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Abstract – The paper explores the basic ideas of Cohomology groups and its properties. We have given some interpretation of 

Cohomology groups and some computations are necessary. We have also mentioned its future prospects. In mathematics, 

Cohomology is a general term for a sequence of abelian groups associated to a topological space, often defined from a co-

chain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. 
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I. INTRODUCTION 

In mathematics, homology is a general way of associating a sequence of algebraic objects such as abelian groups or modules to 

other mathematical objects such as topological spaces. It is defined as an extension of A by G is an exact sequence O  A  E 

 G  1. Where A is abelian through out. Homology groups were originally defined in algebraic topology and Cohomology is 

a general term for a sequence of abelian groups associated to a topological space, often defined from a co-chain complex. 

Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. 
 

There are many different cohomology theories. A particular type of mathematical object, such as a topological space or 

a group, may have one or more associated Cohomology theories. When the underlying object has a geometric interpretation as 

topological spaces do, the nth homology group represents behavior in dimension. Most Cohomology  and homology groups or 

modules may be formulated as derived functions on appropriate abelian categories, measuring the failure of a function to be 

exact. From this abstract perspective, homology groups are determined by objects of a derived category. Cohomology idea can 

be stated first of all the Euler polyhedron formula, or Euler function. This was followed by Riemann's definition of genus and n-

fold connectedness numerical invariants in 1857 and Betti's proof in 1871 of the independence of "homology numbers" from the 

choice of basis. 
 

In this paper we have take two sections. First section based on cohomology groups and last one illustrates its properties. 
 

II. COHOMOLOGY GROUPS 

Definition 1 : A normalized factor set is a function f : G  G  A with  

 (i) x f (y, z) – f (xy, z) + f (x, yz) – f (x, y) = 0; 

 (ii) f (x, 1) = 0 = f (1, x) ; 

a normalized coboundary is a function g : G  G  A such that  

 (iii) g (x, y) = xh (y) – h(xy) + h(x), 

where h:G  A is a function with  

 (iv) h(1) = 0. 

 The gap in obtaining an isomorphism H2(G, A)   e(G, A) was that the resolution of Z in previous result gave cocycles 

satisfying condition (i) but not (ii), and coboundaries satisfying condition (iii) but not (iv). 

 With these formulas before our eyes, let us return to stem covers. Representation theory deals with homomorphisms G 

 GL (n, k), where k is a field. If k# is the multiplicative group of nonzero elements of k, then k# is isomorphic to the centre of 

GL (n, k), all nonzero n  n scalar matrices. 
 

Definition 2 : The projective general linear group is  

  PGL (n, k = GL (n, k) / scalars. 

A projective representation of G is a homomorphism G  PGL (n, k). 

 Now one really prefers a representation of G, but he may only have a projective representation. The next theorem says, 

when k is algebraically closed, that one can exchange a projective representation of G if he pays a price : G must be replaced by 

a stem over (i.e., a representation group) S of G. (A more complete account of this material can be fund in [Isaacs, 1976].) 
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Definition 3 : For n > 0, define Qn as the free G-module with basis all n-tuples [x1, ......, xn] of elements of G; define Q0 as the 

free G-module on the single generator [  ]. 

 For each n  0, Pn   Qn, for both are free G-modules on a set in one to one correspondence with G(n); we give a specific 

isomorphism. 
 

Definition 4 : A topological space X is acyclic if H0(X)  Z and Hn(X) = 0 for n > 0. 
 

Theorem  5 : If a group G operates without fixed points on an acyclic space X, then the singular complex of X is a deleted G-

free resolution of Z. 

Proof :  We already know the singular complex is a complex of G-free modules. The condition that X is acyclic gives an exact 

sequence ......  S1(X)  S0(X)  H0(X)  0, and H0(X)   Z. 

 Let A be a G-module. Now Hn (X; A) is the homology of the complex Homz (S(X), A). If X a cyclic and G operates on 

X without fixed points, then Hn(G, A) is the homology of the complex HomG(S(X), A), To complete this discussion, we assume 

some knowledge of topology. Suppose G operates properly on X, i.e., each x  X lies in an open set U with gU  U = , all g 

 G, g  1 (this implies that G operates without fixed points). One can give an isomorphism of complexes. 
 

  Homz (S(X /G), A)   HomG (S(X), A), 

where A is G-trivial and X/G is the orbit space of X, and this induces isomorphisms for all n > 0 
 

  Hn(X/G ; A)  Hn(G, A). 

The next step is to exhibit a space X as above. Given a group G, there exists an Eilenberg–MacLane space Y = K(G, 1): a path 

connected, "aspherical" space (i.e., the nth homotopy groups n(Y) = 0 for n > 1) having fundamental group 1 (Y)   G. If one 

defines X = Y, the universal covering space of Y, then X is acyclic, G acts properly on X, and X/G   Y. It follows that 

  Hn (K(G, 1); A)   Hn (G, A):  

the cohomology of an abstract group G (with G-trivial coefficients) coincides with the cohomology of a certain topological 

space Y = K(G, 1). 

 It is also true that there are isomorphisms in homololgy : If Y = K(G, 1) and A is G-trivial, then  

  Hn(K(G, 1); A)   Hn(G, A) 

Theorem 6 (Universal Coefficient Theorem) : If G is a group and A is G-trivial, then  

 Hn (G, A)  Homz (Hn(G, Z), A)  Ext
1

Z
 (Hn–1 (G, Z) A) 

Proof : The Universal Coefficient gives such an isomorphism for any topological space Y. Choose Y = K (G, 1) and use the fact 

that Hn(Y ; A)   Hn (G, A) and Hn (Y;A) Hn(G, A) for all n. 

Remark : A purely algebraic proof of may be found in [Gruenberg, 1970,  p. 49]. 

There is also a universal coefficient theorem for homology, using if A is G-trivial, 

  Hn (G, A) Hn (G, Z) Z A  Tor
1

Z
 (Hn–1 (G, Z), A). 

The fact that one may realize homology groups of G as homology groups of a topological space "explains". If Y is a path 

connected space having fundamental group , then the Hurewicz theorem states that  

   H1 (Y; Z)   /'. 

Setting Y = K (, 1) shows H1 (Y; Z)   H1 (, Z), which gives a topological.  

 We complete to algebra, still seeking to prove H2 (G, A)  e(G, A). 

Definition 7 : The bar resolution (or standard resolution or normalized resolution) is  

   B = ....  B1 
1d

 B0 


 Z  0, 

where Bn is the free G-module on all [x1, ....., xn] with xi G and xi  1, and the formula for dn : Bn  Bn–1 is the same as in Q. 

(B0 is free on the single generator [   ] :) 

Remarks :  1. In order that dn be defined, we agree that [x1, ....., xn] = 0 whenever some xi = 1. 

 2.  It is not obvious that B is a complex (this does not follow immediately from d–1 dn = 0 in Q, for here we are making 

some of the terms in the formula equal to 0). 

 3.  B is called the bar resolution because the original notation for   [x1 ...... xn] was [x1 | x2 |.... | xn] 

Theorem 8 : The bar resolution B is a G-free resolution of Z. 

Proof  : Again, we do not yet know B is even a complex (so far, all we know is that each Bn is G-free and the d's are G-maps). 

First, we construct a contracting homotopy 
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   ....  B1 0s
 B0 1s Z, 

where each sn is a Z-map. Define 

             s–1 : Z  B0  by    1  [   ] 

and   

          sn : Bn  Bn+1 by    x [x1, ......, xn]  [x, x1, ....., xn] 

(since sn is only a Z-map, it must be defined on a Z-free set of generators, not merely on the G-free generators [x1, ....., xn]). It is 

easy to check that this is a contracting homotopy, i.e., 

  dn–1 Sn + Sn–1 dn = 1Bn (where do = ) 

and  

   s–1 = 1z.  

If we show B is a complex, then the theorem is completes. Now Bn+1 is generated as a G-module by the subgroup im Sn, so that 

it suffices to show dndn+1 = 0 on this subgroup. We do an induction on n, noting that 0 =  d1 =  s –1d1. For the inductive step. 

 dndn+1sn = dn (1 – sn–1 dn)   (contracting homotopy) 

 = dn – (1 – sn–2 dn–1)dn  (ditto) 

 = dn – dn – sn–2 dn–1 dn = 0. 

 

III.  COMPUTATION AND APPLICATIONS  

We have given some interpretation of cohomology groups, but are we in a stronger position having done so? In order to 

use cohomology and homology, some computations are necessary. 

Theorem 9 :  Let G be a finite group of order m. For every G-module A and every n > 0, 

  mHn(G, A) = 0 = mHn (G, A). 

Proof : We use the unnormalized standard resolution Q. If f : Qn  A. 

defined g:Qn–1  A by  

  g (x1, ......, xn–1) =  1 1( , ..... , ).n

x G

f x x x



  

Now sum the coboundary formula  

(df) (x1, ....., xn+1) = x1 f (x2, ..... x) + 
2

1

1

( 1) ( ,..... 1, ....., )




 
n

i

i i

i

f x x x x  

+ (–1)n–1 f(x1 ..... xnx) + (–1)n f (x1, ...., xn) 

over all x = xn+1 in G. In the next to last term, as x varies over G, so does xnx. Therefore, if f is cocycle, then dj = 0 and 

  0 = x1 g(x2, ....., xn) + 
2

1 1

1

( 1) ( , ....., , .... )
n

i

i i n

i

g x x x x






  

      + (–1)n–1 g(x1, ....., x
n–2) + m (–1)n f (x1, ..... xn) 

(the last term is independent of x). Hence  

  0 = dg + m (–1)n f, 

and mf is a coboundary. 

 The same proof works for homology, and we merely set up notation. If f(x1, ..... xn, a) = [x1, ....., xn]  a, where a  A, 

then define 

The proof proceeds as above, but remember that one begins with an element of the form 11 ( , ...., , ).p i j j
j nf x x a  

Definition : A group G has cohomological dimension  n, denoted cd (G)  n, if Hk (G, A) = 0 for all G-modules A and all k > 

n. If n is the least such integer, one defines cd (G) = n; if no such integer n exists, define cd(G) = . 
 

Exercises : 9.1  Prove that cd(G) = 0 if and only if G = {1}. 

 Since we know that if G is free of rank > 0, then cd (G) = 1. 

 Also if Hn+1 (G, A) = 0 for all G-modules A, then Hk (G, A) = 0 for all k > n and all G-modules A. 

 Let G be free abelian with basis S = {x1, ...., xn}. Prove that ZG   S–1 (x1, ...., xn]; use Hilbert's Syzygy Theorem to 

prove cd (G)  n + 1. 

Remarks : 1. The ring of Laurent polynomials in x, coefficients in Z, consists of all formal sums  

   , ,
n

i

i i

i k

m x m Z


  yaha se karna hai 
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k, n  (possibility negative) integers, with obvious addition and multiplication. One may easily generalize this definition to 

several (commuting) variables, and observe, using, that Laurent polynomials in n variables, coefficients in Z, in ZG, where G is 

free abelian of rank n. 

 2.  If G is free abelian of rank n, then cd(G) = n. The reason the bound in just above exercise is too high is that global 

dimension  n demands vanishing of  Ext
k

ZG
 (B, A), all k > n and all pairs of G-modules B, A, whereas cd(G)  n only demands 

such vanishing in the special case B = Z. 

 Is there a relation between cd(S) and cd(G) when S is a subgroup of G ? 
 

Theorem 11  (Shapiro's Lemma) : If S is a subgroup of G and A is an S-module, then, for all n  0. 

  Hn (S, A)   Hn (G, Homs(ZG, A)). 

Proof : First of all, the right side makes sense, for Homs(ZG, A) may be regarded as a G-module, (i.e., as in the adjoint 

isomorphism). A mixed identity, arising from the adjoint isomorphism, gives  

 Ext
n
ZS  (ZG G Z, A)   Ext

n
ZG  (Z, Homs(ZG, A)). 

Since ZG G Z   Z, this is the desired isomorphism 

 Hn (S, A)   Hn (G, Homs (ZG, A)). 
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