A Critical Analysis on Electronegativity P Ramakrishnan

^a Chemical Engineering Department, National Institute of Technology, Rourkela, Odisha – 769008, India

Abstract

Electronegativity is a mnemonic number for an atom in a molecule for expressing its ability to attract or hold the electron in diatomic or poly atomic system. This number is either used for energy (a quantum-mechanical entity) or for Force (non-quantum entity). In this article, a plethora of electronegativity models are revisited .A theoretical equation for Electronegativity in terms of Hellmann-Feynman Force or Ehrenfest Force is a special feature of this article .Electronegativity values are computed for various elements using numerical values of energy obtained through Hatree-Fock-Rothan calculation , effective nuclear charge and most probable radius .

Key Words: Electronegativity; Mnemonic Number , Coulomb Force, Hellmann-Feynman Force, Ehrenfest Force. Most Probable Radius.

Introduction

Electronegativity is unique and mnemonic number which is assigned to an atom through intuitive thought of researchers since the beginning of 19th century in the field of science. J.J.Berzelius, a proponent of the caloric theory of heat, has first introduced the term electronegativity. In the first decade of 19th century, Amen do Avogadro introduced 'Oxygencity' a correlated topic of electronegativity. In the year 1870, Baker inserted three atomic parameters like weight (quantity of matter), valence (quantity of an atom's combining power), and electronegativity (quality of an atom's combining power). By 1930s, the birth of thermo-chemistry from the laws of thermodynamics and kinetic molecular theory helps in establishing a correlation between the heat of a reaction and electronegativity. The correlation between electronegativity and heat of reaction was suggested by Van'tHoff[1], [2], Caven & Lander[1], [3] and Sackur[1], [4]. Electronegativity was defined with help of terminologies such as hetrolytic/homolytic bond dissociation enthalpy data, electron affinity, ionization energy (adiabatic, ground state, ionization, ionization potential and vertical ionization), effective nuclear charge and covalent radius, average electron density, stretching force constants, compactness, configurational energy, dielectric properties, work function, number of valence electrons, pseudopotentials

and power. The concept of electronegativity has been used to sketch the distribution and rearrangement of electronic charge in a molecule[5], [6]. The fundamental descriptors in chemical science like bond energies, bond polarity, dipole moments, and inductive effects are being conceptualized and modeled for evaluation The scope of this concept is so broad that ionic bond, atom-atom polarizability, equalization of electronegativity, apicophilicity, group electronegativity, principle of maximum hardness, electronic chemical potential, polar effect(inductive effect, effective charge ,pi-electron acceptor/donor group)field effect, conjugative mechanism, mesomeric effect could have been explained. The correlations between electronegativity and superconducting transition temperature for solid elements and high temperature superconductors[7], [8], the chemical shift in NMR spectroscopy[9], isomer shift in Mossbauer spectroscopy[10] have already been explained. This concept has also been utilized for the design of materials for energy conversion and storage device[11].

Electronegativity is also considered as an intuitive-cum-qualitative construct[12]. This qualitative construct is very difficult to be quantified. The first quantification and assignment of numerical value to electronegativity was assigned by Linus Pauling in 1932[13]. Following that landmark scale, a number of qualitative and quantitative scales for electronegativity have been proposed by different researchers across the globe to date. The quest for a new electronegativity scale is still going on as this concept remains confusing[14]. The experimental determination of electronegativity of individual surface atoms using atomic force spectroscopy has already been reported[15]. An intuitive linking map of electronegativity to three fundamental concepts is shown in Fig. 1. In this article, various concepts of electronegativity based on force, charge and energy are overviewed followed by introduction to a new concept based on Hellmann-Feynman theorem.

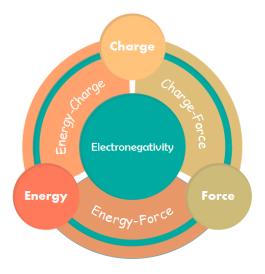


Figure 1. Intuitive linking of electronegativity with energy, force and charge

2.1 Pauling's empirical electronegativity scale

A classical incarnation of electronegativity in terms of an atom's ability to attract electron towards itself was introduced by Linus Pauling in 1932[13]. In the first decade of 20th-century, the correlation between electronegativity and heat evolution was so explicit that Pauling's approach would seem almost self-evident. Pauling's intuition dictates electronegativity as a virtually constant atomic property irrespective of the valence states being different. Pauling proposed the difference in electronegativity as a square root of extra ionic resonance energy (Δ). Again, Pauling and Sherman[16] have reported that Δ is not always positive. Following this, Pauling replaced [DE(A₂).DE(B₂)]/2 in place of [DE(A₂)+DE(B₂)]/2 for his electronegativity equation such as

$$\left|c_{Pa}^{A} - c_{Pa}^{B}\right| = 0.208' \text{ D}$$
 (1)

Where,

$$\mathbf{D} = \frac{1}{12} \frac{D_{E\parallel AB} - 0.5(D_{E\parallel A_2} + D_{E\parallel B_2}) \text{ based on AM}}{D_{E\parallel AB} - (D_{E\parallel A_2} \cdot D_{E\parallel B_2})^{1/2} \text{ based on GM}}$$
(2)

The second term in eq. 2 represents energy of covalent bond A-B based on arithmetic mean and geometric mean respectively. Pauling's quantum mechanical approach also indicates the dipole moment due to the presence of significant ionic structure A^+B^- . The extra- ionic resonance energy arises out of contribution of ionic canonical forms to bonding and it was experimentally verified[17], [18]. Pauling proposed valence bond in terms of covalent

part and ionic part. Pauling has established quantitative ionicity scale for molecules and crystals based on electronegativity difference, such as

$$i^{ionicity} = 1 - \exp \left\{ \frac{c}{c} \frac{\left| c_{Pa}^{A} - c_{Pa}^{B} \right|^{2} \frac{\ddot{O}}{\dot{\dot{A}}}}{4 \frac{\dot{\dot{A}}}{\dot{\dot{A}}}} \right\}$$
(3)

Pauling's thermochemical scale was viewed as the culmination of the 19th century concept of electronegativity. Pauling's empirical electronegativity values derived from bond energies have been used to correlate between chemical and physical properties of a large number of elements followed by theoretical justification[19]-[21]. In the year 1932, electronegativity values of ten non-metallic elements was proposed by Pauling[13] where $C_{P_a}^H$ =2.1(arbitrary reference to construct a scale) latter changed to 2.2, C_{Pa}^{F} =4. Furthermore, electronegativity values of 29 main group elements was proposed by Linus Pauling in 1939[19], [22]. In 1946, Haissinsky et.al. have reported electronegativity values for 73 elements[19], [23]. In 1953, Huggins reported the re-evaluated electronegativity values for 17 elements where electronegativity number of hydrogen was assigned 2.2 in place of 2.1(Pauling's value)[19], [24]. In 1960-61, A. L. Allred updated Pauling's original electronegativity values for 69 elements where electronegativity of hydrogen was taken as 2.2[19]. Pauling Electronegativity is not perfect because of the scientific objections like (i) to assign a single electronegativity value to each 'atom in a molecule at all enough' is not sufficient as reported by Haissinsky[17], [23] and Walsh[17], [25] inspite of confirmation of empirical usefulness through investigations. several (ii) to obtain electronegativity is weak one as reported by Ferreira[17], [26] because of the assignment of one number to an atom, non -consideration of changes of hybridization, total neglect of effects of atomic charges.3) Restriction on electronegativity as a fixed atomic character. Furthermore, this scale is criticized by Iczkowski and Margrrave[27], Pearson[28], Allen[29], [30]. The chemical validity of this scale is its continuity as standard for other scales. Pauling type electronegativity is an ambiguity for the elements with several oxidation states of different bond energies[31], [32].

2.2 Mulliken's absolute electronegativity

Mulliken[20], [33] developed an alternative definition for the electronegativity shortly after Pauling's definition based on energy concept. He considered three structures (i)AB (ii)A+B-, (iii)A-B+ where the two ionic structures (ii) and (iii) would be of equal weights in the wave function containing ii and iii, so that the complete covalent structure will be possible AB will be possible if and only if the eq. 5 is satisfied.

$$IP_{A} - EA_{B} + V = IP_{B} - EA_{A} + V \tag{4}$$

$$\mathbf{P} \quad IP_A + EA_A = IP_B + EA_B \tag{5}$$

Mullikan suggested the term IP_A+EA_A or IP_B+EA_B is a measure of electronegativity of atom A or B respectively. V is coulomb potential. With IP_A and IP_B assumed to be IP and EA_A and EA_B assumed to be EA, Mullikan expressed electronegativity as

$$c_{M}^{A} = \frac{IP_{A} + EA_{A}}{2}; c_{M}^{B} = \frac{IP_{B} + EA_{B}}{2}$$
 (6)

In general,

$$c_{M}^{k} = \frac{(IP_{k} + EA_{k})}{2} \quad \text{eV}$$
⁽⁷⁾

The values of IP and EA can be computed for atoms in either of states such as ground, excited or valence state. The scientific reports made by Stark[1], [34], Martin[1], [35], and Fajans[1], [36] concludes the co-relation between electronegativity, ionization energy and electron affinity. The rigorous qualitative derivation has also been examined by Moffitt[37] and Mulliken[33] himself. The half factor included in eq. 7 represents electronegativity as the average binding energy of the electron in the vicinity of the concerned atom. Mulliken's electronegativity is an arithmetic average of ionization potential and electron affinity of an atom in the ground state.

Mulliken electronegativity can be also termed as negative of chemical potential by incorporating energetic definitions of IP and EA so that Mulliken Chemical Potential will be a finite difference approximation of electronic energy with no of electrons.

$$c_M = -m_M = -\frac{IP + EA}{2} \tag{8}$$

The empirical correlation reported by Mulliken[33] between $\chi_{Mulliken}$ and $\chi_{Paulling}$ as

$$c_{Pa} = \frac{c_M}{2.78} = \frac{(IP + EA)}{2.78}$$
 (9)

1/2.78 is scale adjustment factor. Huheey[38] reported Mulliken electronegativity as

For IP and EA in electron volts
$$c_M = 0.187(IP + EA) + 0.17$$
 (10)

For IP and EA in kilojoules per mole $c_M = 1.97' \ 10^{-3} (IP + EA) + 0.19$ (11)

Pritchard and Skinner[39], [40] have reported the correlation between χ_M and χ_{Pa} as

$$c_{M} = 3.15' c_{Pa}$$
 (12)

In eq. 12 IP, EA are expressed in kcal/mol. 3.15 is scale adjustment factor. They have given an extensive set of Mulliken electronegativity values. Ionization potential and electron affinity are associated with the atomic orbital forming the bond. The valence state energies must be used in calculating IP which are dependent on the nature of atomic orbital. Hence 'Orbital electronegativity' arises out of Mullikan's concept of electronegativity which can be generalized to all atomic orbitals to molecular orbitals because of close relation of IP and EA with respective removal of electron from highest occupied atomic orbital (HOAO) and addition of electron to lowest unoccupied atomic orbital(LUAO). Conceptually, orbital electronegativity is a measure of the power of bonded atom or molecule (an aggregate of atoms) to attract an electron to a particular atomic orbital or a molecular orbital. The scientific validity of this scale was justified by Pearson[41]. Mulliken electronegativity is absolute, reasonable and in principle dependent on chemical environment of an atom. This scale is independent of an arbitrary relative scale. A bond between two atoms is assumed as competition for a pair of electrons where each atom will lose one electron (i.e. resist to be a positive ion) and simultaneously gain the second electron (i.e. to be a negative ion). Thereby, the two processes can be seen as involving the ionization potential and electron affinity respectively. So, the average of the two values is a measure of the competition and in turn gives value of electronegativity. A series of papers appearing in early 1960s provide with extensive studies of Mulliken's electronegativity values for nontransition atoms with various valence states [17], [42], [43]. Major disadvantages of Mulliken electronegativity include consideration of isolated atomic properties (IP and EA), non-inclusion of all valence electrons, unavailability of electron affinity data. The electron affinity is for 57 elements by 2006[17], [26], [37], [44], incorrect determination of electronegativity values for transition metals.

2.3 Lang-Smith definition of electronegativity

Lang and Smith[45], [46] defined electronegativity as a simple function of ionization potential and electron affinity.

$$c_{IS} = val(IP) + 1 - val(EA) \tag{13}$$

The quantity 'val' is taken as a fraction less than 1. The ionization potential or energy values have been adjusted for pairing and exchange interaction. They have reported a set of electronegativity values for elements from hydrogen to Astatine except zero group elements.

2.4 Allen's absolute scale of Spectroscopic Electronegativity

Allen[29], [30] defines Electronegativity as the average one-electron energy of valence shell electrons in groundstate free atom. He projected it as third dimension or energy dimension of periodic table. According to this definition, electronegativity is a free atom ground state quantity with a single defining number which gains its meaning as an extension of periodic table. Allen has introduced two terms Eenrgy index (in situ C_{spec} of free atom) and Bond polarity Index (projection operator being applied to a molecular orbital wave function to get in situ average one-electron energies for atoms in molecules i.e in situ Vc_{spec}). The fractional polarity defined from bond polarity index is equivalent of Pauiling's dipole moment referenced 'ionic character percent'. Allen has reported a new chemical pattern by mounting a series of funnel shaped potential energy plots (E vs r) along a line of increasing atomic number (Z) i.e along a row of periodic table where a composite curve one-electron energy (vertical axis) vs a part row of periodic table is obtained. This composite curve shows a strong correlation between magnitude of C_{spec} and energy level spacing (large C_{spec} with large spacing). This is similar to energy level of Fermi-Thomas-Dirac atoms. Electronegativity for representative elements is independent of oxidation state because of the fact that, the atomic charges carried by representative elements during the formation polar covalent bond are slightly close to their oxidation number resulting negligible changes in electronegativity with change in molecular environmental system. For transition elements electronegativity is dependent on oxidation state because of closely spaced energy levels.

Spectroscopic electronegativity for s and p orbital elements is represented as,

$$c_{spec(s,p)} = \frac{a' IP_s + b' IP_p}{a+b}$$
(14)

Eq. 14 represents occupation weighed average per electron ionization energy of an atom where a,b are occupation number and IP_s , IP_p are spherically ionization potentials determined through multiplet averaging. However, IP_p is replaced by IP_d and a,b are the valence-shell occupancies of s-orbitals and d-orbitals in overlap region for transition elements.

$$c_{spec(d)} = \frac{a' IP_s + b' IP_d}{a+b}$$
(15)

Major advantage of this definition is that, necessary spectroscopic energy data are available for many elements. Electronegativity of Francium was estimated using this definition. The drawbacks of this scale are (i) "How to determine the valence electrons for d-block and f -block elements" is still an ambiguity in estimation of electronegativity because no such theory to determine the valence electron has been developed so far. (ii) Reason for electronegativity order such as Neon>Fluorine>Helium>Oxygen is yet to be given.

Optical electronegativity scale

Jorgensen[47] introduced optical electronegativity scale (c_{OP}) for rationalizing electron transfer spectra of transition metal complex (MX). In this scale a linear difference in c_{OP} represent the photon energy(hn) as per the following relation.

$$hn = [c_{OP}(X) - c_{OP}(M)] 3' 10^4 \text{ cm}^{-1}$$
(16)

A linear relationship of c_{OP} to the difference in Eigen values as introduced by Jorgensen is an idea which can be rationalized in terms of density functional approach to electronegativity.

2.6 Spin-Orbital electronegativity

J.C.Slater et. al.[48], [49] defined Spin-Orbital electronegativity on the basis of density functional approach. Spin-Orbital electronegativity is derived from the fact that the orbital energy Eigen values in SCF-X \propto (Self consistent field X \propto scattered wave) density functional approach to molecular orbital theory are equal to the first derivatives of total energy with respect to occupation number.

2.7. Simons scale of atomic electronegativity

Simons[31], [50] reported a theoretical scale to determine atomic electronegativity values where bonds are described by Gaussian Type orbitals. These orbitals are assumed to float to a point of minimum energy between

the atoms. The electronegativity values are obtained from Floating Spherical Gaussian Orbital (FSGO wave functions)[27]. Simmons and Frost defined an orbital multiplier ($f_{AB} = r_A(r_A + r_B)^{-1}$) where r_A and r_B label as atomic distances with respect to the orbital center. f_{AB} of 0.5 implies of equal attraction between the atoms. For $f_{AB}<0.5$, A attracts B to a large extent. For $f_{AB} > 0.5$, B attracts A to large extent. Simmons defined the electronegativity difference as

$$\left|\chi_{A} - \chi_{B}\right| = k \times \left(f_{AB} - 0.5\right) \tag{17}$$

This scale is established with $C_{Lithium} = 1$ and $C_{Fluorine} = 4$. This scale is quite consistent with Pauling scale and Allred-Rochow scale.

2.8. Quantum-defect electronegativity scale

St. John and Bloch[51] have reported quantum-defect electronegativity scale using 'Pauli force' model potential[52]. This force model potential represents the pseudo potential of a one-valence-electron ion except in the vicinity of nucleus and is applied in studies of atoms, molecules and solids. Energy of the orbital is represented as

$$E(n,l) = -0.5Z^{2} \dot{\xi}_{l} + \hat{l}(l) - l \dot{\xi}_{l}^{2}$$
(18)

 $\hat{l}(l)$ - l represents quantum defect.

The orbital electronegativity for valence orbital is defined as

$$c_{l}^{JB} \circ \frac{1}{r_{l}} \circ \frac{1}{\hat{l}(\hat{l}+1)/Z}$$
 (19)

l takes the value 0,1,2 represent s,p,d orbital respectively. Atomic electronegativity is represented as

$$\chi = 0.43 \times \sum_{l=0}^{2} \chi_{l}^{JB} + 0.24 \tag{20}$$

This theoretical scale like Gordy's is related to electrostatic potential idea, but in contrast to Gordy's it introduces the explicit idea of hybridization[53]. They have suggested that this scale is sensitive indicator of chemical trends in the structures of solids and complex systems.

2.9. Size Dependent Electronegativity

D C Ghosh[54] defined electronegativity on the basis of environment independent absolute radii of atoms. He treated electronegativity as an intrinsic free-atom property and quantum mechanically viable. He has suggested the following quantitative general formula.

$$c = c_1 (1/r_{absoulute}) + c_2 \tag{21}$$

The constants $C_{1,}C_{2}$ are determined by least square fitting method. This empirical formulation is based on the fact that, the computation of one atomic property is made from other atomic properties[55], [56]. Furthermore, this derives the theoretical support from mathematical relationship between chemical potential and radius as derived by Dmitrieva and Plindov on the basis of statistical Fermi-Amaldi model[57].

2.10. Energy-Charge model of electronegativity

Iczkowski-Margrave[27], Hinze-Whitehead-Jaffe[43], Huheey[31], [38], [58], [59], G Klopman[39], [60], [61], Ponec[62], Parr et al.[63]–[65], Mulliken-Jaffe[20], [33], [38], [43] and Watson et al.[66] have reported possible relation of the total energy of the system with the charges.

2.11 Mulliken-Jaffe electronegativity approach

Mulliken-Jaffe[20], [33], [38], [43] electronegativity approach is based first ionization energy and the electron affinity. It can be expressed as sum of multiple ionization potential and electron affinity energies. A fitted quadratic equation is given in eq. 22.

$$E = c_M q + qq^2$$

$$c_M = \frac{IE_V + EA_V}{2}$$
(22)
(23)

E stands for total energy in eV. Based on this approach the electronegativity of a few elements of the periodic table can be computed.

2.12. Huheey's Idea of Group electronegativity

James E Huheey[58], [59] in 1965 reported a simple procedure to calculate electronegativity of 99 different groups by assuming variable electronegativity of the central atom in a group and equalization of electronegativity in all bonds. Huheey proposed that, relatively low values of the charge coefficients cause the effect of promoting charge transfer. Huheey proposed the following set of equations.

$$[a'_{w} + b'_{w}d_{w} = a'_{x} + b'_{x}d_{x}] - - - Group - wx$$
(24)

$$[a'_{w} + b'_{w}d_{w} = a'_{x} + b'_{x}d_{x} = a'_{y} + b'_{y}d_{y}] - - Group - wxy$$
(25)

$$[a'_{w} + b'_{w}d_{w} = a'_{x} + b'_{x}d_{x} = a'_{y} + b'_{y}d_{y} = a'_{z} + b'_{z}d_{z}] - - Group - wxyz$$
(26)

Eq. 24-26 are coupled separately with relations like d_G of value 0(Radical),1(cation), -1(anion). The Huheeyrelation between group electronegativity and partial charge in group is given in eq. 27.

J Mullay[17] has reported the value of 'b'' as 1.5 times of 'a''. S G Bratsch[17], [67] simplified Huheey's scheme by using Sanderson's principle of electronegativity equalization. The followings simplified relations was derived.

$$c = \frac{(N+d_G)}{\mathring{a}(n)/c_A}$$
(28)

In eq. 28 χ represents equalized electronegativity for the molecule or the group, n represents number of A atoms, N= $\Sigma(n)$ represents the total number of atoms, δ_G is the charge in the group.

Huheey's method expresses total electronegativity equalization[38], [68]. However, this method has three major shortcomings i.e. inability to account for differences in isomers, treating groups with multiple bonding and overestimating the effect of the atoms or groups linked to the bonding atom.

2.13 Hinze-Whitehead-Jaffe –contribution to Electronegativity

Hinze et al.[43] defined orbital electronegativity as the first derivative of energy of an atomic orbital (j) with respect to electron occupancy (n_i) of the orbital i.e

$$c_{A,j(\text{atomic orbital }j)} = \frac{dE_j^A}{dn_j}$$
(29)
(30)

The electronegativity value acquired by an atom in bond formation is called 'bond electronegativity' which is not to be confused with Pauling electronegativity integral values of orbital occupation.

The Hinze et al. approach to the electronegativity theory is somewhat simple because it neglects resonance and electrostatic effects[17], [58], [59], [69]–[71]. Pritchard[69] suggests the inequality of electronegativity by an order of 10% of the original electronegativity. Bartolotti et al. and Parr et al. have suggested the equality of electronegativity in their works[63], [72]. Politzer et. al. have reported the non-importance of the idea of orbitals in electronegativity theory[73]. Mullay[17] and Watson et. al.[17], [66] have reported the potential usefulness of group electronegativity which are obtained from the idea of orbital electronegativity in conjunction with electronegativity equalization. The Hinze et al.'s[42], [43] work is simple still then it did not meet the criterion for electronegativity. Some authors[74] suggest that the orbital concept of electronegativity never solves the meaning 'Atom in Molecule'.

2.14 G Klopman's atomic electronegativity

G Klopman[39], [60], [61] used Rydberg formula for the calculation of the atomic spectra and proposed a modified formula for calculation of atomic electronegativity of the system in the valence state and also for quantitative determination of the diagonal matrix elements in self-consistent field calculation of a molecule. Modified Rydberg formula is represented as

$$E = \frac{Ry(Z - s)^{2}}{(n - dn)^{2}} = \frac{13.5(Z - s)^{2}}{(n - dn)^{2}} eV$$
(31)

The screening constant (σ) is represented as

$$s = \mathop{\mathbf{a}}_{j^{1}} _{i} q_{j} s_{ji}$$
(32)

The value of σ (core electron–valence cell electron) is considered to be 1 because core electrons are not considered. Quantum defect (dn) is calculated from respective ionization potential i.e. $dn = 3.687(Z^*) / IP$

Total electronic energy of Valence shell,

$$E_{total} = \overset{\circ}{\mathbf{a}}_{i} q_{i} \frac{13.6}{(n-dn)^{2}} \overset{\acute{e}}{\underset{e}{\otimes}} - \overset{\circ}{\mathbf{a}}_{j^{1}i} q_{j} s_{ji} \overset{\acute{u}}{\underset{u}{\overset{i}{u}}} = \overset{\circ}{\mathbf{a}}_{i} q_{i} B_{i} + \frac{1}{2} \overset{\circ}{\mathbf{a}}_{i} \overset{\circ}{\mathbf{a}}_{j^{1}i} q_{j} q_{i} A_{ij}^{\pm} + \overset{\circ}{\mathbf{a}}_{i} q_{i} \overset{\circ}{\underset{e}{\overset{e}{u}}} q_{j} \overset{\acute{e}}{\underset{j}{\overset{i}{\vdots}}} C_{ji}$$

$$(34)$$

$$B_{i} = 13.6 \frac{Z^{2}}{(n-dn)^{2}}; \frac{1}{2} A_{ij}^{\pm} = -2[13.6/(n-dn)2]' Zs_{ij}; C_{ji} = \frac{13.6}{(n-dn)^{2}}' s_{ji}^{2} (35)$$

Further, Total electronic-energy equation of the diatomic system (AB) at barycenter is represented as,

Klopman[39] defined atomic electronegativity as the derivative of total electronic energy of the valence cell with respect to the charge density q_i as mentioned below.

$$c_{Atomic-\ Electronegativity} = \frac{dE_{total}}{dq_i} = B_i + \overset{\circ}{a}_{j^+i} q_j A^+ d_{ij} + \overset{\circ}{a}_{j^+i} q_j A^- (1 - d_{ij}) + 2\overset{\circ}{a}_{j^+i} \overset{\acute{e}}{a}_{j^+i} \overset{\circ}{a}_{j^+i} q_j L^{\overset{\circ}{i}}_{\overset{\circ}{i}} + \overset{\circ}{e} \overset{\circ}{a}_{j^+i} q_j \overset{\circ}{\overset{\circ}{i}} C$$

(37)

Furthermore, the neutral atomic electronegativity is obtained from the above equation when all the values of q_j (the occupation number of particular atomic spin orbital by an electron) will be equal to 1 except for participating electrons in the bonds where $q_j = 1/2$.

Kolpman's procedure helps in calculating neutral atomic electronegativity. This procedure provides theoretical support and clarification for electronegativity formulated by Iczkowski and Margrave[27]. Kolpman's work has been modified and extended to provide a simple procedure for calculation of atomic or orbital electronegativity and also for group electronegativity[17].

2.16 Ponec 's idea of Global electronegativity

R Ponec[17], [62] has reported a generalization of the orbital electronegativity concept of Hinze et al.[43]. It is based on the semi empirical Complete Neglect of Differential Overlap (CNDO) approximation. Ponec's basic equation is written as,

$$c_{Aj}^{JB} = -E_j^A - (r_A - 1/2)g_A$$
 (38)

For neutral atoms the orbital electronegativity is reduced to Mulliken-Jaffe electronegativity values for isolated atom. However, in a molecule, the global electronegativity term can be defined as

$$c_{G(A)} = \frac{\mathbf{\mathring{a}} P_j c_{Aj}^{JB}}{\mathbf{\mathring{a}} P_j}$$
(39)

Global electronegativity values for some molecules have been correlated to X-ray Photoelectron Spectroscopy (ESCA) chemical shifts with good results. Ponec's extension56 of the ideas based on Intermediate Neglect of

2.17 Iczkowski & Margrave approach to Electronegativity.

RP Iczkowski and JL Margrave[27] introduced the energy equation of atoms in terms of net-charge(number of electrons minus nuclear charge) on an atom relative to neutral atom. The energy is termed as valence state energy. The expression is represented as

$$E = a_1 N + a_2 N^2 + a_3 N^3 + a_4 N^4 \tag{40}$$

In eq. 41, N is the net-charge on the atom and the charge coefficients a_1, a_2, a_3, a_4 are the constants that depend atom including its valence state. These constants can be calculated by comparing the values of E(for different N) with experimental ionization potential values. Electronegativity of the atom is defined in terms of the first derivative of E w.r.t. N.

$$c = - \underbrace{\overset{\alpha}{e}}_{e} \frac{dE \, \overset{\circ}{\underline{o}}}{dN \, \overset{\circ}{\underline{o}}}_{N=0} \tag{41}$$

This derivative represents the potential around the atom for a given atomic charge. Furthermore, it measures the power of atom to attract electrons. In eq. 42, The quantity - $(dE/dN)_{N=0}$ (for neutral atom) represents electronegativity. This also represents (i) the tendency of an atom in a molecule to attract electrons for small charge dislocation during interaction of atoms, (ii) the decrease of energy of more electronegative atom than the increase in energy for less electronegative atom. Hence, the energy of molecule is decreased simply by transfer of charge from one atom to another. The energy change in this case is not at all accrued from the electrostatic attraction between ions. Therefore, electronegativity characterizes both the internal constitution of atom and the ions which can be formed from it. Moreover, the electronegativity represents an intensity factor in charge transfer from one atom to the other atom.

This concept of electronegativity in terms of energy-charge derivative have also been justified through ingenious and laudable efforts of various authors[75]–[78]. The scope of this definition is described as i) dE/dN have been calculated for various 1st row and 2nd row elements and are in close agreement with Mulliken's electronegativity, ii)the calculations were extended to many elements along with metals by C K Jorgensen[39], [79] who used similar equations up to three first terms. iii) the above equation up to first two terms using N=1 leads to the Mulliken's definition of electronegativity i.e.

$$\overset{\text{ad}E}{\underbrace{o}}_{dN} \overset{\overset{\overset{\overset{\overset{}}}{}}{\overset{\overset{\overset{}}{}}{\overset{\overset{}}{\scriptstyle}}}_{n=0} = a_1 + 2a_2 = \frac{IP + EA}{2}$$
(42)

With this approximation, Jaffe et al.[80] were able to calculate the group orbital electronegativity (i.e. electronegativity of free orbital of an atom bound to other atom). iv)The principle of electronegativity equalization of Sanderson[81] helped in initiating the calculation of charge distribution. V) The above general principle was used by Ferreira[82] for calculation of bond energy and charge distribution in many binuclear molecules. Despite above advantages, the expression of energy in terms net-charge is not a continuous function as net-charge takes only integral values. The assumption of envisioning 'atom in molecule to have an average fractional number of electrons so as to make energy-charge expression as continuous and differentiable' is already criticized by various authors[83]–[86].

2.18 Parr's density functional electronegativity;

Parr et. al[63] defines Density functional electronegativity with the help of Density Functional Theory (DFT) which is based on the theorems of Hohenbrg and Kohn[87] such as Theorem I : $E[r] = \partial r(1)v(1)dt_1 + F[r]$ (43)

Theorem II :
$$E_v \notin \mathcal{A}_{U} = \stackrel{\circ}{O} r (1)v(1)dt_1 + F \notin \mathcal{A}_{U}$$
 (44)

However, theorem I implies that the ground state electronic energy is a functional of the density. Whereas, theorem II considers inequality with equality holding for r = r', $E_v[r']^3 = E_v[r]$. The density ρ and energy E are determined from the stationary principle. The true energy is obtained by minimizing the function with the constraint so that the density integrates to the total number of electrons. This constraint is Lagrange multiplier $m = -(dE/dr)_v$ being constant external potential, Parr et al.[63] identified electronegativity as the negative of Lagrange multiplier which is also considered as chemical potential *m* equivalent to external potential. These authors have replaced $(dE/dr)_v$ by the first derivative of energy with respect to N such as $(dE/dN)_v$ on the basis of work by Einhorn et. al.[63], [76].where v stands for fixed potential due to set of nuclei and external field, *r* represents for electronic density. Parr et. al.[63] defined electronegativity as,

$$c = -m = -\frac{a}{b} \frac{dE \ddot{\Theta}}{dN \dot{\bar{\Phi}}}$$
(45)

by considering the similarity between the above expression for μ and electronegativity expression of Iczwoscki and Margrave in eq. 42. The concept of chemical potential has also kept Electronegativity as a Global index to characterize the chemical structure. The geometric mean electronegativity equalization principle holds only when each chemical potential is exponential in the number of electrons. The fall-off parameter γ is same for chemical potentials of neutral atoms. Again from density functional theory studies, for a nearly neutral atom, energy is an exponentially decaying function of the number of electrons. However, the classical suggestion states that, the energy is a quadratic function of number of electrons. The classical suggestion leads to the Mulliken formula of electronegativity in eq. 8. Parr and Bartolotti[64] proposed the formula for *m* as

$$m = g \frac{IP' EA}{IP - EA}$$
(46)

They proposed the approximate constancy of γ (i.e. a fall-off parameter) in the following electron loss and gain process such as $A^+ \sqrt[3]{4} \sqrt[3]{4} \mathbb{A} A \sqrt[3]{4} \mathbb{A}^+ A^-$. The geometric mean law constitutes a prediction on how molecular electronegativity is related to atomic electronegativity. It does not trivially extend to a prediction of molecular electronegativity from functional group electronegativity because the primary sites for electron attraction in a molecule are nuclei of atoms. Parr and Bartolotti[64] justified that, electronegativity is constant throughout an atom or a molecule and also remains constant from orbital to orbital within an atom or a molecule .Again, it is shown how valence state electronegativity differences drive charge transfer on molecule formation. Parr and Pearson[65] established an Global Electrophilicity Power index term such as in this case

$$(w) = \frac{m^2}{2h} \tag{47}$$

This index is a measure of lowering energy of the chemical entity during the transfer of electron. The density functional electronegativity encounters with severe differentiability problem[75], [76] where a discontinuous function is put forcibly to differentiation by violating the basic definition of derivative. This problem was solved partially by ingenious efforts of the proponents[77], [78], [88], [89]. The strength for this concept comes from electronegativity equalization principle. In this istance, electronegativity is defined in terms of ground-state energy of a free atom or a free molecule. The conversion of Parr et. al.[63] electronegativity into Mulliken electronegativity was made possible by considering dE/dN as average of DE/DN for the loss or gain of electron. The constancy of external potential in electronegativity formula needs no importance for free atom but

bears energy of 3 eV or more for a molecule. The adiabatic IP and EA values should be mentioned in the formula. Allen[29], [30], Pearson[28] ,Komorowski[90] and Datta et. al.[91] pointed out that, Parr et. al.[63] formula implies the transfer of electron between free atom or free molecule and external surroundings. Whereas, initial concept of electronegativity is always referred to redistribution of electrons within a molecule.

2.19 Politzer's endorsement to electronegativity equalization

Politzer[73] has reported the reaffirmation of the principle of electronegativity equalization as the dependence of the direction of migration of electronic charge on electronegativity difference. This new approach to the electronegativity like Hellmann Feynman theorem[33], [92], [93] is deduced in terms of two physical models. In one model, total energy of molecular system AB is taken as a function of associated electrons with each atom (n_A and n_B), corresponding atomic numbers (Z_A and Z_B) and inter-nuclear separation (R). Total energy of molecular system AB is

$$E = f(n_A, n_B, Z_A, Z_B, R)$$
(48)

For a molecule AB in the ground state under equilibrium,

$$R = R_E; dE = 0; dq = -dn_A = dn_B \tag{49}$$

In eq. 50 the term dq is the Infinitesimal electronic charge under transfer from A to B. The electronegativity of A and B is expressed as,

$$- (\P E / \P N_A)_{R_E, n_B} = c_A , - (\P E / \P N_B)_{R_E, n_A} = c_B$$
(50)

In another model, total energy of the molecular system AB, $E = f(n_A, n_B, Z_A, Z_B, n_X, R) c_{sr}$ is a function of atomic numbers Z_A , Z_B , atoms n_A, n_B , delocalized atoms n_x and inter nuclear separation R. The electronegativity values (or the chemical potential) have been reported by authors[63], [75], [94]–[96]. This idea of electronegativity is not bound within a particular theory like Density Functional Theory or wave functions under quantum mechanics.

R T Sanderson approach to electronegativity

R T Sanderson[81], [94], [97], [98] considered electronegativity as an explanation of chemical reaction where charge transfer takes place . The driving force for reaction comes from electronegativity equalization. The charge

transfer occurs from atom with lower electronegativity (higher chemical potential) to atom with higher electronegativity (lower chemical potential). Sanderson reported equalization of different atomic electronegativity values during the formation of a molecule or a radical. The final value is obtained by considering the geometric mean of all atomic electronegativity values for estimating the atomic charge. He introduced the ratio of electronegativity change in forming the compound to the change in acquisition of a unit positive or negative charge. The unit change in electronegativity is obtained from the original_electronegativity with the help of the relation in eq. 52[97]. Sanderson[99] has also defined electronegativity in terms of electron density.

$$Vc_{sr} = 2.08' \sqrt{c_{sr}}$$
(51)

Where

$$c_{sr} = 4.76 \left(\sqrt{c_{Pa}} - 0.77 \right)$$
 (52)

2.21 Gordy's electronegativity scales

Gordy has reported various ways for calculation of electronegativity values[53], [100]. One of them considers the electronegativity in terms of electrostatic potential and covalent radius.

$$c_g = 0.62 \underbrace{\overset{\text{o}}{c}}_{r \ \overline{\phi}}^{-\frac{1}{2}} + 0.5 \tag{53}$$

The screening factor for close shell electrons and valence electrons in Gordy's technique are 1 and 0.5 respectively. For the atom with p number of valence electrons Z = 0.5(p+1). Eq. 54 is modified as,

$$c^{G} = 0.31' \frac{(p+1)}{r} + 0.5$$
 (54)

This scale is very useful because of introducing the idea of the electrostatic potential into electronegativity. It brings the equivalence of electronegativity with Allred-Rochow force scale[101] in spite of the basis of two different parameters. Politzer and Parr[102] reported some merit in the Gordy scale which gains theoretical support to some extent from Iczkowksi[27]. However, Gordy's electronegativity can not be correlated with Pauling because of severe difficulty in estimation of screen nuclear charge.

In another attempt, Gordy[103] correlated the ionic character with electronegativity difference by the use of nuclear quadrupole couplings constants for halide molecules. Gordy assumed the use of p-orbitals by halogen atoms in formation of single bonds and established the ionic character equation.

$$\left|c_{g}^{A}-c_{g}^{B}\right|^{3} 2$$

(55)

Wilmshurst[104] have reported different ionic relation, $|c_A - c_B| / |c_A + c_B| = Ionic(AB)$ which is used to analyze quadrupole coupling constants.

2.22 Boyd and Edgecombe([105]Boyd and Edgecombe, 1988)(Boyd and Edgecombe 1988)(Boyd &

Edgecombe, 1988)(Boyd and Edgecombe 1988)(Boyd and Edgecombe

1988)¹⁰⁵[105]¹⁰⁵ approach to electronegativity

Boyd and Edgecombe[105] have defined electronegativity quite differently from that of Pauling and Allred & Rochow. The electronegativity was computed from electron density distributions for hydrides of representative elements where atomic radii are determined by a point of minimum charge density along non-metallic hydride bond. According to this definition, electronegativity is supposed to be direct function of charge density at minimum no of valence electrons, non-metal hydride separation and an inverse function of atomic radii.

2.24 Electronegativity and dipole moment

Malone[106] suggested a rough proportionality between the dipole moment of the bond A-B and electronegativity difference as

$$\left|c_{A} - c_{B}\right|_{Pa} = m_{dipole} \tag{56}$$

Where m_{dipole} is dipole moment in debye (CGS unit of electric dipole moment). Malone's measure of electronegativity was rejected because of the reports made Coulson[107].

2.25 Dielectric definition of electronegativity

Phillips[108] has suggested dielectric definition of electronegativity by proposing a simple model for the static electronic dielectric constants of zinc-blende and wurtzite crystal. The dielectric constants have been correlated with that of diamond crystal which is a sp³ hybridized net-work. Phillip extended two dimensional homo-polar model Hamiltonian to a four dimensional space which yields a relation between energy gap (E_{g0}) and the hetropolar static dielectric constant (ϵ_0) such as

$$e_{0} = 1 + \frac{\left(hw_{p}/2p\right)^{2}}{\left(\frac{e}{E_{g0}}\right)^{2} + \left(C_{AB}\right)^{2} \frac{u}{u} a_{0}}$$
(57)

Where,

$$C_{AB} = 0.9e^2 \underbrace{\overset{2}{\overleftarrow{e}}}_{r_{A0}} - \frac{Z_B}{r_{B0}} \underbrace{\overset{0}{\overleftarrow{e}}}_{\overrightarrow{e}} \exp(-k_s r_{A0})$$
(58)

 a_0 is a number of order unity. C_{AB} is the semi-classical charge transfer constant which represents dielectric electronegativity. This scale is exclusively used for calculation of electronegativity values for tetravalent elements like Carbon, Silicon, Germanium and Tin.

2.26 Allred and Rochow absolute scale

AL Allred and EG Rochow[101] defined the electronegativity of an atom with help of electrostatic field. According to this definition, electronegativity is equal to Coulomb force of attraction between the nucleus and an electron at the covalent radius.

$$c_{AR} \circ Z^* \frac{e^2}{r^2}$$
 (59)

The term $Z^*=Z - \sigma$. In eq. 60, r is covalent radius for the atom(considering smaller value as well as outer radial maxima). The Coulomb force is a measure of power of an atom in a molecule that drags electron towards nucleus. Therefore, electronegativity is an absolute one. c_{AR} dimension is not straight forward as it is evaluated through eq. 60. The quantity Z^*/r^2 was calculated through Pauling's work and Slater rules for determining the effective nuclear charge[101], [109], [110]. Pauling's Scale and Allred-Rochow scale can be made to coincide by expressing the electronegativity from the electrostatic approach as the linear function of Z^*/r^2 [111].Here mean radius is expressed in picometer.

$$c_{AR} = 3590' (Z^* / r^2) + 0.744$$
 (60)

The numbers 3590 and 0.744 are arbitrary numerical constants. Eq.61 does not compute any force in the real world.

Introduction of the idea of force into electronegativity theory makes this scale seem quite consistent with Pauling's definition. It also emphasizes the idea for simple calculation, because r and Z^* are readily available quantities for many elements. It is to be noted that, this scale independent of electron affinities and bond dissociation energies. Slater rules for finding effective nuclear charge are empirical.

Four extension of the Allred and Rochow's idea were reported by different authors. The first extension of Allred-Rochow scale by Huheey[17], [31] is based on two assumptions, r of order $(1/Z^*)$ and Z^* of order σ .

$$c_{H} = 0.36' \frac{(Z^* - 3s)}{r^2} + 0.74$$
 (61)

The second extension of Allred-Rochow scale by Boyd and Markus[17], [112] is based on non empirical approach. The empirical covalent radius is replaced by relative covalent radius obtained from the free atom wave function by density contour technique. The effective nuclear charge is obtained through integration of radial density function from nucleus to relative distance. Electrostatic electronegativity is expressed as,

$$c = \frac{Z}{r^2} \stackrel{\circ}{\underbrace{e}}_{0} - \stackrel{r}{\underset{0}{\overset{\circ}}} r(r) dr \stackrel{\circ}{\underbrace{\psi}}_{\underbrace{\psi}}$$
(62)

The radial charge density $\rho(r)$ can be obtained from the Hartree Fock atomic orbitals data[113], [114]. The computed electronegativity values follow the general pattern of Mulliken ground state electronegativity values with an exception for groups 2 and 3 of periodic table because $\rho(r)$ decreases as per the expection rule i.e.

$$\langle IP' | r \rangle >$$
¥ .

The third extension of the scale was made Mande et al. [17], [115] where the value of effective nuclear (Z^*) charge was obtained spectroscopic analysis. Therefore, the values become less arbitrary than that of Slater's. This electronegativity scale is more fundamental and reliable. The correlation of the scale is excellent with that of Pauling's scale. The electronegativity values obtained for 1st transition metals are more reasonable than Allred-Rochow scale.

The fourth extension of this scale was made by Yonghe Zhang[17], [116] where electronegativity was calculated on the basis of electrostatic force given by,

$$F = n^* \cdot \frac{\sqrt{IP_z / Ry}}{r^2} \tag{63}$$

 IP_Z is ultimate ionization potential for outer electron. This type of scale is based on the concept of different electron attracting power of an element in different valence state. Therefore, electronegativity is termed as a function of oxidation number. Zhang has also reported dual parameter equation[116]. Zhang electronegativity is given by,

$$c_z = 0.241F + 0.775 \tag{65}$$

$$Z = \frac{Z}{r_i^2} - 7.7c_z + 8.0 \tag{66}$$

2.27 Quantum model of Electronegativity

Putz M.V[117]–[120] defined electronegativity by a specialized affinity ionization wave function within Fock Space having fermions(electrons). The quantum mechanical description of electronegativity was made through field perturbation on a valence state for chemical system. Putz electronegativity is also termed as quantum electronegativity. It is considered as viable quantum concept with observable character. The mathematical expression is represented as[120],

$$c_{Putz} = -\frac{E_0}{r_0} = -m_0 = \frac{1}{1} + \frac{F_0}{E_0} = -\frac{F_0}{\left(y_0 |H| y_0\right)}, \frac{r_0 \otimes O(E_0 < 0)}{r_0 \otimes 1}$$
(67)

This idea of quantum electronegativity helps in applying affinity ionization wave function on the valence state of a chemical system to recover the eigen energy value of that state within density functional chemical potential formulation .The density functional electronegativity of Parr et.al[63] was confirmed with Putz's fundamental quantum mechanical arguments. It helped in identifying the flaws made by Bergmann and Hinze[121].

2.28 Ionocovalency model of Electronegativity

Yonghe Zhang[116], [122], [123] has reported the Ionocovalency model of electronegativity well correlated with quantum mechanical potential. This model describes the properties of effective ionic potential, charge density, charge distribution, effective polarizing power and bond strengths quantitatively. Ionocovalency (IC) was defined as a product of the ionic function I(Z*) and the covalent function C(1/r). The Bohr energy expression $E = -Ry(Z/n)^2$ was modified by replacing energy by ultimate Ionization energy(IP_Z), Nuclear charge(Z) by effective nuclear charge(Z*) and principal quantum number (n) by effective principal quantum number(n*). The

expression, so obtained, $Z^* = n^* (IP_Z / Ry)$ was used to correlate the bond properties to the quantum mechanics. Ionocovalency model is represented as,

$$I(IP_z)' C(n^*/r) = \underbrace{\overset{\mathbf{O}}{\underset{\mathbf{C}}{\mathsf{R}}}}_{\mathbf{C}} \underbrace{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\mathsf{R}}}}}_{\mathbf{R}}, \frac{n^*}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\overset{\mathbf{O}}{\mathsf{R}}}}, \frac{n^*}{r}$$
(68)

The electronegativity defined in terms of Ionocovalency is correlated with Pauling's electronegativity values. It is mathematically expressed as,

$$c_{ic} = 0.412[n^*(IP_z/Ry)(1/r)] + 0.387$$
(69)

The term 1/r represents linear covalency or sigma covalency. The electronegativity values of elements from Hydrogen to Lawrencium in different cationic states have been calculated by Y Zhang on the basis of Ionocovalency model[123].

2.29 Other models

Huggins model represents another alternative thermochemical procedure for electronegativity[124]. Walsh model brings relationship between electronegativity and stretching force constants of the bonds of an atom to hydrogen atom[125]. Michaelson model relates atomic electronegativity to the work function[126]. Martynov and Batsanov model gives electronegativity values through the average of successive ionization energies of the valence electrons of an element[127], [128].

3. New model of electronegativity

The above presented models of electronegativity are theorized by individual's intuition. The qualitative understanding of electronegativity is not up to the mark. Universal acceptance on the common agreement of the above models seems impossible. In this section an independent approach to define electronegativity is presented. The force expression based on Hellmann-Feynman theorem is proposed as electronegativity. Moreover, this force must be equivalent to the primary definition of electronegativity such as ability of an atom to attract electron towards itself. Following the proposition, the definition of electronegativity becomes 'inherent ability of an atom to attract and hold electron'. The electronegativity in terms of Hellmann Feynman force is equal to Born Oppenheimer force for an atom in diatomic system and Hartree Fock force of an atom in poly atomic system. Prior to the force based definition of electronegativity and relevant correlations, the four relevant force concepts are briefly discussed.

3.1 Born-Oppenheimer Force

This force concept arises out of Born Oppenheimer(BO) energy approximation. M Born and J R Oppenheimer[129], [130] have contributed a celebrated paper to science. It brings the systematic correspondence of the energy of electronic motion, nuclear vibration and rotation to the terms of power series in the fourth root of electron nucleus mass ratio. Born and Oppenheimer suggested that total wave function (y) can be written as the product of the nuclear wave function (y_n) and electronic wave function (y_e) . This approximation simplifies complicated Schrödinger equation into electronic equation $(H_e y_e = E_e y_e)$ and nuclear equation ($H_n y_n = E_e y_e$). The equation devised by them for the rotation represents a generalization of the treatment of Kramers theorem and Pauli exclusion principle[131], [132]. This approximation also justifies Frank-Condon principle[133], [134] used in explaining the intensity of band lines. In the last several decades, rigorous mathematical work has been reported on the validity of the BO approximation. Quite a few number of papers66,70-**81** contain the study of BO have reported that, a reduced Hamiltonian is an appreciable approximation to true molecular Hamiltonian. However, a few of those are closely related to works on semi classical Schrodinger matrix operators[117], [118], [147]. BO approximation is based on "assumption of ignoring motions of nearly stationary nuclei with much larger mass and smaller velocity with respect to motion of electron with much smaller mass and larger velocity". The approximation holds good for the ground state of molecule and breaks down for the excited state. Complete Hamiltonian is represented as

$$H = H_n + H_e = T_n + T_e + V_{nn} + V_{en} + V_{ee}$$
(70)

$$H = -\frac{1}{2} \mathop{a}\limits_{A}^{\circ} \tilde{N}_{A}^{2} - \frac{1}{2} \mathop{a}\limits_{i}^{\circ} \tilde{N}_{i}^{2} + \mathop{a}\limits_{B,A}^{\circ} \frac{Z_{A}Z_{B}}{|R_{B} - R_{A}|} - \mathop{a}\limits_{A,i}^{\circ} \frac{Z_{A}}{|r_{i} - R_{A}|} + \mathop{a}\limits_{i,j}^{\circ} \frac{1}{|r_{i} - r_{j}|}$$
(71)

Again, Molecular Hamiltonian[148] (H^{mol})

$$H^{mol} = -\frac{1}{2} \mathop{\text{a}}_{A}^{\circ} \mathop{\text{N}}_{A}^{2} - \frac{1}{2} \mathop{\text{a}}_{i}^{\circ} \mathop{\text{N}}_{i}^{2} + \mathop{\text{a}}_{B,A}^{\circ} \frac{l^{2} Z_{A} Z_{B}}{|R_{B} - R_{A}|} - \mathop{\text{a}}_{A,i}^{\circ} \frac{l Z_{A}}{|r_{i} - R_{A}|} + \mathop{\text{a}}_{i,j}^{\circ} \frac{1}{|r_{i} - r_{j}|}$$
(72)

 λ is treated as parameter and it may vary between 0 and 1. The exact solution to the electronic Schrodinger equation, obtained from BO approximation can be reachable for one electron systems.

3.2 Hartree-Fock Force

This force concept arises out of Hartree-Fock energy approximation for multi electronic systems. The Hartree-Fock approximation is a good enough to approximate the energies and wave function. The electronic Hamiltonian and energy based on Hartree-Fock approximation can be written as follows[149].

$$H_e = \mathop{\text{a}}_{i} z(a) + \mathop{\text{a}}_{a < b} h(a, b) + V_{nn}$$
(73)

The first term represents a one electron operator, the second term represents a two electron operator and third term is a constant for the fixed set of nuclear coordinates

$$E_{hf} = \mathop{\mathbf{a}}_{a} \left\langle a \left| z \right| b \right\rangle + \frac{1}{2} \mathop{\mathbf{a}}_{ab}^{a} \left([aa \mid bb] - [ab \mid ba] \right)$$
(74)

Where the first term represents one electron integral, the second term represents two electron Coulomb integral, the third term represents exchange integral. All the integrals can be computed by existing computer algorithms. The energy difference between non relativistic energy of the system and Hartree-Fock limit energy is considered as both static and dynamic electronic correlation energy. The derivative (- $\P H_e / \P V$) of electronic Hamiltonian operator w.r.t. distance of nucleus of an atom from electron can also be defined in quantum mechanics. Furthermore, within simple Born-Oppenheimer approximation and Hartree-Fock approximation, Energy (E) plays the role of potential energy for actual motion. Moreover, $\P E / \P V$ replaces the above derivative and it is equal to the BO force (also Hartree Fock force) because nuclear coordinates are simply treated as external parameters. The term (- $\P H_e / \P V^\circ F$) is the operator which represents the force on atom A due to electrons and other atom B. This force is better to be termed as BO force in the steady state. The electronegativity will be equal to B-O force (also Hartree Fock force)[150].

3.3 Hellman-Feynman Force

The force concept is the consequence of Hellmann Feynman[92], [151]–[153] theorem .The expression for this theorem have already been reported by different authors[153]–[157]. This concept dictates that the actual force on any nucleus can be interpreted in terms of classical electrostatics if three dimensional charge distribution in a system of electrons and nuclei were known from quantum mechanical procedure. The force on a nucleus will be equal to charge on that nucleus times the electric field due to all electrons and other nuclei. R Feynman further

stated that a three dimensional electron cloud in a molecule is restricted from collapsing as it obeys Schrödinger equation. The force concept explains the nature of chemical bonding, the change in molecular shape on excitation and chemical reaction. Energy concept is not proved to be satisfactory always because they lack the simplicity and elegant nature. A.C.Hurley[158]–[161] has given the theoretical justification of the actual use of such electrostatic approach and shown that the force calculations are valid even for approximate wave functions. The Hellmann Feynman force concept have been used (i) by R.F.W.Bader[162]–[166] for interpreting chemical binding, (ii)by Koga T and H.Nakatsuji[167]-[169] for force modelling of molecular geometry,(iii)by P.Politzer and K.C.Daiker[170], [171] for models of Chemical Reactivity, (iv) by A.J.Coleman[172]–[174] for calculation of first and second order reduced density matrices. It also withstands the critical examination of theoretical physists and chemists as well. This force concept has certain advantage over the concept of total energy even though the calculation of force always involves an approximate charge density function. The advantage of calculating charge density is possible through molecular orbital method. The total force on a nucleus is simple sum of orbital contributions but total energy is not sum of orbital energies. The second advantage is that, force is an expectation value of one electron, momentum independent operator. It is more sensitive to any change in wave functions than energy. T Berlin[93] gave clear interpretation of this electrostatic force arising out of Hellmann Feynman theorem. This force is equivalent to infinitesimal change in energy per change in distance (parameter). Classical physics states that, a force is the negative gradient of energy. He proposed a term binding (related force acting on the nucleus) in place of bonding (related to changes in energy) in the picture of chemical bonding. He has proposed the physical partitioning of three dimensional space of electrons of diatomic system into a binding region $(f_i > 1)$, anti-binding region($f_i < 1$) and the nonbinding region($f_i = 1$). The charge density is positive everywhere and thus the sign of contribution to force to the charge in each volume element depends on the sign of f_i. The net value of f_i around 1 helps to assign the electronegativity to the concerned atom in molecule for the diatomic system with $Z_B > Z_A$, the anti-binding region for A is closed while anti-binding region for B in the limit $Z_B >> Z_A$ approaches a plane perpendicular to inter nuclear axis. The idea of closing of anti binding region is used to justify to assign more electronegativity value to B. Hellmann Feynman force equation can be written in various forms[92], [148], [175]. See eq. 76-86 for reference.

Hellman-Feynman force for steady state and non- steady state,

 $F_V = - \P E / \P V \tag{75}$

 $F_{V} = - \P E / \P V \tag{7}$

where average energy $\overline{E} = \stackrel{`}{O} y H y * dv$ (77)

Generalized form of Hellman Feynman force is represented as,

$$F_{V} = F_{V} = - \P E / \P V = - O y y * (\P H_{e} / \P V) dv$$
(78)

Where
$$H_e=T+V$$
, $\frac{\P H_e}{\P V} = \frac{\P V}{\P V}$ and $\grave{O} y^* y \overset{\mathfrak{gen}}{\P V \overline{\mathfrak{G}}} \frac{V \ddot{O}}{\P V \overline{\mathfrak{G}}} v$; $\grave{O} y^* y V dv$ (79)

$$F(R_{A}) = -\frac{\P E}{\P V_{A}} = - \mathring{a}_{B,A} \frac{Z_{A}Z_{B}}{|R_{B} - R_{A}|^{2}} + \grave{O} \frac{Z_{A}}{|r_{i} - R_{A}|^{2}} r(r)dr$$
(80)

Where the first term is independent of the electronic coordinates and is constant during integration over the coordinates. This term gives ordinary columbic force of repulsion between the nuclei. The second term represents charge density distribution due to ith electron.

$$F(R_{A}) = -\frac{\P E}{\P V_{A}} = -2l \, \mathop{\text{a}}_{B,A} \frac{Z_{A}Z_{B}}{|R_{B} - R_{A}|} + \mathop{\text{a}}_{A} Z_{A} \grave{O} \frac{r(r,l)}{|r_{i} - R_{A}|} dr$$
(81)

Where the λ is a parameter which solves two problems. Firstly, it helps to apply simultaneously to all nuclei. Secondly it is a continuous function between 0 and 1 so that differentiation of energy w.r.t. nuclear coordinates is made possible.

The other form of Hellmann-Feynman force equation can be written as

$$F(R_A) = \frac{Z_A}{R_A^2} \stackrel{\acute{e}}{\underset{i}{\otimes}} B_B - \stackrel{\circ}{a}_i f_i(R_A) \stackrel{\acute{v}}{\underset{i}{\otimes}} f_i(R_A) \stackrel{\acute{v}}{\underset{i}{\leqslant}} f_i(R_A) \stackrel{\acute{v}}{\underset{i}{\leqslant}} f_i(R_A) \stackrel{\acute{v}}{\underset{i}{\ast}} f_i(R_A) \stackrel{\acute$$

In the above force equation, the electronic contribution to the force on either nucleus can be written as

$$F(R_A) = F(R_B) = \frac{1}{2} [F(R_A) + F(R_B)] = -\frac{1}{2} \grave{O} f(r) r(r) dr$$
(83)

The term f(r) is called berlin quantity[176]. And also the electronic contribution $F(R_A)$ in terms of the quantum mechanical average of the electric field operator is also mathematically represented as,

$$F(R_A) = Z_A \stackrel{``}{O} dr...\stackrel{``}{O} y \stackrel{* \stackrel{e}{\otimes} n}{\underset{\mathcal{E}_{i=1}}{\overset{``}{\otimes}}} \tilde{N}_A (|r_i - R_A|) \stackrel{``\stackrel{``}{\otimes} dr_n}{\underset{\mathfrak{E}_{i=1}}{\overset{``}{\otimes}}} dr_n$$
(84)

The equivalence of the electron in the above equation is equivalent to n times the average force exerted on an atom by one electron so the above equation can be written in the form of electronic charge density.

$$F(R_A) = Z_A \grave{O} \tilde{N}_A (|r - R_A|)^{-1} r(r) dr$$
(85)

where

$$r(r) = n \grave{o} ds_1 \grave{o} dx_2 \dots \grave{o} y_{(x_1, x_2, \dots, x_n)} y_{(x_1, x_2, \dots, x_n)} dx_n$$
(86)

Where $\rho(r)$ denotes electronic charge density in a stationary state, $\rho(r)$ dr stands for amount of electronic charge in a volume element dv and x_i denotes the product of space co-ordinate (r_i) and spin co-ordinate (s_i) of the ith electron. The interpretation of $\rho(r)$ as a physical model of the electrons in line with the HF theorem includes the possibility of ascribing a value to the electrostatic force exerted at atom A by each and every element $\rho(r)$ dr.

3.4 Ehrenfest Force:: The Ehrenfest force theorem, a primal force theorem involves fluxes of corresponding current density through the surface bounding the system whether this be a surface of zero-flux for an atom in a molecule or the surface bounding an infinitesimal volume element, the properties of which are described in the local form of the theorem. The atomic statement forn Ehrenfest force is given as,

where $\nabla \hat{V}$ is the gradient with respect to coordinates of electron located at r of total potential energy operator \hat{V} which speaks of all interactions within the system and $-\nabla \hat{V}$ is the **force exerted on the electron at position r** by all of remaining electrons and nuclei in the system. And also the net force exerted on the electron density distribution r(r) in a molecule at point r, i.e. the sum of the attraction forces by all the nuclei and repulsion forces by the average electron density, is the Ehrenfest force.

4. Equation and Computation for Electronegativity

Electronegativity = Hellmann-Feynman Force = Ehrenfest Force

$$= F(R_A) = \frac{Z_A}{R_A^2} \overset{\acute{e}}{\underset{a}{\xi}} B_B - \overset{\acute{e}}{\underset{a}{\delta}} f_i(R_A) \overset{\acute{l}}{\underset{b}{\xi}} = F(r,t) = N \int dr' \psi * < -\nabla V' > \psi \dots 90^{**}$$

The Hellmann Feynman electrostatic force leads two opposing terms, one from nuclear nuclear repulsions and other from electron nuclear attractions. The electron-nuclear attractive force is expressed in terms of three dimensional electron density. This force can be termed as charge equivalent force. This follows from the energy approximations postulated by Born Oppenheimer for di atomic system and Hartree Fock for poly atomic systems. This is true as, the fast motion of electron allows electronic wave function and probability density for immediate adjustment to changes in nuclear configuration. The fast motion of electron causes the sluggish nuclei to see electrons as charge cloud rather than discrete particles. This fact affirms the force as electrostatic by nature thereby ruling out the possibility of mysterious quantum mechanical force in mono atomic, di atomic as well as poly atomic systems.

Electronegativity of an atom (A) in a molecule AB may be defined as Hellmann Feynman force. This is also equivalent to Hartree Fock force in steady and non-steady states. In steady state, r(r) may be interpreted as a number or charge density and r(r)dr as amount of electronic charge in the volume element. Based on above explanation, Electronegativity=Hellmann-Feynman Force=Hartree-Fock Force.

$$c = F_{VA} = -\frac{\P E}{\P V_A} \tag{91}$$

Based on the BO approximation

$$F_{VA} = -\frac{\P E}{\P V_A} = -\mathring{a}_{B,A} \frac{Z_A Z_B}{|R_B - R_A|^2} + \grave{O} \frac{Z_A}{|r_i - R_A|^2} r(r) dr$$
(92)

Based on the basis of Hartree-Fock approximation

$$F_{VA} = -\frac{\P E}{\P V_A} = -2l \, \mathop{a}\limits_{B,A} \frac{Z_A Z_B}{|R_B - R_A|} + \mathop{a}\limits_{A} Z_A \mathop{O} \frac{r(r,l)}{|r_i - R_A|} dr$$
(93)

First terms in eq. 90 and 91 represent classical nuclear contribution. Second terms in eq. 90 and 91 above represent electronic contribution.

χ

The Hartree Fock energy for most of the elements of the periodic table have been used for computation of electronegativity in terms of energy gradient in au/picometer unit.

(i)
$$c_{e-slater} = \frac{E_{hf}}{r_{slater}}$$
 (94)

$$ii) c_{e-clementi} = \frac{E_{hf}}{r_{clementi}} (95)$$

(iii)
$$c_{e-absolute} = \frac{E_{hf}}{r_{absolute}}$$
 (96)

The computational equations for electronegativity is also considered in terms Coulomb force.

(iv)
$$c_{f-slater} = \frac{Z_{slater}^{*}}{r_{slater}^{2}}$$
, 1000 (97)
(v) $c_{f-clementi} = \frac{Z_{clementi}^{*}}{r_{clementi}^{2}}$, 1000 (98)
(vi) $c_{f-absolute} = \frac{Z_{clementi}^{*}}{r_{absolute}^{2}}$, 1000 (99)
For reference, 1 au of force $= \underbrace{\bigotimes_{a_{0}}^{e} e_{a_{0}}^{\circ}}{\underbrace{\bigotimes_{a_{0}}^{2}}}$

In eq. 95-97, 1000 is multiplied to make the data more convincible . Electronegativity values based on force from Hydrogen to Lawrencium have been computed through the above equations and are mentioned in table 1 and 2. In case of unavailability of data the spaces are '*' marked. The necessary data for Hartree-Fock Energy[177], Z* Slater effective nuclear charge[178], Z* Clementi effective nuclear charge[179], [180], Empirical Slater Radius[181], Absolute Radius[182] and calculated Clementi Radius[179], [180] and are taken from cited references.

Table 1. Electronegativity in terms of Hellmann-Feynman Force

Ele men t Sym bol	$E_{h\!f}$ (au)	r _{clema} (p m)	enti <i>F_{absolute}</i> (pm)	e C _{e-slater}	C _{e- clementi}	C _{e- absolute}
DOI)				

2019 JET	IR May	/ 2019, Volume	www.jetir.org (ISSN-2349-5162)						
	Н	0.49994557		53	52.92	0.019998	0.009433	0.009447195	
He	2.861	5115334 31.1		31.13 0.023843 0.0		0.092295	95 0.091909841		
	Li	7.43271968	145	167	162.83	0.05126	0.044507	0.045647115	
	Be	14.5729681	105	112	108.55	0.13879	0.130116	0.134251203	
	В	24.4144654	85	87	81.41	0.287229	0.280626	0.299895165	
	С	37.5310547	70	67	65.13	0.536158	0.560165	0.576248345	
	Ν	54.4042654	65	56	54.28	0.836989	0.971505	1.00228934	
	0	74.6191049	60	48	46.52	1.243652	1.554565	1.604022031	
	F	99.1639672	50	42	40.71	1.983279	2.361047	2.435862619	
	Ne	128.546472	160	38	36.71	0.803415	3.382802	3.50167453	
	Na	161.8586	180	190	216.5	0.899214	0.851887	0.747614781	
	Mg	199.614215	150	145	167.11	1.330761	1.37665	1.194507899	
	Al	241.802199	125 🇨	118	136.08	1.934418	2.049171	1.776912103	
	Si	288.757442	110	111	114.77	2.625068	2.601418	2.515966211	
	Ρ	340.718822	100	98	99.22	3.407188	3.476723	3.433973211	
	S	397.384664	100	88	87.39	3.973847	4.515735	4.547255567	
	Cl	459.338687	100	79	78.08	4.593387	5.814414	5.882923758	
	Ar	526.816781	71	71	70.56	7.419955	7.419955	7.466224221	
	К	599.164348	220	243	329.3	2.723474	2.465697	1.819509104	
	Са	676.757668	180	194	2 <mark>54.1</mark> 9	3.759765	3.488442	2.662408702	
	Sc	759.553865	160	184	241.49	4.747212	4.12801	3.145280819	
	Ti	848.05445	140	176	329.98	6.057532	4.818491	2.570017728	
	V	942.482641	135	171	219.53	6.981353	5.511594	4.293183806	
	Cr	1043.35589	140	166	210	7.452542	6.285276	4.968361381	
	Mn	1149.86888	140	161	201.24	8.213349	7.142043	5.713918108	
	Fe	1262.18252	140	156	193.19	9.015589	8.090914	6.533373984	
	Со	1380.93099	135	152	185.75	10.22912	9.085072	7.434352571	
	Ni	1506.33054	135	149	178.88	11.158	10.1096	8.420899709	
	Cu	1638.96277	135	145	172.5	12.14046	11.30319	9.501233449	
	Zn	1777.84664	135	142	166.54	13.16923	12.52005	10.67519299	
	Ga	1923.18595	130	136	144.89	14.79374	14.14107	13.27342087	
	Ge	2075.26686	125	125	128.23	16.60213	16.60213	16.18394182	
	As	2234.23911	115	114	114.5	19.42817	19.59859	19.51300533	

www.jetir.org (ISSN-2349-5162)

R	May	/ 2019, Volume	6, Issue	5			www.jet	tir.org (ISSN-2349-51
	Se	2399.75947	115	103	104.24	20.86747	23.29864	23.02148379
	Br	2572.31642	115	94	95.32	22.36797	27.36507	26.98611435
	Kr	2752.05419	*	88	87.82	*	31.27334	31.33744238
	Rb	2938.35681	235	265	384.87	12.50365	11.08814	7.634673552
	Sr	3131.545	200	219	297.09	15.65773	14.29929	10.5407284
	Y	3331.55545	180	212	282.44	18.50864	15.71488	11.7956219
	Zr	3538.75135	155	206	268.8	22.83065	17.1784	13.16499758
	Nb	3753.43518	145	198	256.58	25.88576	18.95674	14.62871299
	Мо	3975.55206	145	190	254.43	27.4176	20.92396	15.62532744
	Тс	4204.79397	135	183	235.2	31.14662	22.97702	17.87752538
	Ru	4441.23215	130	178	225.79	34.16332	24.95074	19.66974689
	Rh	4685.53924	135	173	217.11	34.7077	27.08404	21.58140684
	Pd	4937.9198	140 🌒	169	209.07	35.27086	29.21846	23.61850002
	Ag	5197.69786	160	165	201.6	32.48561	31.5012	25.78223145
	Cd	5465.1321	155	161	194.65	35.25892	33.94492	28.07671256
	In	5740.10075	155	156	169.34	37.03291	36.79552	33.89689825
	Sn	6022.84999	145	145	149.86	41.5369	41.5369	40.18984379
	Sb	6313.48607	145	133	134.4	43.54128	47.46982	46.97534278
	Те	6611.69122	140	123	<mark>121.83</mark>	47.22637	53.75359	54.2698122
	I	6917.8755	140	115	1 <mark>11.</mark> 41	49.4134	60.15544	62.09384705
	Xe	7232.13748	*	108	102.63	*	66.96424	70.4680647
	Cs	7553.93311	260	298	424.33	29.05359	25.34877	17.80202463
	Ва	7883.54325	215	253	327.53	36.66764	31.16025	24.06968293
	La	8220.95071	195	195	266.73	42.15872	42.15872	30.82124512
	Ce	8566.37167	185	158	224.94	46.30471	54.21754	38.08291842
	Pr	8920.39371	185	247	194.47	48.21834	36.11495	45.87028184
	Nd	9283.0449	185	206	171.29	50.17862	45.06332	54.1949028
	Pm	9654.39094	185	205	153.03	52.1859	47.09459	63.08822414
	Sm	10034.5278	185	238	138.3	54.24069	42.16188	72.55623861
	Eu	10423.5496	185	231	126.15	56.34351	45.12359	82.6282172
	Gd	10820.5365	180	233	115.96	60.11409	46.44007	93.31266385
	Tb	11225.8464	175	225	107.3	64.14769	49.89265	104.6211221
	Dy	11640.486	175	228	99.84	66.51706	51.05476	116.5914063

ПБ	к Мау	y 2019, Volume	6, Issue	5			www.je	tir.org (ISSN-2349-5162
	Но	12064.2689	175	226	93.35	68.93868	53.38172	129.2369459
	Er	12497.2944	175	226	87.65	71.41311	55.29776	142.5817958
	Tm	12939.6584	175	222	82.61	73.94091	58.28675	156.6354969
	Yb	13391.4548	175	222	78.12	76.5226	60.32187	171.4215924
	Lu	13851.6806	175	217	74.09	79.15246	63.83263	186.9574922
	Hf	14321.0157	155	208	70.56	92.39365	68.85104	202.9622406
	Та	14799.5544	145	200	67.16	102.0659	73.99777	220.3626325
	W	15287.3729	135	193	64.16	113.2398	79.20919	238.2695277
	Re	15784.5427	135	188	61.41	116.9225	83.96033	257.0353802
	Os	16290.4713	130	185	58.9	125.3113	88.0566	276.5784601
	Ir	16805.8003	135	180	56.57	124.4874	93.36556	297.0797295
	Pt	17330.8587	135	177	54.43	128.3767	97.91446	318.4063696
	Au	17865.3992	135 🎈	174	52.44	132.3363	102.6747	340.6826697
	Hg	18408.9902	150	171	50.6	122.7266	107.6549	363.8140356
	ΤI	18961.7587	190	156	186.7	99.79873	121.5497	101.562714
	Pb	19523.9305	180	154	165.23	108.4663	126.7788	118.1621407
	Bi	20095.5875	160	143	148.18	125.5974	140.5286	135.6160582
	Ро	20676.4142	190	135	<mark>134.3</mark> 1	108.8232	153.1586	153.945456
	At	21266.7841	*	127	122.83	*	167.455	173.1399829
	Rn	21866.7713	*	120	1 <mark>31</mark> .15	*	182.2231	166.731005
	Fr	22475.8581	*	*	444.79	*	*	50.53139257
	Ra	23094.303	215	*	343.32	107.4154	*	67.26757253
	Ac	23722.0873	195	*	326.15	121.6517	*	72.73367254
	Th	24359.4372	180	*	310.61	135.3302	*	78.42451048
	Ра	25006.5117	180	*	227.56	138.9251	*	109.8897508
	U	25663.5826	175	*	197.67	146.649	*	129.8304376
	Np	26330.6626	175	*	174.73	150.4609	*	150.6934276
	Pu	27008.4196	175	*	144.96	154.3338	*	186.3163604
	Am	27695.8997	175	*	129.15	158.2623	*	214.4475393
	Cm	28392.6577	*	*	129.6	*	*	219.0791489
	Bk	29099.5106	*	*	112.47	*	*	258.7313115
	Cf	29816.6874	*	*	104.65	*	*	284.9181787
	Es	30544.2078	*	*	97.85	*	*	312.1533756

© 2019 JETIR	May 2019, Volume		www.jetir.org (ISSN-2349-5162)				
	Fm 31282.1408	*	*	91.88	*	*	340.4673574
	Md 32030.5533	*	*	86.59	*	*	369.9105359
	No 32789.5111	*	*	81.88	*	*	400.4581229
	Lr 33557.611	*	*	80.86	*	*	415.008793

Ele men	r _{sla}	ter	r _{clementi}	<i>r</i> _{absloute}	7*	7*	2			H 25 52.92 1	53 1
t Sym bol	p m			p m	Z [*] _{slater}	$Z_{clementi}^{*}$	C f- slater	C _{f-} clementi	$C_{f-absloute}$	1.6	
					0.3	3559985	76 0.3570757	27			
	He	120	31	31.13	1.7	1.688	0.118055556	1.756503642	1.7418638	29	
	Li	145	167	162.83	1.3	1.279	0.061831153	0.045860375	0.0482393	78	
	Ве	105	112	108.55	1.95	1.912	0.176870748	0.152423469	0.1622662	62	
	В	85	87	81.41	2.6	2.421	0.359861592	0.319857313	0.3652912	59	
	С	70	67	65.13	3.25	3.136	0.663265306	0.698596569	0.7392884	1	
	Ν	65	56	54.28	3.9	3.834	0.923076923	1.222576531	1.3012850	21	
	0	60	48	46.52	4.55	<mark>4.453</mark>	1.263888889	1.932725694	2.0576584	26	
	F	50	42	40.71	5.2	5.1	2.08	2.891156463	3.0772867	82	
	Ne	160	38	36.71	57.48	5.758	2.2453125	3.987534626	4.2727048	29	
	Na	180	190	216.5	2.2	2.507	0.067901235	0.069445983	0.0534858	05	
	Mg	150	145	167.11	2.85	3.308	0.1266666667	0.157336504	0.1184569	71	
	AI	125	118	136.08	3.5	8.963	0.224	0.643708704	0.4840216	58	
	Si	110	111	114.77	4.15	4.117	0.342975207	0.334144956	0.3125533	11	
	Ρ	100	98	99.22	4.8	4.903	0.48	0.510516451	0.4980391	09	
	S	100	88	87.39	5.45	5.642	0.545	0.72856405	0.7387705	99	
	Cl	100	79	78.08	6.1	6.367	0.61	1.020189072	1.0443720)5	
	Ar	71	71	70.56	6.75	7.068	1.339020036	1.402102757	1.4196438	21	
	К	220	243	329.3	2.2	3.495	0.045454545	0.059188132	0.0322302	53	
	Са	180	194	254.19	2.85	4.398	0.087962963	0.116856202	0.0680672	65	
	Sc	160	184	241.49	3	4.632	0.1171875	0.136814745	0.0794273	82	

JETIR May	/ 2019, \	Volume	6, Issue	5			www.je	tir.org (ISSN-2349-5162)
Ti	140	176	329.98	3.15	4.871	0.160714286	0.157250775	0.044734531
V	135	171	219.53	3.3	4.981	0.181069959	0.170343012	0.103354356
Cr	140	166	210	3.45	5.133	0.176020408	0.186275221	0.116394558
Mn	140	161	201.24	3.6	5.283	0.183673469	0.203811581	0.130452376
Fe	140	156	193.19	3.75	5.434	0.191326531	0.223290598	0.145596304
Со	135	152	185.75	3.9	5.576	0.21399177	0.24134349	0.161608843
Ni	135	149	178.88	4.05	5.716	0.222222222	0.25746588	0.178635861
Cu	135	145	172.5	4.2	5.842	0.230452675	0.277859691	0.196328502
Zn	135	142	166.54	4.35	5.965	0.238683128	0.295824241	0.215066777
Ga	130	136	144.89	5	6.222	0.295857988	0.336397059	0.296382926
Ge	125	125	128.23	5.65	6.78	0.3616	0.43392	0.412335198
As	115	114	114.5	6.3	7.499	0.47637051	0.5770237	0.571995195
Se	115	103	104.24	6.95	8.2867	0.525519849	0.781100952	0.762628114
Br	115	94	95.32	7.6	9.028	0.574669187	1.021729289	0.993627226
Kr	*	88	87.82	8.25	9.338	*	1.205836777	1.210784922
Rb	235	265	384.87	2.2	4.985	0.03983703	0.070986116	0.033654027
Sr	200	219	297.09	2.85	6.071	0.07125	0.126582015	0.068783483
Y	180	212	282.44	3	6.256	0.092592593	0.139195443	0.078423159
Zr	155	206	268.8	3.15	<mark>6.446</mark>	0.131113424	0.151899331	0.089213745
Nb	145	198	256.58	3.3	5.921	0.156956005	0.151030507	0.089939291
Мо	145	190	254.43	3.45	6.106	0.164090369	0.169141274	0.094323556
Тс	135	183	235.2	3.6	7.227	0.197530864	0.215802204	0.13064218
Ru	130	178	225.79	3.75	6.485	0.221893491	0.20467744	0.127203943
Rh	135	173	217.11	3.9	6.64	0.21399177	0.221858398	0.140866727
Pd	140	169	209.07	4.05	6.766	0.206632653	0.236896467	0.154792015
Ag	160	165	201.6	4.2	6.756	0.1640625	0.24815427	0.166229686
Cd	155	161	194.65	4.35	8.192	0.181061394	0.31603719	0.216212664
In	155	156	169.34	5	8.413	0.208116545	0.345701841	0.29338086
Sn	145	145	149.86	5.65	10.629	0.268727705	0.505541023	0.473283049
Sb	145	133	134.4	6.3	11.617	0.299643282	0.656735825	0.643125089
Те	140	123	121.83	6.95	12.538	0.354591837	0.828739507	0.844733616
I	140	115	111.41	7.6	11.612	0.387755102	0.878034026	0.935532068
Xe	*	108	102.63	8.25	12.425	*	1.065243484	1.179635244

JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-51										
Cs	260	298	424.33	2.2	2.2	0.032544379	0.024773659	0.012218424		
Ва	215	253	327.53	2.85	2.85	0.061654949	0.044524989	0.026567011		
La	195	195	266.73	3.5	3.5	0.092044707	0.092044707	0.049195379		
Ce	185	158	224.94	4.15	4.15	0.121256392	0.166239385	0.082019046		
Pr	185	247	194.47	4.8	4.8	0.140248356	0.078676917	0.126921738		
Nd	185	206	171.29	5.45	5.45	0.159240321	0.128428693	0.185751566		
Pm	185	205	153.03	6.1	6.1	0.178232286	0.145151695	0.260481377		
Sm	185	238	138.3	6.75	6.75	0.197224251	0.119165313	0.352906301		
Eu	185	231	126.15	7.4	7.4	0.216216216	0.138678061	0.465004558		
Gd	180	233	115.96	8.05	8.05	0.24845679	0.148280499	0.598658933		
Tb	175	225	107.3	8.7	8.7	0.284081633	0.171851852	0.755648472		
Dy	175	228	99.84	9.35	9.35	0.305306122	0.179863035	0.937999196		
Но	175	226	93.35	10	10	0.326530612	0.195786671	1.147549308		
Er	175	226	87.65	10.65	10.65	0.347755102	0.208512804	1.386263431		
Tm	175	222	82.61	11.3	11.3	0.368979592	0.229283337	1.655820287		
Yb	175	222	78.12	11.95	11.95	0.390204082	0.242472202	1.958138634		
Lu	175	217	74.09	12.6	12.6	0.411428571	0.267578415	2.295362888		
Hf	155	208	70.56	13. <mark>25</mark>	12.6	0.551508845	0.291235207	2.530774214		
Та	145	200	67.16	13.9	13.25	0.661117717	0.33125	2.937612472		
W	135	193	64.16	14.55	1 <mark>3.9</mark>	0.798353909	0.37316438	3.376650332		
Re	135	188	61.41	15.2	14.55	0.834019204	0.411668176	3.85820055		
Os	130	185	58.9	15.85	15.2	0.937869822	0.444119795	4.381400953		
Ir	135	180	56.57	16.5	15.85	0.905349794	0.489197531	4.952869772		
Pt	135	177	54.43	17.15	16.5	0.941015089	0.526668582	5.569385446		
Au	135	174	52.44	17.8	17.15	0.976680384	0.566455278	6.236468863		
Hg	150	171	50.6	18.45	17.8	0.82	0.608734311	6.952147354		
TI	190	156	186.7	5	18.45	0.138504155	0.758136095	0.529307118		
Pb	180	154	165.23	5.65	5	0.174382716	0.210828133	0.183143791		
Bi	160	143	148.18	6.3	5.65	0.24609375	0.276297129	0.257317467		
Ро	190	135	134.31	6.95	6.75	0.192520776	0.37037037	0.374185604		
At	*	127	122.83	7.6	7.6	*	0.471200942	0.503737971		
Rn	*	120	131.15	8.25	8.25	*	0.572916667	0.47964217		
Fr	*	*	444.79	2.2	2.2	*	*	0.011120201		

R May	2019, 1	Volume	6, Issue	5			www.je	tir.org (ISSN-2349-5162)
Ra 2	215	*	343.32	2.85	2.85	0.061654949	*	0.024179463
Ac 1	195	*	326.15	3	3	0.078895464	*	0.028202427
Th 1	180	*	310.61	3.15	3.15	0.097222222	*	0.032649737
Pa 1	180	*	227.56	4.3	4.3	0.132716049	*	0.083037947
U 1	175	*	197.67	4.95	4.95	0.161632653	*	0.126684556
Np 1	175	*	174.73	5.6	5.6	0.182857143	*	0.183422696
Pu 1	175	*	144.96	6.75	5.6	0.220408163	*	0.266496596
Am 1	175	*	129.15	7.4	7.4	0.241632653	*	0.443652465
Cm *	*	*	129.6	7.55	7.55	*	*	0.449507506
Bk *	*	*	112.47	8.7	8.51	*	*	0.672753816
Cf *	*	*	104.65	9.35	9.35	*	*	0.853754775
Es	*	*	97.85	10	10	*	*	1.0444276
Fm *	*	*	91.88	10.65	10.65	*	*	1.261559199
Md *	*	*	86.59	11.3	11.3	*	*	1.507103104
No *	*	*	81.88	11.95	11.95	*	*	1.782428991
Lr	*	*	80.86	12.1	12.1	*	*	1.850622

Conclusion It is argued as to which Electronegativity-model is best approximation because no benchmark for this intuitive concept has been set up till date. Furthermore, the confusion as to what physical picture corresponds Electronegativity and even if non-agreement of proposed units such as Energy, Force and Potential. Numerical values of quantities with different units in computation are not comparable because they are conceptually different. No effort is made to compare the computed values of electronegativity with those of other scales. The computed electronegativity values reproduce the periodicity and also increase monotonically right from representative element to noble gas with maximum value. The exact status of electronegativity might be attributed as triangular concept of force, energy and charge. The attempt to measure electronegativity needs reification of this concept for which mathematical formulation is required. Till today, there exists no unique mathematical formulation of this reified noumenon for which there exists scope of many scales of measurement. The new attempt to define electronegativity is characterized by specific physical meaning and reliable theoretical basis since it is derived from two famous mathematical formulation i.e Hellmann Feynman theorem and Born Oppenheimer (in turn conventional Hartree Fock) approximation. This definition will be acting like a bridge in between two parallel definitions of electronegativity (either in energy or force). It will be logical to consider electronegativity

equalization in a diatomic as well as polyatomic system. This new approach will be helpful to assign the more accurate electronegativity values to various elements of the periodic table and also more valuable in different areas of chemical science for example to predict the structure and property of materials. This will also help design new electrode materials efficiently, electrocatalysts with novel properties for energy conversion devices like Fuel cell, Solar cell etc.

Acknowledgement

•

The author acknowledges the financial support of Department of Science and Technology, Government of India for pursuing Doctoral program.

Nomenclature	
a, b -	Valence cell occupation number
	Bohr radius in pico meter
$a', a'_x, a'_y, a'_w, a'_z$	Normal group electronegativity
$b', b'_x, b'_y, b'_w, b'_z$ -	Charge transfer coefficient
A, B, X -	Atoms symbol
B_i	- Spectroscopic Parameter
C -	Mean Value C _{ji}
dn -	Quantum defect
dq -	Infinitesimal electronic charge under transfer from A to B
$D_{E\parallel A_2}, D_{E\parallel B_2}, D_{E\parallel AB}$	- Bond dissociation energy
е -	Charge of one electron
eV -	Electron volt
E , $E_{\scriptscriptstyle A}, E_{\scriptscriptstyle B}$	- Energy
- <i>Ē</i>	Average energy
E_0	- Eigen Energy
<i>E</i> _{<i>e</i>} -	Electronic energy
E_{g0}	- Energy gap
$E_{h\!f}$	- Hartree Fork Energy
E_{total}	- Total Energy
E[r]	- Energy functional of electron density

$E_{v}[r']$ -	Energy functional of approximated electron density
EA , EA_A , EA_B , EA_k , EA_V	- Electron Affinity (in eV or kcal/mol)
E_{g0}	- Energy gap
E_j^A	- One electron energy of orbital j
$f_{\scriptscriptstyle AB}$	- Orbital multiplier
f_i -	Atomic force or overlap force or Screening force
$f_i(R_A)$	- Atomic force or overlap force or Screening force at R_A
$F(R_A), F(R_B)$	- Force at position of nuclei A and B
f(r) -	Atomic/overlap/screening force at r, berlin quantity
F _	Force
$F_{arsigma}$	- Hellmann-Feynman force
$F_{arsigma'}$	- Hellmann-Feynman force (unsteady state)
	- Hermann-Peynman force (unsteady state)
$F_{\varsigma A}$	- Hellmann-Feynman on atom A
F(r) -	Sum of electronic kinetic energy and electron repulsion energy functional of
density	
h - H	Planck's constant
	- Hamiltonian operator
H _e	- Electronic Hamiltonian
H^{mol}	- Molecular Hamiltonian
H_n	- Nuclear Hamiltonian
$hw_p/2p$ -	Plasma energy
i ^{ionicity}	- Iconicity
Iz -	Ultimate ionization potential for outer electron
IE, IE_v -	Ionization energy
$IP, IP_A, IP_B, IP_k, IP_s, IP_p$	- Ionization potential (in ev or kcal/mol)
IP_Z	- Ultimate ionization potential
j -	Atomic orbital
k -	Orbital multiplier coefficient

k _s	-	Thomas Fermi screening radius for a free electron gas
l	-	Orbital quantum number
Î	-	Orbital quantum defendant parameter
n	-	Principal quantum number
<i>n</i> *		- Effective Principal quantum number
n_{Ae}, n_{Be}	-	Electron transfer number of A, B
n_1, n_2, n_3	-	Atom number
n_A, n_B, n_X	-	No of associated electrons
n_{j}		- Electron occupancy
Ν	-	Net charge
P_{j}	-	Charge density on atomic orbital j on A
q	•	Ionic charge (+1 for cataion, -1 for anion)
${m q}_j$	-	Occupation number of spin orbital j
r	-	Covalent radius, electronic positional coordinate
r _{ionic}		- Ionic radius
r_i, r_n		- Electronic space co-ordinate of electron I and n respectively
<i>r</i> _j		- Electronic space co-ordinate of electron j
r_l		Radius for valence orbital
r_A, r_B		- Atomic distance w.r.t. orbital center
r_{A0}, r_{B0}	-	Thomas Fermi ground state radius
R	-	Inter nuclear separation
R_A, R_B		- Nuclear co-ordinate of A and B
R _E	-	Equilibrium inter nuclear separation between A and B
Ry	-	Rydberg constant
s, p, d		- Atomic orbital
S _i	-	Spin coordinate
Т		- Kinetic energy operator
T_e	-	Kinetic energy Operator(electron)
T_n		- Kinetic energy operator(nucleus)
V	-	Fixed potential

<i>v</i> (1)	- Fixed external applied potential
- V	Coulomb Potential (in eV or kcal/mol)
V_{ee}	- Electron-electron repulsion term
V_{en}	- Electron-nuclear attraction term
V_{nn}	- Nuclear-nuclear repulsion term
(w) -	Electrophilic power index
w, x, y, z -	Group numbers
	Product of space coordinate $r_{\rm i}$ and spin coordinate $s_{\rm i}$ of the ith electron
Z, Z_A, Z_B -	Atomic number or Nuclear Charge
Z*	- Effective nuclear charge
Ζ'	- Screen charge by Gordy's technique
	JEIK /
Greek Letters	
$\langle \alpha \zeta \alpha \rangle$ -	One-electron integral
$egin{array}{lll} \langle lpha lpha ert eta eta angle & - \ \langle lpha eta ert eta eta angle angle & - \ \end{array}$	Two-electron Coulomb integral
$\langle lpha eta eta lpha angle$ -	Exchange integral
a_1, a_2, a_3, a_4 -	Constants
n -	Frequency of photon
<i>g</i> -	Fall-off parameter
<i>g</i> _A -	Electron repulsion integral
d_w, d_x, d_y, d_z	- Partial atomic charge due to gain/loss of one electron
∂t_1 - applied potential	Differential of spin free ground-state electron density and fixed external
<i>q</i> -	Charge transfer coefficient
∂v	- Spatial electronic distribution
	L.
d_{ij} -	Kronecker delta symbol, equal to 1 for same spin and 0 for opposite spin
	-
	Kronecker delta symbol, equal to 1 for same spin and 0 for opposite spin Parameter of value lying between 0 and 1
d _{ij} l	Kronecker delta symbol, equal to 1 for same spin and 0 for opposite spin Parameter of value lying between 0 and 1

z(a)		- One-electron operator
h(a,b)		- Two-electron operator
h	-	Chemical hardness
5,5'		- Explicit Parameters (steady and Perturbation) in Hamiltonian
V_{A}		- Parameter in Hamiltonian for a coordinate of nucleus A
e_0	-	Dielectric constant
у	-	Wave function
У ₀		- Unperturbed wave-state
<i>Y</i> _n		- Nuclear wave function
у е	-	Electronic wave function
y *		- Conjugate wave function
r _A		- Total electron density associated with atom A
r	-	Exact ground-state electron density
r ₀		Unperturbed occupancy
<i>r</i> '		- Approximation to exact ground-state electron density
<i>r</i> (1)		- Spin free ground-state electron density
r(r)		- Radial charge density (always positive)
S	1	Screening constant or slater constant
S _{ij}		- Screening of the electron i by the electron j
m	-	Chemical potential
m_0	-	Ground state chemical potential
m_{dipole}		- dipole moment
$\mu_{\scriptscriptstyle M}$		- Chemical potential (Mulliken)
$\chi, \chi_{\scriptscriptstyle A}, \chi_{\scriptscriptstyle B}$	-	Electronegativity
${\mathcal X}_{Pa} \hspace{0.1 cm} {\mathcal X}^{A}_{Pa} \hspace{0.1 cm}, \hspace{0.1 cm} {\mathcal X}^{B}_{Pa}$		- Pauling's Electronegativity
\mathcal{X}_{M} , \mathcal{X}_{M}^{A} , \mathcal{X}_{M}^{B} , \mathcal{X}_{M}^{k}		- Mulliken electronegativity
C _{LS}		- Lang-Smith electronegativity
C spec		- Spectroscopic electronegativity

C _{OP}	-	Optical electronegativity
C_l^{JB}, C_{Aj}^{JB} -	Orbital	electronegativity for valence orbital
$\mathcal{C}_{G(A)}$	-	Global electronegativity in a molecule
C_g, C_g^A, C_g^B	-	Gordy electronegativity
C _H	-	Huheey electronegativity
C _Z	-	Zhang electronegativity
C _{Putz}	-	Putz electronegativity
C _{ic}	-	Ionocovalency electronegativity

[1] W. B. Jensen, "Electronegativity from Avogadro to Pauling: II. Late Nineteenth- and Early Twentieth-Century Developments," *J. Chem. Educ.*, vol. 80, no. 3, p. 279, Mar. 2003.

[2] J. H. van't Hoff, "Lectures on Theoretical and Physical Chemistry: III. Relations Between Properties and Composition," *London, E. Arnold*, p. 94, 1899.

[3] R. M. Caven and G. D. Lander, "Systematic Inorganic Chemistry from the Standpoint of the Periodic Law," in *A Text-book for Advanced Students*, Blackie & Son, London, 1907, pp. 37–38.

[4] O. Sackur, A Text Book of Thermo-Chemistry and Thermodynamics. This is a translation of the 1912 German edition. Macmillan: London, 1917.

[5] C. A. Coulson, "Bond Lengths in Conjugated Molecules: The Present Position," *Proc. R. Soc. A Math. Phys. Eng. Sci.*, vol. 207, no. 1088, pp. 91–100, Jun. 1951.

[6] K. Fukui, "Role of frontier orbitals in chemical reactions.," *Science*, vol. 218, no. 4574, pp. 747–54, Nov. 1982.

[7] R. T. Myers, "Electronegativity, bond energy, and chemical reactivity," *J. Chem. Educ.*, vol. 56, no. 11, p. 711, Nov. 1979.

[8] R. R. Reddy, T. V. R. Rao, and R. Viswanath, "Correlation between electronegativity differences and bond energies," *J. Am. Chem. Soc.*, vol. 111, no. 8, pp. 2914–2915, Apr. 1989.

[9] H. S. Gutowsky and C. J. Hoffman, "Nuclear Magnetic Shielding in Fluorine and Hydrogen Compounds," J. Chem. Phys., vol. 19, no. 10, pp. 1259–1267, Oct. 1951.

[10] S. Motiejūnas, D. Baltrūnas, V. I. Garasim, and P. M. Starik, "A Correlation between Ligand Electronegativity and the Value of the Mössbauer Isomer Shift of Stannous Chalcogenides," *Phys. status solidi*, vol. 148, no. 2, pp. K161–K164, Aug. 1988.

[11] M. E. Arroyo-de Dompablo, M. Armand, J. M. Tarascon, and U. Amador, "On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni)," *Electrochem. commun.*, vol. 8, no. 8, pp. 1292–1298, Aug. 2006.

[12] L. Komorowski, "Electronegativity through the energy function," *Chem. Phys. Lett.*, vol. 103, no. 3, pp. 201–204, Dec. 1983.

[13] L. Pauling, "THE NATURE OF THE CHEMICAL BOND. IV. THE ENERGY OF SINGLE BONDS AND THE RELATIVE ELECTRONEGATIVITY OF ATOMS," *J. Am. Chem. Soc.*, vol. 54, no. 9, pp. 3570–3582, Sep. 1932.

[14] P. Politzer and J. S. Murray, "Electronegativity—a perspective," J. Mol. Model., vol. 24, no. 8, p.

214, Aug. 2018.

[15] J. Onoda, M. Ondráček, P. Jelínek, and Y. Sugimoto, "Electronegativity determination of individual surface atoms by atomic force microscopy," *Nat. Commun.*, vol. 8, p. 15155, Apr. 2017.

[16] L. Pauling and J. Sherman, "A Quantitative Discussion of Bond Orbitals," *J. Am. Chem. Soc.*, vol. 59, no. 8, pp. 1450–1456, Aug. 1937.

[17] J. Mullay, "Atomic and group electronegativities," *J. Am. Chem. Soc.*, vol. 106, no. 20, pp. 5842–5847, Oct. 1984.

[18] L. Pauling and D. M. Yost, "The Additivity of the Energies of Normal Covalent Bonds.," *Proc. Natl. Acad. Sci. U. S. A.*, vol. 18, no. 6, pp. 414–6, Jun. 1932.

[19] A. L. Allred, "Electronegativity values from thermochemical data," *J. Inorg. Nucl. Chem.*, vol. 17, no. 3–4, pp. 215–221, Jun. 1961.

[20] R. S. Mulliken, "Electronic structures of molecules XII. Electroaffinity and molecular orbitals, polyatomic applications," *J. Chem. Phys.*, vol. 3, no. 9, pp. 586–591, Sep. 1935.

[21] R. G. Pearson, "The Calculation of Ionic Resonance Energies," J. Chem. Phys., vol. 17, no. 10, pp. 969–971, Oct. 1949.

[22] L. Pauling, "Chapter 2," in *The Nature of the Chemical Bond*, Cornell University Press, 1939.

[23] M. Haissinsky, "Scale of Pauling electronegativities and heats of formation of inorganic compounds," *J. Phys. Radium*, vol. 7, no. 1, pp. 7–11, 1946.

[24] M. L. Huggins, "Bond Energies and Polarities ¹," *J. Am. Chem. Soc.*, vol. 75, no. 17, pp. 4123–4126, Sep. 1953.

[25] A. D. Walsh, "The properties of bonds involving carbon," *Discuss. Faraday Soc.*, vol. 2, no. 0, p. 18, Jan. 1947.

[26] R. Ferreira, "Electronegativity and Chemical Bonding," *Adv. Chem. Phys.*, vol. 13, pp. 55–84, Mar. 1967.

[27] R. P. Iczkowski and J. L. Margrave, "Electronegativity," J. Am. Chem. Soc., vol. 83, no. 17, pp. 3547–3551, Sep. 1961.

[28] R. G. Pearson, "Electronegativity Scales," Acc. Chem. Res., vol. 23, no. 1, pp. 1–2, Jan. 1990.

[29] L. C. Allen, "Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms," *J. Am. Chem. Soc.*, vol. 111, no. 25, pp. 9003–9014, Dec. 1989.

[30] L. C. Allen, "Electronegativity scales," Acc. Chem. Res., vol. 23, no. 6, pp. 175–176, Jun. 1990.

[31] J. E. Huheey, "Variable electronegativity," *J. Inorg. Nucl. Chem.*, vol. 27, no. 9, pp. 2127–2129, Sep. 1965.

[32] J. E. Huheey, "Electronegativity, acids, and bases. IV. Concerning the inductive effect of alkyl groups," *J. Org. Chem.*, vol. 36, no. 1, pp. 204–205, Jan. 1971.

[33] R. S. Mulliken, "A new electroaffinity scale; Together with data on valence states and on valence ionization potentials and electron affinities," *J. Chem. Phys.*, vol. 2, no. 11, pp. 782–793, Nov. 1934.

[34] J. Stark, "Die Dissoziierung und Umwandlung chemischer Atome," *Vieweg Braunschweig, Ger.*, pp. 7–8, 1903.

[35] G. Martin, "Researches on the affinities of the elements and on the causes of the chemical similarity or dissimilarity of elements and compounds." J. & A. Churchill, pp. 226–228, 1905.

[36] K. Fajans, "Über eine Beziehung zwischen der Art einer radioaktiven Umwandlung und dem elektrochemischen Verhalten der betreffenden Radioelemente," *Phys. Zeitschrift*, vol. 14, pp. 131–136, 1913.

[37] W. Moffitt, "Term Values in Hybrid States," *Proc. R. Soc. A Math. Phys. Eng. Sci.*, vol. 202, no. 1071, pp. 534–548, Aug. 1950.

[38] J. E. Huheey, E. A. Keiter, R. L. Keiter, and O. K. Medhi, "Electronegativity," in *Inorganic chemistry : principles of structure and reactivity*, 4th ed., Harper Collins college, New York, 1993, p. 182.

[39] G. Klopman, "Electronegativity," J. Chem. Phys., vol. 43, no. 10, pp. S124–S129, Nov. 1965.

[40] H. O. Pritchard and H. A. Skinner, "The Concept Of Electronegativity," *Chem. Rev.*, vol. 55, no. 4, pp. 745–786, Aug. 1955.

[41] R. G. Pearson, "Absolute electronegativity and absolute hardness of Lewis acids and bases," *J. Am. Chem. Soc.*, vol. 107, no. 24, pp. 6801–6806, Nov. 1985.

[42] J. Hinze and H. H. Jaffé, "Electronegativity. I. Orbital Electronegativity of Neutral Atoms," *J. Am. Chem. Soc.*, vol. 84, no. 4, pp. 540–546, Feb. 1962.

[43] J. Hinze, M. A. Whitehead, and H. H. Jaffé, "Electronegativity. II. Bond and Orbital Electronegativities," *J. Am. Chem. Soc.*, vol. 85, no. 2, pp. 148–154, Jan. 1963.

[44] R. S. Mulliken and R. S., "Quelques aspects de la théorie des orbitales moléculaires," *J. Chim. Phys.*, vol. 46, pp. 497–542, Jun. 1949.

[45] P. F. Lang and B. C. Smith, "An equation to calculate internuclear distances of covalent, ionic and metallic lattices," *Phys. Chem. Chem. Phys.*, vol. 17, no. 5, pp. 3355–3369, Jan. 2015.

[46] P. F. Lang and B. C. Smith, "Electronegativity effects and single covalent bond lengths of molecules in the gas phase," *Dalt. Trans.*, vol. 43, no. 21, pp. 8016–8025, May 2014.

[47] C. Klixbüll Jørgensen, "Electron Transfer Spectra," *Prog. Inorg. Chem.*, pp. 101–158, Mar. 1970.

[48] J. C. Slater and K. H. Johnson, "Self-consistent-field Xα cluster method for polyatomic molecules and solids," *Phys. Rev. B*, vol. 5, no. 3, pp. 844–853, Feb. 1972.

[49] J. C. Slater and J. C. Phillips, "Quantum Theory of Molecules and Solids Vol. 4: The Self-Consistent Field for Molecules and Solids," *Phys. Today*, vol. 27, no. 12, p. 49, Dec. 1974.

[50] G. Simons, M. E. Zandler, and E. R. Talaty, "Nonempirical electronegativity scale," *J. Am. Chem. Soc.*, vol. 98, no. 24, pp. 7869–7870, Nov. 1976.

[51] J. John and A. N. Bloch, "Quantum-Defect Electronegativity Scale for Nontransition Elements," *Phys. Rev. Lett.*, vol. 33, no. 18, pp. 1095–1098, Oct. 1974.

[52] G. Simons, "New Model Potential for Pseudopotential Calculations," *J. Chem. Phys.*, vol. 55, no. 2, pp. 756–761, Jul. 1971.

[53] W. Gordy, "A New Method of Determining Electronegativity from Other Atomic Properties," *Phys. Rev.*, vol. 69, no. 11–12, pp. 604–607, Jun. 1946.

[54] D. C. Ghosh, "A new scale of electronegativity based on absolute radii of atoms," *J. Theor. Comput. Chem.*, vol. 04, no. 01, pp. 21–33, Mar. 2005.

[55] B. Fricke, "On the correlation between electric polarizabilities and the ionization potential of atoms," *J. Chem. Phys.*, vol. 84, no. 2, pp. 862–866, Jan. 1986.

[56] J. K. Nagle, "Atomic polarizability and electronegativity," J. Am. Chem. Soc., vol. 112, no. 12, pp. 4741–4747, Jun. 1990.

[57] I. K. Dmitrieva and G. I. Plindov, "Dipole Polarizability, Radius and Ionization Potential for Atomic Systems," *Phys. Scr.*, vol. 27, no. 6, pp. 402–406, Jun. 1983.

[58] J. E. Huheey, "The Electronegativity of Groups," *J. Phys. Chem.*, vol. 69, no. 10, pp. 3284–3291, Oct. 1965.

[59] J. E. Huheey, "The Electronegativity of Multiply Bonded Groups," *J. Phys. Chem.*, vol. 70, no. 7, pp. 2086–2092, Jul. 1966.

[60] G. Klopman, "A Semiempirical Treatment of Molecular Structures. I. Electronegativity and Atomic Terms," *J. Am. Chem. Soc.*, vol. 86, no. 8, pp. 1463–1469, Apr. 1964.

[61] G. Klopman, "A Semiempirical Treatment of molecular Structures. II. Molecular Terms and Application to diatomic Molecules," *J. Am. Chem. Soc.*, vol. 86, no. 21, pp. 4550–4557, Nov. 1964.

[62] R. Ponec, "Generalization of electronegativity concept," *Theor. Chim. Acta*, vol. 59, no. 6, pp. 629–637, 1981.

[63] R. G. Parr, R. A. Donnelly, M. Levy, and W. E. Palke, "Electronegativity: The density functional viewpoint," *J. Chem. Phys.*, vol. 68, no. 8, pp. 3801–3807, Apr. 1978.

[64] R. G. Parr and L. J. Bartolotti, "On the geometric mean principle for electronegativity equalization," *J. Am. Chem. Soc.*, vol. 104, no. 14, pp. 3801–3803, Jul. 1982.

[65] R. G. Parr and R. G. Pearson, "Absolute hardness: companion parameter to absolute electronegativity," *J. Am. Chem. Soc.*, vol. 105, no. 26, pp. 7512–7516, Dec. 1983.

[66] R. E. Watson, L. H. Bennett, and J. W. Davenport, "Ionic character of polar crystals: An extended Mulliken scheme for electronegativities," *Phys. Rev. B*, vol. 27, no. 10, pp. 6428–6438, May 1983.

[67] S. G. Bratsch, "A group electronegativity method with Pauling units," *J. Chem. Educ.*, vol. 62, no. 2, p. 101, Feb. 1985.

[68] J. R. Hancock, W. R. Hardstaff, P. A. Johns, R. F. Langler, and W. S. Mantle, "Regiochemistry and reactivity in the chlorination of sulfides," *Can. J. Chem.*, vol. 61, no. 7, pp. 1472–1480, Jul. 1983.

[69] H. O. Pritchard, "Equalization of Electronegativity," J. Am. Chem. Soc., vol. 85, no. 12, p. 1876, Jun. 1963.

[70] R. S. Evans and J. E. Huheey, "Electronegativity, acids, and bases—I: Hard and soft acids and bases and Pauling's electronegativity equation," *J. Inorg. Nucl. Chem.*, vol. 32, no. 2, pp. 373–381, Feb. 1970.

[71] J. L. Reed, "Electronegativity. An isolated atom property," J. Phys. Chem., vol. 85, no. 2, pp. 148–153, Jan. 1981.

[72] L. J. Bartolotti, S. R. Gadre, and R. G. Parr, "Electronegativities of the Elements from Simple. Xα Theory," *J. Am. Chem. Soc.*, vol. 102, no. 9, pp. 2945–2948, Apr. 1980.

[73] P. Politzer and H. Weinstein, "Some relations between electronic distribution and electronegativity," *J. Chem. Phys.*, vol. 71, no. 11, pp. 4218–4220, Dec. 1979.

[74] M. A. Whitehead, N. C. Baird, and M. Kaplansky, "Group orbital electronegativities," *Theor. Chim. Acta*, vol. 3, no. 2, pp. 135–146, 1965.

[75] E. P. Gyftopoulos and G. N. Hatsopoulos, "Quantum-Thermodynamic Definition of Electronegativity," *Proc. Natl. Acad. Sci.*, vol. 60, no. 3, pp. 786–793, 1968.

[76] M. B. Einhorn and R. Blankenbecler, "Bounds on scattering amplitudes," *Ann. Phys. (N. Y).*, vol. 67, no. 2, pp. 480–517, Oct. 1971.

[77] M. S. Gopinathan and M. A. Whitehead, "On the Dependence of Total Energy on Occupation Numbers," *Isr. J. Chem.*, vol. 19, no. 1–4, pp. 209–214, 1980.

[78] P. Geerlings, F. De Proft, and W. Langenaeker, "Conceptual Density Functional Theory," *Chem. Rev.*, vol. 103, no. 5, pp. 1793–1874, May 2003.

[79] C. K. Jørgensen, Orbitals in Atoms and Molecules. Academic Press Inc., New York, 1962.

[80] J. Hinze, M. A. Whitehead, and H. H. Jaffe, "Electronegativity. II. Bond and Orbital Electronegativities," *J. Am. Chem. Soc.*, vol. 85, no. 2, pp. 148–154, Jan. 1963.

[81] R. T. Sanderson, "An interpretation of bond lengths and a classification of bonds," *Science (New York, N.Y.)*, vol. 114, no. 2973. American Association for the Advancement of Science, pp. 670–672, 1951.

[82] R. Ferreira, "Principle of electronegativity equalization. Part 1.—Bond moments and force constants," *Trans. Faraday Soc.*, vol. 59, no. 0, pp. 1064–1074, Jan. 1963.

[83] N. H. March, "The ground-state energy of atomic and molecular ions and its variation with the

number of electrons," in Chemical Hardness, Berlin/Heidelberg: Springer-Verlag, 1993, pp. 71-86.

[84] T. T. Nguyen-Dang, R. F. W. Bader, and H. Essén, "Some properties of the Lagrange multiplier μ in density functional theory," *Int. J. Quantum Chem.*, vol. 22, no. 5, pp. 1049–1058, Nov. 1982.

[85] J. Hinze, "The concept of electronegativity of atoms in molecules," *Theor. Comput. Chem.*, vol. 6, pp. 189–212, Jan. 1999.

[86] H. Chermette, "Chemical reactivity indexes in density functional theory," *J. Comput. Chem.*, vol. 20, no. 1, pp. 129–154, Jan. 1999.

[87] P. Hohenberg and W. Kohn, "Inhomogeneous Electron Gas," *Phys. Rev.*, vol. 136, no. 3B, pp. B864–B871, Nov. 1964.

[88] R. A. Miranda-Quintana and P. W. Ayers, "Interpolation of property-values between electron numbers is inconsistent with ensemble averaging," *J. Chem. Phys.*, vol. 144, no. 24, p. 244112, Jun. 2016.

[89] F. Heidar-Zadeh, R. A. Miranda-Quintana, T. Verstraelen, P. Bultinck, and P. W. Ayers, "When is the Fukui Function Not Normalized? The Danger of Inconsistent Energy Interpolation Models in Density Functional Theory," *J. Chem. Theory Comput.*, vol. 12, no. 12, pp. 5777–5787, Dec. 2016.

[90] L. Komorowski, "Electronegativity through the energy function," *Chem. Phys. Lett.*, vol. 103, no. 3, pp. 201–204, 1983.

[91] D. Datta, N. K. Shee, and L. Von Szentpály, "Chemical potential of molecules contrasted to averaged atomic electronegativities: Alarming differences and their theoretical rationalization," *J. Phys. Chem. A*, vol. 117, no. 1, pp. 200–206, Jan. 2013.

[92] R. P. Feynman, "Forces in Molecules," *Phys. Rev.*, vol. 56, no. 4, pp. 340–343, Aug. 1939.

[93] T. Berlin, "Binding Regions in Diatomic Molecules," *J. Chem. Phys.*, vol. 19, no. 2, pp. 208–213, Feb. 1951.

[94] R. T. Sanderson, "Electronegativities in inorganic chemistry," *J. Chem. Educ.*, vol. 29, no. 11, p. 539, Nov. 1952.

[95] R. T. Sanderson, "Relation of Stability Ratios to Pauling Electronegativities," *J. Chem. Phys.*, vol. 23, no. 12, pp. 2467–2468, Dec. 1955.

[96] A. B. Anderson and R. G. Parr, "Vibrational Force Constants from Electron Densities," *J. Chem. Phys.*, vol. 53, no. 8, pp. 3375–3376, Oct. 1970.

[97] R. T. Sanderson, "Electronegativities in inorganic chemistry: (II)," *J. Chem. Educ.*, vol. 31, no. 1, p. 2, Jan. 1954.

[98] R. T. Sanderson, "Electronegativities in inorganic chemistry. III," *J. Chem. Educ.*, vol. 31, no. 5, p. 238, May 1954.

[99] R. T. Sanderson, "Principles of electronegativity Part I. General nature," J. Chem. Educ., vol. 65, no. 2, p. 112, Feb. 1988.

[100] W. Gordy, "A Relation between Bond Force Constants, Bond Orders, Bond Lengths, and the Electronegativities of the Bonded Atoms," *J. Chem. Phys.*, vol. 14, no. 5, pp. 305–320, May 1946.

[101] A. L. Allred and E. G. Rochow, "A scale of electronegativity based on electrostatic force," *J. Inorg. Nucl. Chem.*, vol. 5, no. 4, pp. 264–268, Jan. 1958.

[102] P. Politzer, R. G. Parr, and D. R. Murphy, "Relationships between atomic chemical potentials, electrostatic potentials, and covalent radii," *J. Chem. Phys.*, vol. 79, no. 8, pp. 3859–3861, Oct. 1983.

[103] W. Gordy, "Interpretation of Nuclear Quadrupole Couplings in Molecules," *J. Chem. Phys.*, vol. 19, no. 6, pp. 792–793, Jun. 1951.

[104] W. Gordy and W. J. O. Thomas, "Electronegativities of the Elements," *J. Chem. Phys.*, vol. 24, no. 2, pp. 439–444, 1956.

[105] R. J. Boyd and K. E. Edgecombe, "Atomic and Group Electronegativities from the Electron Density Distributions of Molecules," *J. Am. Chem. Soc.*, vol. 110, no. 13, pp. 4182–4186, Jun. 1988.

[106] J. G. Malone, "The Electric Moment as a Measure of the Ionic Nature of Covalent Bonds," *J. Chem. Phys.*, vol. 1, no. 3, pp. 197–199, Mar. 1933.

[107] C. A. Coulson, "The dipole moment of the C—H bond," *Trans. Faraday Soc.*, vol. 38, no. 0, pp. 433–444, Jan. 1942.

[108] J. C. Phillips, "Dielectric Definition of Electronegativity," *Phys. Rev. Lett.*, vol. 20, no. 11, pp. 550–553, Mar. 1968.

[109] L. Pauling, "Atomic Radii and Interatomic Distances in Metals," J. Am. Chem. Soc., vol. 69, no. 3, pp. 542–553, Mar. 1947.

[110] J. C. Slater, "Atomic Shielding Constants," *Phys. Rev.*, vol. 36, no. 1, pp. 57–64, Jul. 1930.

[111] Housecroft C.E. and Sharpe A.G., "Electronegativity values," in *Iorganic chemistry*, Pearson Education Limited, 2005, p. 38.

[112] R. J. Boyd and G. E. Markus, "Electronegativities of the elements from a nonempirical electrostatic model," *J. Chem. Phys.*, vol. 75, no. 11, pp. 5385–5388, Dec. 1981.

[113] E. Clementi and C. Roetti, "Roothaan-Hartree-Fock atomic wavefunctions: Basis functions and their coefficients for ground and certain excited states of neutral and ionized atoms, $Z \le 54$," *At. Data Nucl. Data Tables*, vol. 14, no. 3–4, pp. 177–478, Sep. 1974.

[114] C. F. Bunge, J. A. Barrientos, and A. V. Bunge, "Roothaan-Hartree-Fock Ground-State Atomic Wave Functions: Slater-Type Orbital Expansions and Expectation Values for Z = 2-54," *At. Data Nucl. Data Tables*, vol. 53, no. 1, pp. 113–162, Jan. 1993.

[115] C. Mande, P. Deshmukh, and P. Deshmukh, "A new scale of electronegativity on the basis of calculations of effective nuclear charges from X-ray spectroscopic data," *J. Phys. B At. Mol. Phys.*, vol. 10, no. 12, pp. 2293–2300, Aug. 1977.

[116] Y. Zhang, "Electronegativities of Elements in Valence States and Their Applications. 2. A Scale for Strengths of Lewis Acids," *Inorg. Chem.*, vol. 21, no. 11, pp. 3889–3893, Nov. 1982.

[117] M. V. Putz, "Systematic formulations for electronegativity and hardness and their atomic scales within density functional softness theory," *Int. J. Quantum Chem.*, vol. 106, no. 2, pp. 361–389, Jan. 2006.

[118] M. V. PUTZ, "SEMICLASSICAL ELECTRONEGATIVITY AND CHEMICAL HARDNESS," J. *Theor. Comput. Chem.*, vol. 06, no. 01, pp. 33–47, Mar. 2007.

[119] M. Putz, Putz, and M. V., "Density Functionals of Chemical Bonding," *Int. J. Mol. Sci.*, vol. 9, no. 6, pp. 1050–1095, Jun. 2008.

[120] M. V. Putz, "Electronegativity: Quantum observable," *Int. J. Quantum Chem.*, vol. 109, no. 4, pp. 733–738, Mar. 2009.

[121] D. Bergmann and J. Hinze, "Electronegativity and charge distribution," in *Electronegativity*, Berlin/Heidelberg: Springer-Verlag, 1987, pp. 145–190.

[122] Y. Zhang, "Electronegativity from Ionization Potentials," J. Mol. Sci.(Chinese), vol. 1, p. 125, 1981.

[123] Y. Zhang, Zhang, and Yonghe, "Ionocovalency and Applications 1. Ionocovalency Model and Orbital Hybrid Scales," *Int. J. Mol. Sci.*, vol. 11, no. 11, pp. 4381–4406, Nov. 2010.

[124] M. L. Huggins, "Bond Energies and Polarities," *J. Am. Chem. Soc.*, vol. 75, no. 17, pp. 4123–4126, Sep. 1953.

[125] A. D. Walsh and M. G. Evans, "I. A possible new definition of electronegativity," *Proc. R. Soc. London. Ser. A. Math. Phys. Sci.*, vol. 207, no. 1088, pp. 13–22, Jun. 1951.

[126] H. B. Michaelson, "Relation Between an Atomic Electronegativity Scale and the Work Function," *IBM J. Res. Dev.*, vol. 22, no. 1, pp. 72–80, Jan. 1978.

[127] S. S. Batsanov, "Dielectric Methods of Studying the Chemical Bond and the Concept of Electronegativity," *Russ. Chem. Rev.*, vol. 51, no. 7, pp. 684–697, Jul. 1982.

[128] A. I. Martynov and S. S. Batsanov, "A new approach to the determination of the electronegativity of atoms," *Russ. J. Inorg. Chem.*, vol. 25, pp. 1737–1739, 1980.

[129] T. Jecko, "On the mathematical treatment of the Born-Oppenheimer approximation," *J. Math. Phys.*, vol. 55, no. 5, p. 053504, May 2014.

[130] M. Born and R. Oppenheimer, "Zur Quantentheorie der Molekeln," *Ann. Phys.*, vol. 389, no. 20, pp. 457–484, 1927.

[131] W. Pauli, "Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren English Translated version available," *Zeitschrift für Phys.*, vol. 31, no. 1, pp. 765–783, Feb. 1925.

[132] H. A. Kramers, "The general theory of paramagnetic rotation in crystals," in *Proc. Acad. Amst*, 1930, pp. 959–972.

[133] J. Franck, E. D.-T. of the F. Society, and undefined 1926, "Elementary processes of photochemical reactions," *pubs.rsc.org.*

[134] E. Condon, "A Theory of Intensity Distribution in Band Systems," *Phys. Rev.*, vol. 28, no. 6, pp. 1182–1201, Dec. 1926.

[135] G. A. Hagedorn, "A time dependent Born-Oppenheimer approximation," *Commun. Math. Phys.*, vol. 77, no. 1, pp. 1–19, Feb. 1980.

[136] G. A. Hagedorn, "High order corrections to the time-independent Born-Oppenheimer approximation II: Diatomic Coulomb systems," *Commun. Math. Phys.*, vol. 116, no. 1, pp. 23–44, Mar. 1988.

[137] G. A. HAGEDORN and A. JOYE, "MOLECULAR PROPAGATION THROUGH SMALL AVOIDED CROSSINGS OF ELECTRON ENERGY LEVELS," *Rev. Math. Phys.*, vol. 11, no. 01, pp. 41–101, Jan. 1999.

[138] G. A. Hagedorn and A. Joye, "A Time-Dependent Born-Oppenheimer Approximation with Exponentially Small Error Estimates," *Commun. Math. Phys.*, vol. 223, no. 3, pp. 583–626, Nov. 2001.

[139] G. A. HAGEDORN and A. JOYE, "A MATHEMATICAL THEORY FOR VIBRATIONAL LEVELS ASSOCIATED WITH HYDROGEN BONDS II: THE NON-SYMMETRIC CASE," *Rev. Math. Phys.*, vol. 21, no. 02, pp. 279–313, Mar. 2009.

[140] M. Klein, A. Martinez, and X. P. Wang, "On the Born-Oppenheimer approximation of wave operators in molecular scattering theory," *Commun. Math. Phys.*, vol. 152, no. 1, pp. 73–95, Feb. 1993.

[141] M. Klein, A. Martinez, and X. P. Wang, "On the Born–Oppenheimer approximation of diatomic wave operators. II. Singular potentials," *J. Math. Phys.*, vol. 38, no. 3, p. 1373, Jun. 1998.

[142] A. Martinez and B. Messirdi, "Resonances of diatomic molecules in the born-oppenheimer approximation," *Commun. Partial Differ. Equations*, vol. 19, no. 7–8, pp. 1139–1162, Jan. 1994.

[143] H. Spohn and S. Teufel, "Adiabatic Decoupling and Time-Dependent Born–Oppenheimer Theory," *Commun. Math. Phys.*, vol. 224, no. 1, pp. 113–132, Nov. 2001.

[144] S. Teufel and J. Wachsmuth, "Spontaneous Decay of Resonant Energy Levels for Molecules with Moving Nuclei," *Commun. Math. Phys.*, vol. 315, no. 3, pp. 699–738, Nov. 2012.

[145] B. T. Sutcliffe and R. G. Woolley, "On the quantum theory of molecules," *J. Chem. Phys.*, vol. 137, no. 22, p. 22A544, Dec. 2012.

[146] B. T. Sutcliffe and R. G. Woolley, "Comment on 'On the quantum theory of molecules' [J. Chem. Phys. 137, 22A544 (2012)]," J. Chem. Phys., vol. 140, no. 3, p. 037101, Jan. 2014.

[147] C. F. Kammerer and V. Rousse, "Resolvent Estimates and Matrix-Valued Schrödinger Operator with Eigenvalue Crossings; Application to Strichartz Estimates," *Commun. Partial Differ. Equations*, vol. 33, no. 1,

pp. 19-44, Jan. 2008.

[148] E. B. Wilson, "Four-Dimensional Electron Density Function," J. Chem. Phys., vol. 36, no. 8, pp. 2232–2233, Apr. 1962.

[149] R. E. Stanton, "Hellmann-Feynman Theorem and Correlation Energies," *J. Chem. Phys.*, vol. 36, no. 5, pp. 1298–1300, Mar. 1962.

[150] B. M. Deb, "Chapter 1," in *The Force concept in chemistry*, Van Nostrand Reinhold, 1981, p. Page 9.

[151] D. Andrae, Ed., *Hans Hellmann: Einführung in die Quantenchemie*. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015.

[152] I. N. Levine, *Quantum Chemistry*, 5th ed. Pearson/Prentice Hall, 2009.

[153] P. Politzer and J. S. Murray, "The Hellmann-Feynman theorem: a perspective," *J. Mol. Model.*, vol. 24, no. 9, p. 266, Sep. 2018.

[154] W. Pauli, "Die allgemeinen Prinzipien der Wellenmechanik," in *Quantentheorie*, Berlin, Heidelberg: Springer Berlin Heidelberg, 1933, pp. 83–272.

[155] H. Hellmann, "Zur Rolle der kinetischen Elektronenenergie für die zwischenatomaren Kräfte," *Zeitschrift für Phys.*, vol. 85, no. 3–4, pp. 180–190, Mar. 1933.

[156] P. Güttinger, "Das Verhalten von Atomen im magnetischen Drehfeld," Zeitschrift für Phys., vol. 73, no. 3–4, pp. 169–184, Mar. 1932.

[157] E. Schrödinger, "Quantisierung als Eigenwertproblem," *Ann. Phys.*, vol. 385, no. 13, pp. 437–490, Jan. 1926.

[158] A. C. Hurley, "The Electrostatic Calculation of Molecular Energies. I. Methods of Calculating Molecular Energies," *Proc. R. Soc. A Math. Phys. Eng. Sci.*, vol. 226, no. 1165, pp. 170–178, Nov. 1954.

[159] A. C. Hurley, "The Electrostatic Calculation of Molecular Energies. II. Approximate Wave Functions and the Electrostatic Method," *Proc. R. Soc. A Math. Phys. Eng. Sci.*, vol. 226, no. 1165, pp. 179–192, Nov. 1954.

[160] A. C. Hurley, "The Electrostatic Calculation of Molecular Energies. III. The Binding Energies of Saturated Molecules," *Proc. R. Soc. A Math. Phys. Eng. Sci.*, vol. 226, no. 1165, pp. 193–205, Nov. 1954.

[161] A. C. Hurley, "The Electrostatic Calculation of Molecular Energies. IV. Optimum Paired-Electron Orbitals and the Electrostatic Method," *Proc. R. Soc. A Math. Phys. Eng. Sci.*, vol. 235, no. 1201, pp. 224–234, Apr. 1956.

[162] R. F. W. Bader, "Binding Regions in Polyatomic Molecules and Electron Density Distributions," *J. Am. Chem. Soc.*, vol. 86, no. 23, pp. 5070–5075, Dec. 1964.

[163] R. F. W. Bader and W. H. Henneker, "The Ionic Bond," J. Am. Chem. Soc., vol. 87, no. 14, pp. 3063–3068, Jul. 1965.

[164] R. F. W. Bader and H. J. T. Preston, "A CRITIQUE OF PAULI REPULSIONS AND MOLECULAR GEOMETRY," *Can. J. Chem.*, vol. 44, no. 10, pp. 1131–1145, May 1966.

[165] R. F. W. Bader, "THE USE OF THE HELLMANN–FEYNMAN THEOREM TO CALCULATE MOLECULAR ENERGIES," *Can. J. Chem.*, vol. 38, no. 11, pp. 2117–2127, Nov. 1960.

[166] R. F. W. Bader and G. A. Jones, "the Hellmann–Feynman Theorem and Chemical Binding," *Can. J. Chem.*, vol. 39, no. 6, pp. 1253–1265, Jun. 1961.

[167] T. Koga and H. Nakatsuji, "The Hellmann-Feynman theorem applied to long-range forces," *Theor. Chim. Acta*, vol. 41, no. 2, pp. 119–131, 1976.

[168] T. Koga, H. Nakatsuji, and T. Yonezawa, "Generalized Berlin diagram for polyatomic molecules," *J. Am. Chem. Soc.*, vol. 100, no. 24, pp. 7522–7527, Nov. 1978.

[169] T. Koga, H. Nakatsuji, and T. Yonezawa, "Force and density study of the chemical reaction process OH $_2$ +H $^+ \rightarrow$ OH $_3$ $^+$," *Mol. Phys.*, vol. 39, no. 1, pp. 239–249, Jan. 1980.

[170] P. Politzer, "A Study of the Bonding in the Hydrogen Molecule ¹," *J. Phys. Chem.*, vol. 70, no. 4, pp. 1174–1178, Apr. 1966.

[171] P. Politzer and K. C. Daiker, "Molecular electrostatic potentials. Negative potentials associated with some methyl and methylene groups," *Chem. Phys. Lett.*, vol. 34, no. 2, pp. 294–297, Jul. 1975.

[172] A. J. Coleman, "Structure of Fermion Density Matrices. II. Antisymmetrized Geminal Powers," *J. Math. Phys.*, vol. 6, no. 9, pp. 1425–1431, Sep. 1965.

[173] A. J. Coleman, "INFINITE RANGE CORRELATION AND LARGE EIGENVALUES OF THE 2-MATRIX," *Can. J. Phys.*, vol. 45, no. 3, pp. 1271–1273, Mar. 1967.

[174] A. J. Coleman, "Necessary Conditions for *N* -Representability of Reduced Density Matrices," *J. Math. Phys.*, vol. 13, no. 2, pp. 214–222, Feb. 1972.

[175] J. C. Slater, "Hellmann-Feynman and Virial Theorems in the $X \alpha$ Method," J. Chem. Phys., vol. 57, no. 6, pp. 2389–2396, Sep. 1972.

[176] T. Berlin, "Binding Regions in Diatomic Molecules," *J. Chem. Phys.*, vol. 19, no. 2, pp. 208–213, Feb. 1951.

[177] A. Larsen, R. S. Poulsen, and T. P. Garm, "Applied Hartree-Fock methods Atomic and diatomic energy computations," Denmark, 2015.

[178] J. C. Slater, "Atomic Shielding Constants," *Phys. Rev.*, vol. 36, no. 1, pp. 57–64, Jul. 1930.

[179] E. Clementi and D. L. Raimondi, "Atomic Screening Constants from SCF Functions," *J. Chem. Phys.*, vol. 38, no. 11, pp. 2686–2689, Jun. 1963.

[180] E. Clementi, D. L. Raimondi, and W. P. Reinhardt, "Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons," *J. Chem. Phys.*, vol. 47, no. 4, pp. 1300–1307, Aug. 1967.

[181] J. C. Slater, "Atomic Radii in Crystals," J. Chem. Phys., vol. 41, no. 10, pp. 3199–3204, Nov. 1964.

[182] D. C. Ghosh, T. Chakraborty, and B. Mandal, "The electronegativity scale of Allred and Rochow: revisited," *Theor. Chem. Acc.*, vol. 124, no. 3–4, pp. 295–301, Oct. 2009.