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1.  Introduction 

It is well known that metric fixed point theory plays a very important role in functional analysis and it is very rich in applications to the 

branches of science in particularly in mathematics to the theory of differential and integral equations. In approach to find applications so 

many researchers study and gives generalizations of fixed point theorems, common fixed point theorems and hybrid fixed point theorem 
in complete metric space, partial ordered metric spaces, quasi metric spaces, etc. by using various contractive mappings.[1, 2, 3] 

In present paper we apply some fixed point results in complete partially ordered metric space with different contractive mappings to get 

existence and solutions of differential and integral equations particularly nonlinear integral equations and Lebesgue integral along with 

nonlinear hybrid differential equations. 

2. Some Fixed Point Theorems in POSET Metric Spaces. 

Definition 2.1[1, 2, 3] 

A self-mapping T: X → X is said to be a contraction if  ∃𝜆 ∈ [0, 1) such that ∀ x, y ∈ X, d (Tx, Ty) ≤ 𝜆d (x, y) where 

 (X, d) is a metric space.  

In 1922 Banach [1] proved that a contraction mapping has a unique fixed point in a complete metric space (X, d). 

In 2004 Ran and Reurings [2] introduced the Banach Fixed Point Theorem in ordered metric space as follows 

Theorem 2.2[2] 

Let (X, ≼) be a partially ordered set with a metric d, then (X, d) be a complete metric space. Also, every pair x, y ∈ X has a lower bound 

and an upper bound. If f is a continuous, monotone self-map from X into X then there exists 𝜆 ∈ (0,1) such that  d(fx, fy) ≤ 𝜆 d(x, y) ,  

x ≥ y and there exists 𝑥0 ∈ X such that  𝑥0  ≤  f𝑥0or 𝑥0  ≥  f𝑥0  then f has a unique fixed point 𝑥 . Moreover, for every x∈ X,   𝑓𝑛
𝑛 →∞

𝑙𝑖𝑚 𝑥 

=  𝑥 . 

Definition 2.3 

Let S be the set of all functions Ψ : [0, ∞)  → [0, ∞)  satisfying the following conditions 

(I) Ψ is continuous and monotonic increasing 

(II) Ψ (x) = 0 iff x = 0 

 

Remark: Now onwards from here we referred POSET as partially ordered set in this paper. 

Theorem 2.4[2] 

Let (X, ≼) be a POSET with a metric d and (X, d) be a complete metric space. Let f: X → X be a monotonic increasing self- map and T 

is one to one, continuous, subsequentially convergent order preserving or increasing self-map with Ψ ∈ S.  

Then for all x, y ∈ X with x ≼ y, 𝜆 ∈ [0, 1) and Ψ (d (Tfx, Tfy)) ≤ 𝜆 Ψ (d (Tx, Ty)) 

Also, suppose that either 
(I) f is continuous or  

(II) Assume that if any increasing sequence {𝑥𝑛} in X converges to z, then 𝑥𝑛 ≼ z for all n ≥ 0.  

If there exists 𝑥0 ∈ X with 𝑥0 ≼ f𝑥0 , then f has a fixed point in X. Moreover, if for each x, y ∈ 𝑋 there exists z ∈ X which is 

comparable to x and y, then the fixed point is unique. 

Theorem 2.4[2] is called Banach Fixed point theorem in POSET metric space using Ψ mapping. 

Theorem 2.5[11] 

Let (X, ≼) be a POSET with a metric d and (X, d) be a complete metric space. Let f: X → X be a monotonic increasing self-map and T is 

one to one, continuous, subsequentially convergent order preserving or increasing self map with Ψ ∈ S.  

Then for all x, y ∈X with x ≼ y, 𝜆𝑖  ∈ [0, 1) and   

Ψ(d(Tfx, Tfy))≤ 𝜆1Ψ (d(Tx , Ty)) + 𝜆2Ψ(d(Tx ,Tfx)) + 𝜆3Ψ(d(Ty, Tfy))+ 𝜆4Ψ (d(Tx, Tfy)) + 𝜆5Ψ (d(Ty, Tfx)) 

where 𝜆𝑖 ≥ 0 , for i = 1, 2, 3, 4, 5, such that 𝜆 = ∑ 𝜆𝑖
5
𝑖=1  

Also, suppose that either 

(I) f is continuous or  

(II) Assume that if any increasing sequence {𝑥𝑛} in X converges to z, then 𝑥𝑛 ≼ z for all n ≥ 0.  

 If there exists 𝑥0 ∈ X with 𝑥0 ≼ f𝑥0 , then f has a fixed point in X. Moreover, if for each x, y ∈ 𝑋 there exists z ∈ X which is  

comparable to x and y , then the fixed point is unique. 

Theorem 2.5[11] is called Hardy-Roger’s Fixed Point Theorem in POSET metric space using Ψ mapping. 
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Theorem 2.6[11] 

Let (X, ≼) be a POSET with a metric d and (X, d) be a complete metric space. Let f: X → X be a monotonic increasing self- map and T 

is one to one, continuous, subsequentially convergent order preserving or increasing self-map with Ψ ∈ S.  For all x, y ∈ X with x ≼ y, 

𝛼 ∈ [0,
1

2
[  and Ψ (d (Tfx, Tfy)) ≤ 𝛼 [Ψ (d (Tx, Tfx)) + Ψ (d (Ty, Tfy))] 

Also, suppose that either 

(I) f is continuous or  

(II) Assume that if any increasing sequence {𝑥𝑛} in X converges to z, then 𝑥𝑛 ≼ z for all n ≥ 0.  

 If there exists 𝑥0 ∈ X with 𝑥0 ≼ f𝑥0 , then f has a fixed point in X. Moreover, if for each x, y ∈ 𝑋 there exists z ∈ X which is 
comparable to x and y, then the fixed point is unique. 

Theorem 2.6[11] is called kannan’s Fixed Point Theorem in POSET metric space using Ψ mapping. 

3. Applications of some Fixed Point Theorems related to POSET Metric Spaces in L-Integral Equations. 

Theorem 3.1 

Let (X, ≼) be a POSET with a metric d and (X, d) be a complete metric space. Let f: X → X be a monotonic increasing self- map and T 

is one to one, continuous, subsequentially convergent order preserving or increasing self-map with Ψ ∈ S. Then for all x, y ∈ X with x 

≼ y, 𝜆 ∈ [0, 1) and  

∫ 𝜒(𝑡) 𝑑𝑡
Ψ (d (Tfx,Tfy))

0
 ≤ 𝜆 ∫ 𝜒(𝑡) 

 Ψ (d (Tx,Ty))

0
 𝑑𝑡  

where  𝜒 : [0, ∞) → [0, ∞) is a L-integrable nonnegative finite map on every compact subset of [0, ∞) such that for every  𝜖 > 0 we 

have ∫ 𝜒(𝑡) 𝑑𝑡
𝜖

0
 > 0. 

Also, suppose that either 

(I) f is continuous or  

(II) Assume that if any increasing sequence {𝑥𝑛} in X converges to z, then 𝑥𝑛 ≼ z for all n ≥ 0.  

If there exists 𝑥0 ∈ X with 𝑥0 ≼ f𝑥0 , then f has a fixed point in X. Moreover, if for each x, y ∈ 𝑋 there exists z ∈ X which is 

comparable to x and y, then the fixed point is unique. 

Proof: If we take 𝜒(𝑡) = 1 in L-integrable nonnegative finite map then we get Banach Fixed point theorem in POSET metric space with 

Ψ mapping and theorem hold. 

now we generalize this application of L-integrable map from Banach Fixed point theorem to other fixed point theorems as follows 

Theorem 3.2 

Let (X, ≼) be a POSET with a metric d and (X, d) be a complete metric space. Let f: X → X be a monotonic increasing self- map and T is 

one to one, continuous, subsequentially convergent order preserving or increasing self-map with Ψ ∈ S. Then for all x, y ∈ X with x ≼ y, 

𝜆𝑖  ∈  [0, 1) and where 𝜆𝑖 ≥ 0 , for i = 1, 2, 3, 4, 5, such that 𝜆 = ∑ 𝜆𝑖
5
𝑖=1  

∫ 𝜒(𝑡) 𝑑𝑡
Ψ(d(Tfx,Tfy))

0
 ≤ 𝜆 ∫ 𝜒(𝑡) 

 𝜆1Ψ (d(Tx ,Ty)) + 𝜆2Ψ(d(Tx ,Tfx)) + 𝜆3Ψ(d(Ty,Tfy))+ 𝜆4Ψ (d(Tx,Tfy)) + 𝜆5Ψ (d(Ty,Tfx))

0
 𝑑𝑡  

 

where  : [0, ∞) → [0, ∞) is a L-integrable nonnegative finite map on every compact subset of [0, ∞) such that for every 

  𝜖 > 0 we have ∫ 𝜒(𝑡) 𝑑𝑡
𝜖

0
 > 0. 

Also, suppose that either 

(I) f is continuous or  

(II) Assume that if any increasing sequence {𝑥𝑛} in X converges to z, then 𝑥𝑛 ≼ z for all n ≥ 0.  

If there exists 𝑥0 ∈ X with 𝑥0 ≼ f𝑥0 , then f has a fixed point in X. Moreover, if for each x, y ∈ 𝑋 there exists z ∈ X which is 

comparable to x and y, then the fixed point is unique. 

Proof: If we take 𝜒(𝑡) = 1 in L-integrable nonnegative finite map with 𝜆 = 1 then we get Hardy-Roger fixed point theorem in POSET 

metric space with Ψ mapping and theorem hold. 
 

 

 

Corollary 3.3 

Let (X, ≼) be a POSET with a metric d and (X, d) be a complete metric space. Let f: X → X be a monotonic increasing self- map and T 

is one to one, continuous, subsequentially convergent order preserving or increasing self-map with Ψ ∈ S.  For all x, y ∈ X with x ≼ y, 

𝜆 ∈ [0,
1

2
[  and 

∫ 𝜒(𝑡) 𝑑𝑡
Ψ (d (Tfx,Tfy))

0
 ≤ 𝜆 ∫ 𝜒(𝑡) 

 Ψ (d(Tx,Tfx)) + Ψ (d(Ty,Tfy))

0
 𝑑𝑡  

where  : [0, ∞) → [0, ∞) is a L-integrable nonnegative finite map on every compact subset of [0, ∞) such that for every 

  𝜖 > 0 we have ∫ 𝜒(𝑡) 𝑑𝑡
𝜖

0
 > 0. 

Also, suppose that either 

(I) f is continuous or  

(II) Assume that if any increasing sequence {𝑥𝑛} in X converges to z, then 𝑥𝑛 ≼ z for all n ≥ 0.  

If there exists 𝑥0 ∈ X with 𝑥0 ≼ f𝑥0 , then f has a fixed point in X. Moreover, if for each x, y ∈ 𝑋 there exists z ∈ X which is 
comparable to x and y, then the fixed point is unique. 

Proof: If we take 𝜒(𝑡) = 1 in L-integrable nonnegative finite map with 𝛼 = 𝜆 = 1 then we get Kannan’s fixed point theorem in POSET 

metric space with Ψ mapping and result hold. 

4. Hybrid Fixed Point Theorem in POSET related Metric Spaces. 

Hybrid fixed point theorem plays very important role in nonlinear differential and integral equations initially Ran and Reurings[3] study 

hybrid fixed point theorems in POSET related metric spaces and Nieto, Rodriguez-Lopez[9] established some results of hybrid fixed 

point theorems for monotonic map in POSET related metric spaces, now we apply some monotonic iterative methods with hybrid fixed 

point theorems study by S. Heikkila and V. Lakshmikantham[10] to the nonlinear differential and nonlinear integral equations. 
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Definition 4.1   

A POSET related metric space (X, ≼, d) is said to be regular if {𝑥𝑛} is a monotonic sequence in X such that 𝑥𝑛 → 𝑥∗ as 

 n →  ∞ then 𝑥𝑛 ≼ 𝑥∗ or 𝑥𝑛 ≽ 𝑥∗ for all n ∈ ℕ. 

Definition 4.2 

A map T: X → X is said to be monotonic if it preserves the order relation ≼, hence if x ≼ y ⇒ Tx ≼ Ty or x ≼ y ⇒ Tx ≽ Ty for all x, y 

∈ X. 

Theorem 4.3[9] 

Let (X, ≼) be a POSET with a metric d and (X, d) be a complete metric space. Let T: X → X be a monotonic map such that there exists 

a constant 𝜆 ∈ [0, 1) such that d (Tx, Ty) ≤ 𝜆 d (x, y) for all elements x, y ∈ X, x ≥ y. Suppose that either T is continuous or if every 

convergent sequence {𝑥𝑛} in X to the point 𝑥∗ whose consecutive terms are comparable then there exists a subsequence {𝑥𝑛𝑘
} of {𝑥𝑛} 

such that every term in it is comparable to the limit 𝑥∗. Further if there is an element 

 𝑥0 ∈ X satisfying 𝑥0 ≼ T𝑥0 or 𝑥0 ≽ T𝑥0, then T has a unique fixed point if every pair of elements in X has a lower and an upper bound. 

This hybrid fixed point theorem for monotonic map is proved by Nieto and Lopez [9]. 

Definition 4.4 

Let (X, d) be a metric space and T be a self map on X then for x ∈ X we define 𝕆(x; T) of T at x by 

 𝕆(x; T) = {x, Tx, 𝑇2𝑥, ---, 𝑇𝑛𝑥, ---} 

Definition 4.5 

The map T is called T-orbitally continuous on X if for any sequence {𝑥𝑛} ⊆ 𝕆(x; T) such that 𝑥𝑛 → 𝑥∗ ⇒ 𝑇𝑥𝑛 → T𝑥∗ for each x ∈ X. 

Definition 4.6 

Let (X, d) be a metric space and T be a self map on X and metric space X is said to be T-orbitally complete if every Cauchy sequence 

{𝑥𝑛} ⊆ 𝕆(x; T) converges to 𝑥∗. 
Definition 4.7 

A self map T defined on X is said to be partially continuous at a point y ∈ E if for each 𝜖 > 0 there exist a  𝛿 > 0 such that 

 ‖𝑇𝑥 − 𝑇𝑦‖ < 𝜖 whenever x is comparable to y with  ‖𝑥 − 𝑦‖ < 𝛿 . T is said to be partially continuous on X if it is partially continuous 

at every point of X. 

Clearly if T is partially continuous on X, then T is continuous on every chain C contained in X. 

Definition 4.8 

A map Φ : [0, ∞) →  [0, ∞) is said to be a dominating function  if it is an upper semi-continuous and monotonic increasing function 

with Φ(0) = 0. 

Theorem 4.9 

Let (X, ≼) be a POSET with a metric d, f is self map and T: X → X be a monotonic increasing map there exists a dominating function Φ 

such that d (Tfx, Tfy) ≤ Φ (d (fx, fy)) for all comparable elements x, y ∈ X, where Φ(p) < p, p > 0. Suppose that either X is T-orbitally 

complete and T-orbitally continuous or T is partially T-orbitally continuous and X is regular and every sequence {𝑥𝑛} in X whose 

consecutive terms are comparable having a monotone subsequence. Furthermore if there is an element   𝑥0 ∈ X satisfying 𝑥0 ≼ T𝑥0 or 

𝑥0 ≽ T𝑥0, then T has a unique fixed point 𝑥∗and the sequence {𝑇𝑛𝑥0} of iterations converges to 𝑥∗ if every pair of elements in X has a 

lower and an upper bound. 

Proof: The inequality d (Tfx, Tfy) ≤ Φ (d (fx, fy)) gives us the map T is partially T-orbitally continuous on X. If we consider y = 𝑇𝑓𝑥 

in the inequality and it reduces to d (Tfx, 𝑇2𝑓𝑥) ≤ Φ (d (fx, Tfx)) and by Banach fixed point theorem in POSET metric space T has a 

fixed point 𝑥∗ and the sequence {𝑇𝑛𝑓𝑥0} of successive iterations converges to 𝑥∗, the uniqueness follows from Nieto and Lopez 

theorem 4.3[9]. 

5. Applications of Hybrid Fixed Point Theorem in POSET related metric spaces to Differential and Integral  

     equations. 

Let I be a closed and bounded Interval such that I = [𝑡0, 𝑡0 + 𝑟] ⊂ ℝ for some 𝑎0, 𝑟 ∈ ℝ and r > 0.  

Consider the initial value problem of first order ordinary nonlinear hybrid differential equation 

y’(t) = f(t; y(𝜔(𝑡)),  t ∈ I, and y(𝑡0) = 𝑦0 ∈ ℝ.    and    𝜔 ∈ ℝ       --- (5.1) 

where f : I × ℝ → ℝ is continuous function.  

The solution of (5.1) is a function y(t) ∈ C(I, ℝ) that satisfies d (Tx, Ty) ≤ 𝜆 d (x, y), where C(I, ℝ) is the class of continuous real-

valued functions defined on I, clearly C(I, ℝ) is a Banach space with respect to the supremum norm and POSET with respect to the 

partially order relation on I. Also the partially ordered Banach space C(I, ℝ) is regular. 

Definition 5.1 

A function 𝜑 ∈ C(I, ℝ) is said to be a lower solution of hybrid differential equation (5.1) and d (Tx, Ty) ≤ 𝜆 d (x, y) if it satisfies  

𝜑’(t) ≤ f(t; 𝜑(𝜔(𝑡)), 𝜑(𝑡0) = 𝜑0   for all  t ∈ I                               --- (5.2) 

 

Suppose the following conditions holds: 

(I) There exists constants 𝛼, 𝛽 > 0 with 𝛼 ≥ 𝛽 such that 
−𝛽 (𝑥−𝑦) 

1+(𝑥−𝑦)
 ≤ [f(t, x) + 𝛼𝑥] - [f(t, y) + 𝛼𝑦] ≤ 0, for all  t ∈ I and  

               x, y ∈ ℝ,  x ≥ y . 

(II) The hybrid differential equation (5.1) and  d (Tx, Ty) ≤ 𝜆 d (x, y) has a lower solution 𝜑 ∈ C(I, ℝ) 

Consider the initial value problem of the hybrid differential equation 

y’(t) + 𝛼 y(𝜔(𝑡)) = f*( t; y(𝜔(𝑡)), y(𝑡0) = 𝑦0, for all t ∈ I,         --- (5.3) 

where f*, f : I × ℝ → ℝ and f*( t; y(𝜔(𝑡)) = f(t; y(𝜔(𝑡)) + 𝛼 y(𝜔(𝑡) 

Theorem 5.2 

A function 𝜑 ∈ C(I, ℝ) is a solution of the hybrid differential equation (5.3) if and only if it is a solution of the nonlinear integral 

equation, 

 y(𝜔(𝑡)) = c 𝑒−𝜆𝑡 + 𝑒−𝜆𝑡 ∫ 𝑒𝜆𝜉𝑡

𝑡0
 f*(𝜉; y(𝜔(𝜉)) d𝜉                     --- (5.4)  

for all  t ∈ I where c ∈ ℝ defined as c = 𝑦0𝑒𝑡0. 
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Theorem 5.3 

Suppose that conditions (I) and (II) holds. Then the hybrid differential equation (5.3) d (Tx, Ty) ≤ 𝜆 d (x, y) has a unique solution 𝑥∗ 

defined on I and the sequence {𝑥𝑛} of successive approximations given by 

𝑦𝑛(𝜔(𝑡)) = c 𝑒−𝜆𝑡 + 𝑒−𝜆𝑡 ∫ 𝑒𝜆𝜉𝑡

𝑡0
 f*(𝜉; 𝑦𝑛(𝜔(𝜉)) d𝜉              --- (5.5) 

where 𝑦0 = 𝜑, converges to 𝑥∗. 

Proof: Let ℒ be the operator defined on C(I, ℝ) by 

ℒy(𝜔(𝑡)) = c 𝑒−𝜆𝑡 + 𝑒−𝜆𝑡 ∫ 𝑒𝜆𝜉𝑡

𝑡0
 f*(𝜉; y(𝜔(𝜉)) d𝜉,              --- (5.6) 

for all  t ∈ I. 

By the continuity of integral equation the operator ℒ defines the self map on C(I, ℝ) the hybrid differential equation (5.1) is equivalent 

operator equation ℒ y(𝜔(𝑡)) = y(𝜔(𝑡)), for all  t ∈ I.                                       --- (5.7) 

The operator ℒ satisfies Theorem 4.9 and we get  ‖ℒ𝑥 − ℒ𝑦‖ < 𝜑(‖𝑥 − 𝑦‖), for all x, y ∈ C(I, ℝ) with  x ≥ y. 

Hence ℒ satisfies the contraction principle given in Theorem 4.9 on C(I, ℝ) hence operator ℒ is a partially T-orbitally continuous on 

C(I, ℝ). Also y(𝜔(𝑡)) satisfies operator inequality y(𝜔(𝑡)) ≤  ℒy(𝜔(𝑡)) and condition (II) then hybrid differential equation has a lower 

solution y(𝜔(𝑡)). Then 

y′(𝜔(𝑡)) ≤ f(t; y(𝜔(𝑡)),  y(𝜔(𝑡0)) ≤ 𝑦0 = 𝜑                    --- (5.8) 

combining 𝜆 y(𝜔(𝑡))  on both sides of the above inequality (5.8) we get,  

y′(𝜔(𝑡)) + 𝜆 y(𝜔(𝑡)) ≤ f(t; y(𝜔(𝑡)) + 𝜆 y(𝜔(𝑡))            --- (5.9) 

for all  t ∈ I. Multiplying the above inequality(5.9) by 𝑒𝜆𝑡 we get  

(𝑒𝜆𝑡y(𝜔(𝑡)))
′
 ≤ 𝑒𝜆𝑡 f*( t; y(𝜔(𝑡))                                   --- (5.10) 

Integrating both sides of inequality (5.10) from 𝑡0 to t we get  

y(𝜔(𝑡)) = c 𝑒−𝜆𝑡 + 𝑒−𝜆𝑡 ∫ 𝑒𝜆𝜉𝑡

𝑡0
 f*(𝜉; y(𝜔(𝜉)) d𝜉 

for all t ∈ I. 

Hence the operator equation ℒ y(𝜔(𝑡)) = y(𝜔(𝑡)) has a solution corresponding to the integral equation and the hybrid differential 

equation has a solution 𝑥∗defined on C(I, ℝ). Consequently the sequence {𝑦𝑛} of successive approximations given in (5.5) converges to 

𝑥∗ .  
This proves the theorem. 
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