X,T1,T2) in which each pairwise fuzzy σ-first category set is a pairwise fuzzy dense set. Then by proposition 4.1, (X,T1,T2) is a 

pairwise fuzzy σ-Baire spaces. Hence by theorem 4.2, the pairwise  fuzzy σ-Baire space in (X,T1,T2) is a pairwise fuzzy σ-second 

category space. 

 

Proposition 4.3. 

If clTi(˄k=1
∞(1-λk)) = 1 (i,j=1,2 and i≠j), where (λk)'s are pairwise fuzzy σ-Baire sets and pairwise fuzzy Fσ-sets in a fuzzy 

bitopological space (X,T1,T2) in which each pairwise fuzzy σ-first category set is a pairwise fuzzy dense set, then (X,T1,T2) is a 

pairwise fuzzy σ-Baire space. 

Proof.  Let (λk)'s (k=1 to ∞) be pairwise fuzzy σ-Baire sets and pairwise fuzzy Fσ-sets in (X,T1,T2) in which each pairwise fuzzy 

σ-first category set is a pairwise fuzzy dense set. Then by proposition 3.5, ˄k=1
∞(1-λk) is  a pairwise fuzzy σ-residual set in 

(X,T1,T2). From the hypothesis, clTi(˄k=1
∞(1-λk)) = 1. Let η = ˄k=1

∞(1-λk),Then clTi (η) = 1, where η is the pairwise fuzzy  

σ-residual set in (X,T1,T2). Then by theorem 4.1,(X,T1,T2) is a pairwise fuzzy σ-Baire space. 

 

Proposition 4.4.  
If clTi(˄k=1

∞(1-λk)) = 1 (i,j=1,2 and i≠j), where (λk)'s are pairwise fuzzy σ-Baire sets and pairwise fuzzy Fσ-sets in a fuzzy 

bitopological space (X,T1,T2) in which each pairwise fuzzy σ-first category set is a pairwise fuzzy dense set, then (X,T1,T2) is a 

pairwise fuzzy σ-second category space. 

Proof. Let (λk)'s (k=1 to ∞) be pairwise fuzzy σ-Baire sets and pairwise fuzzy Fσ-sets such that clTi(˄k=1
∞(1-λk)) = 1 (i,j=1,2 and 

i≠j) in (X,T1,T2) in which each pairwise fuzzy σ-first category set is a pairwise fuzzy dense set. Then by proposition 4.3, (X,T1,T2) 

is a pairwise fuzzy σ-Baire space. Hence by theorem 4.2, the pairwise fuzzy σ-Baire space in (X,T1,T2) is a pairwise fuzzy  

σ-second category space. 

 

Definition 4.2. [5]  A fuzzy bitopological space (X,T1,T2) is called a pairwise fuzzy almost resolvable space  if ˅k=1
∞(λk)=1, where 

the fuzzy sets (λk)'s in (X,T1,T2) are such that intT1intT2(λk)=0=intT2intT1(λk). Otherwise (X,T1,T2) is called a pairwise fuzzy almost 

irresolvable space. 

 

 

Theorem 4.3. [8]  

If the fuzzy bitopological space (X,T1,T2) is a pairwise fuzzy  σ -Baire space, then (X,T1,T2) is a pairwise fuzzy almost 

irresolvable space. 
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Remark 4.1. The following propositions give conditions for fuzzy bitopological spaces to become pairwise fuzzy Baire space by 

means of pairwise fuzzy σ-Baire sets and pairwise fuzzy σ-first category sets. 

 

Proposition 4.5. 

If intTi(˅k=1
∞(λk)) = 0 (i,j=1,2 and i≠j), where (λk)'s are pairwise fuzzy σ-Baire sets and pairwise fuzzy Fσ-sets in a fuzzy 

bitopological space (X,T1,T2) in which each pairwise fuzzy σ-first category set is a pairwise fuzzy dense set, then (X,T1,T2) is a 

pairwise fuzzy almost irresolvable space. 

Proof. Let (λk)'s (k=1 to ∞) be pairwise fuzzy σ-Baire sets and pairwise fuzzy Fσ-sets such that intTi(˅k=1
∞(λk)) = 0 (i,j=1,2 and i≠j) 

in (X,T1,T2) in which each pairwise fuzzy σ-first category set is a pairwise fuzzy dense set. By proposition 4.1, (X,T1,T2) is a 

pairwise fuzzy σ-Baire space. Hence by theorem 4.3, the pairwise fuzzy σ-Baire space in (X,T1,T2) is a pairwise fuzzy almost 

irresolvable space. 

 

Definition 4.3 [5]  A fuzzy bitopological space (X,T1,T2) is called a pairwise fuzzy P-space if every non-zero pairwise fuzzy  

Gδ-set in (X,T1,T2) is pairwise fuzzy open in (X,T1,T2). 

 

Definition 4.4 [5] A fuzzy bitopological space (X, T1, T2) is called a pairwise  fuzzy Baire  space   if   intTi
( ˅k=1

∞ (λk) ) = 0,  

(i= 1,2) where ( λk)’s  are   pairwise  fuzzy   nowhere    dense   sets   in   (X,T1,T2). 

 

Theorem 4.4. [7]  

If the fuzzy bitopological space (X,T1,T2) is a pairwise fuzzy σ -Baire space and pairwise fuzzy P-space, then (X,T1,T2) 

is a pairwise fuzzy Baire space. 

 

Proposition 4.6. 

If intTi(˅k=1
∞(λk)) = 0 (i,j=1,2 and i≠j), where (λk)'s are pairwise fuzzy σ-Baire sets and pairwise fuzzy Fσ-sets in a 

pairwise fuzzy P-space (X,T1,T2) in which each pairwise fuzzy σ-first category set is a pairwise fuzzy dense set, then (X,T1,T2) is 

a pairwise fuzzy Baire space. 

Proof. Let (λk)'s (k=1 to ∞) be pairwise fuzzy σ-Baire sets and pairwise fuzzy Fσ-sets such that intTi(˅k=1
∞(λk)) = 0 (i,j=1,2 and i≠j) 

in (X,T1,T2) in which each pairwise fuzzy σ-first category set is a pairwise fuzzy dense set. By proposition 4.1, (X,T1,T2) is a 
pairwise fuzzy σ-Baire space. By hypothesis, (X,T1,T2) is a pairwise fuzzy P-space. Thus (X,T1,T2) is a pairwise fuzzy σ-Baire 

space and pairwise fuzzy P-space. By theorem 4.4, the pairwise fuzzy σ-Baire space and pairwise fuzzy P-space (X,T1,T2)  is a 

pairwise fuzzy Baire space. 

 

Definition 4.5 [5] A fuzzy bitopological space (X,T1,T2) is called a pairwise fuzzy submaximal space if each pairwise fuzzy dense 

set in (X,T1,T2), is a pairwise fuzzy open set in (X,T1,T2). That is., if λ is a pairwise fuzzy dense set in a fuzzy bitopological space 

(X,T1,T2), then λϵTi (i=1,2). 

 

Theorem. 4.5. [7]  

If the fuzzy bitopological space (X,T1,T2) is a pairwise fuzzy σ -Baire space and pairwise fuzzy submaximal space, then 

(X,T1,T2) is a pairwise fuzzy Baire space. 

 

Proposition 4.7.  

If intTi(˅k=1
∞(λk)) = 0 (i,j=1,2 and i≠j), where (λk)'s are pairwise fuzzy σ-Baire sets and pairwise fuzzy Fσ-sets in a 

pairwise fuzzy submaximal space (X,T1,T2) in which each pairwise fuzzy σ-first category set is a pairwise fuzzy dense set, then 

(X,T1,T2) is a pairwise fuzzy Baire space. 

Proof. Let (λk)'s (k=1 to ∞) be pairwise fuzzy σ-Baire sets and pairwise fuzzy Fσ-sets such that intTi(˅k=1
∞(λk)) = 0 (i,j=1,2 and i≠j) 

in (X,T1,T2) in which each pairwise fuzzy σ-first category set is a pairwise fuzzy dense set. By proposition 4.1, (X,T1,T2) is a 

pairwise fuzzy σ-Baire space. By hypothesis, (X,T1,T2) is a pairwise fuzzy submaximal space. Thus (X,T1,T2) is a pairwise fuzzy 

σ-Baire space and pairwise fuzzy submaximal space. By theorem, 4.5, the pairwise fuzzy σ-Baire space and pairwise fuzzy 

submaximal space (X,T1,T2) is a pairwise fuzzy Baire space. 

 

Definition 4.6 [10] A fuzzy set λ in a fuzzy bitopological space (X,T1,T2) is called a pairwise fuzzy open hereditarily irresolvable 
space if intT1clT2(λ)≠0≠ intT2clT1(λ), then intT1intT2(λ)≠0≠ intT2intT1(λ)  for any non-zero fuzzy set in (X,T1,T2).  

 

Theorem 4.6. [10]   
If  the fuzzy bitopological space (X,T1,T2) is a pairwise fuzzy σ-Baire space and pairwise fuzzy open hereditarily 

irresolvable space, Then (X,T1,T2) is a pairwise fuzzy Baire space. 

 

Proposition 4.8.  

If intTi(˅k=1
∞(λk)) = 0 (i,j=1,2 and i≠j), where (λk)'s are pairwise fuzzy σ-Baire sets and pairwise fuzzy Fσ-sets in a 

pairwise fuzzy open hereditarily irresolvable space (X,T1,T2) in which each pairwise fuzzy σ-first category set is a pairwise fuzzy 

dense set, then (X,T1,T2) is a pairwise fuzzy Baire space. 

Proof. Let (λk)'s (k=1 to ∞) be pairwise fuzzy σ-Baire sets and pairwise fuzzy Fσ-sets such that intTi(˅k=1
∞(λk)) = 0 (i,j=1,2 and i≠j) 

in (X,T1,T2) in which each pairwise fuzzy σ-first category set is a pairwise fuzzy dense set. By proposition 4.1, (X,T1,T2) is a 

pairwise fuzzy σ-Baire space. By hypothesis (X,T1,T2) is a pairwise fuzzy open hereditarily irresolvable space. Thus (X,T1,T2) is a 

pairwise fuzzy σ-Baire space and pairwise fuzzy open hereditarily irresolvable space. By theorem, 4.6, the pairwise fuzzy σ-Baire 

space and pairwise fuzzy open hereditarily irresolvable space (X,T1,T2) is a pairwise fuzzy Baire space. 
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V. CONCLUSION 

In this paper, the concept of pairwise fuzzy σ -Baire sets is introduced and studied. Besides characterizations of these 

sets, several properties of these sets are studied. The condition under which fuzzy bitopological spaces to become fuzzy σ –Baire 

spaces, σ-second category spaces are obtained by means of pairwise fuzzy σ-Baire sets. The condition under which fuzzy 

bitopological spaces to become fuzzy σ-Baire spaces are obtained by means of pairwise fuzzy  

σ-first category set. 
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