A review on Microbial production of ferulic acid

esterase

Surabhi Singh¹, Vinod Kumar Nigam¹ and Ashish Sachan^{2*} Saraswati Vidya Mandir Science and Technology PG College, Lalganj-Ajhara Pratapgarh - 230132, U.P., India ¹Birla Institute of Technology, Mesra, Ranchi – 835215, Jharkhand, India ²Department of Life Sciences, Central University of Jharkhand, Ranchi – 835222, Jharkhand, India *Corresponding Author: Department of Life Sciences, Central University of Jharkhand, Ranchi – 835222, Jharkhand, India

Abstract

Ferulic acid esterases (or feruloyl esterases) are a subclass of carboxylic acid esterases that catalyze the hydrolysis of ester bond between polysaccharides and hydroxycinnamic acids (ferulic acid, p-coumaric acid) on the plant cell walls. The release of hydroxycinnamic acids from agroresdues can be achieved by using either of the following methods: chemical release or enzymatic release. The use of enzymatic system in organic synthesis has become a fundamental tool for selective, efficient and economical transformations with the goal of using less aggressive reagents, less organic solvents, lower temperatures and involvement of shorter pathways. ferulic acid esterases have their potential applications in obtaining ferulic acid from agroindustrial waste materials such as those produced by milling, brewing, and sugar industries. The prospect of broad applications of ferulic acid esterases has fueled much interest in these enzymes, as shown by the increasing number of FAEs discovered in microbial organisms in recent years. This review focuses on the ferulic esterase enzyme isolation and its purification from the culture medium. Extensive search for novel ferulic acid esterase producing microorganisms, by speculating and exploring different environmental niches for their isolation, need an imperative examination. Research is essentially required in order to search for novel ferulic acid esterase producing strain.

Keywords

Ferulic acid esterase, Biotransformation, Screening.

I. INTRODUCTION

The application of FAEs has fuelled much of interest in the enzyme. Microbial enzymes are often more useful than the enzymes released from plant because of the great variety of catalytic activities available, the high yield possible and ease of genetic manipulation. Therefore, it demands for precise, rapid and facile concrete assay method that will benefit in reducing the effort and time required to screen the FAE producers. Many quantitative methods have been developed for screening and detection of FAE activity. These methods include agar plate assay method, spectrophotometric method, capillary zone electrophoresis, gas chromatography and high performance liquid chromatography (Donaghy *et al.* 1998; Donaghy and McKay 1995; Borneman *et al.* 1990; Castanares *et al.* 1992; MacKenzie and Bilous 1988). These all approaches for detection of FAE activity are time consuming, require exorbitant solvents and buffers. Thus, there is a need for a novel detection method which helps to screen out the FAE producers under economic environment within a few hours of culture inoculation.

1. Screening of ferulic acid esterase producing microorganisms

A screening assay method has been developed by Donaghy and McKay (1995) for the detection of phenolic acid esterases using agar medium, but this method experiences some drawbacks like agar medium does not always allow the growth of microorganisms and once the pH sensitive dye is flooded in inoculation plate, it can't be inoculated further. There is another assay protocol which has been developed by Wu *et al.* (2011), based on the pH shift of phenol red. pH shift changed the color from red to yellow because of formation of acid in the reaction, this protocol is not that efficient. Donaghy *et al.* (1998) screened 80 *Bacillus* strains using agar plate supplemented with ethyl ferulate (dissolved in 10% *w/v* dimethylformamide or DMF) in plate pouring stage as we have used in our study. FAEs were first detected in culture of *Streptomyces olivochromogenes* releasing FA from wheat bran (Mackenzie *et al.* 1987), after which a number of microbes have been isolated and characterized with FAE activity such as *Aspergillus awamori* VTT-D-71025, *Aspergillus nidulans, Bacillus subtilis* NCIMB11034, *Clostridium stercorarium* NCIMB 11754 and *Penicillium brasilianum* IBT 20888 (Gong *et al.* 2013; Shin and Chen 2007; Donaghy *et al.* 1998, 2000; Kroon *et al.* 2000) (Table 1).

Table 1 list of reported ferulic acid esterase producing microorganisms (bacteria and fungi).

Microorganisms	FAE	References
Schizophyllum commune ATCC 38548	FAE	Johnson et al. 1989
Fibrobacter succinogenes S851	FAE	McDermid <i>et al.</i> 1990
Aspergillus oryzae VTTD 85248	FAE	Tenkanen <i>et al.</i> 1991
Aspergillus phoenicis IMI 211395	FAE	Smith <i>et al.</i> 1991
Aspergillus terreus VTT-D-82209	FAE	Tenkanen <i>et al.</i> 1991
Neocallimastix	FAE-I, II	Borneman <i>et al.</i> 1992
Panicillium pinophilum CMI 87160ii	FAE	Castanares et al. 1992
Aspergillus niger I-1472	FAE	Faulds et al. 1993
Pseudomonas fluorescens	FAED	Ferreira <i>et al.</i> 1993
Aspergilus niger	FAE-I, II	Kroon <i>et al.</i> 1996
Aspergilus niger	FAE-B	Kroon <i>et al.</i> 1996
Aspergillus tubingensis	FAE-A	de Vries et al. 1997
Penicillium expansum	Possible B	Donaghy et al. 1997
Aspergillus awamori IFO4033	FAE	Koseki et al. 1998
Bacillus substilis NCIMB11034	FAE	Donaghy et al. 1998
Lactobacillus fermentum NCFB1751	FAE	Donaghy et al. 1998
Clostridium stercorarium NCIMB 11754	FAE	Donaghy et al. 2000
Orpinomyces sp PC-2	FAEA	Blum et al. 2000
Penicillium finiculosum	FAEB	Kroon <i>et al.</i> 2000
Penicillium funiculosum IMI-134756	FAE	Kroon <i>et al.</i> 2000
Streptomyces olivochromogenes	FAEA, B, C	Donaghy et al. 2000
Aspergillus pullulans NRRLY 2311-1	FAE	Rumbold et al. 2003
Aureobasidium pullulans	FAE-B	Rumbold et al. 2003
Fusarium proliferatum	FAEB	Rumbold et al. 2003
Neurospora crassa	FAEB, D	Crepin <i>et al.</i> 2003
Streptococcus thermophile ATCC 34628	FAE	Topakas et al. 2003
Streptomyces avermitilis CECT 3339	FAE	Bartolome et al. 2003
Fusarium oxysporum	FoFAE-A, B	Nikos et al. 2004
Fusarium oxysporum F3	FAE	Topakas et al. 2004
Neurospora crassa	FAE-I (FAEB)	Crepin et al. 2004
Sporotrichum thermophile	StFAEA	Topakas et al. 2004
Talaromyces stipitatus	TsFAEA, B	Garcia et al. 2004
Aspergillus awamori VTT-D-71025	FAE	Mathew et al. 2005
Aspergillus flavipes	FAE	Mathew et al. 2005
Aspergilus niger	FAE-A (III)	Faulds et al. 2005
Sporotrichum thermophile	StFAEA, B, C	Vafiadi et al. 2005
Streptomyces avermitilis UAH 30	FAE	Faulds et al. 2005
Aspergillus niger NRRL3	FAE	Shin and Chen 2006
Fusarium proliferatum NRRL 26517	FAE	Shin and Chen 2006
Fusarium verticillioides NRRL 26517 JSC-3	FAE	Shin and Chen 2006
Aspergillus nidulans	FAE-B	Shin and Chen 2007
Streptomyces sp. S10	FAE	Mukherjee <i>et al.</i> 2007
Streptomyces tendae	FAE	Ferreira <i>et al.</i> 2007
Aspergillus niger CFR 1105	FAE	Shyamala <i>et al.</i> 2009
Aspergillus niger	FAE	Ou et al. 2011
Thermobifida sp.	FAE	Huang <i>et al.</i> 2011
Chrysosporium lucknowense C1	FAE	Kuhnel <i>et al.</i> 2012
Aspergillus flavus	FAE	Zhang <i>et al.</i> 2013
Aspergillus usamii	FAE	Gong <i>et al.</i> 2013
Pleurotus eryngii	FAE	Nieter <i>et al.</i> 2014
Mucor hiemalis NCIM 837	FAE	Singh <i>et al.</i> 2015

2. Optimization of process parameters for ferulic acid esterase production

Bioprocess development is an important step for any biotechnological process considering the benefit. It is crucial for large scale production of FAE and it is the primary step towards its commercialization. It may be considered as an important step for cost reduction and increased yield. Industrial scale production of FAE has not been yet successfully achieved due to its low production yield, high recovery and purification cost. Optimization of culture conditions could be one way to increase the yield and development of an economically feasible production process.

Process parameters like pH and temperature have been observed to affect the FAE production. The studies carried on FAE production showed that the optimal pH and temperature for maximum activity ranges from 5.0 to 7.0 and 30 to 60 °C respectively. *Streptomyces olivochromogenes* NRCC 2258 showed 2350 mU/mg FAE activity at 37 °C (Johnson *et al.* 1989) whereas *Sporotrichum thermophile* ATCC 34628 (Topakas *et al.* 2003) showed 156 mU/mg FAE activity at 50 °C. Other microorganisms such as *Schizophyllum Commune* ATCC 38548 (MacKenzie *et al.* 1988), *Aspergillus awamori* IFO4 033 (Koseki *et al.* 1998), *Aspergillus niger* VTTD-77050 (Tenkanen *et al.* 1991), *Bacillus subtilis* ATCC 7661 (Donaghy *et al.* 1998), *Clostridium stercorarium* NCIMB 11754 (Donaghy *et al.* 2000), *Fusarium proliferatum* NRRL 26517 (Shin and Chen 2006) showed their maximum FAE activity at 30 °C.

In addition to the parametric conditions carbon and nitrogen sources are also very essential media components which are required for proper growth and metabolism of the microorganisms, thus, these are required in appropriate amount in media for the enzyme production. Different types of carbon and nitrogen sources have been used by different authors for FAE production (Table 2). *Aspergillus niger* favored FAE production with sugar beet pulp at a concentration of 1.5% (v/v) whereas brewer's spent grain is reported as the most suitable natural carbon source for FAE production from *Lactobacillus acidophilus* K1 (2.64 ± 0.06 U) and *Lactobacillus rhamnosus* (Szwajgier *et al.* 2011). Other agroresidues such as rice bran, corn pectin and german wheat bran are also reported for FAE production (Szwajgier *et al.* 2011). Topakas *et al.* (2007) and Wong et al. (2013) reported that complex carbon sources viz. wheat bran and sugar beet pulp favors FAE production.

Kumar *et al.* (2011) examined different carbon sources which includes D-glucose, D-fructose, sucrose, lactose, maltose, sorbitol, mannitol, maize starch, and glycerol at 0.5% (*w*/*v*) concentration in his study, for FAE production from *Aspergillus terreus* GA2 strain and observed potato starch (860 U/gds) as the most effective carbon source for FAE production.

Medium optimization or parametric optimization is conducted either by "one variable at a time" or by using different statistical tools such as response surface methodology (RSM). RSM is superior as it exposes all the possible interaction between variables. The "one-variable-at-a-time" approach is subsidiary for estimating opportune operational intervals for consequential inhibitory/stimulatory variables prior to conducting RSM. Optimization of culture conditions by the one factor at a time is not only time consuming but also very often leads to an incomplete understanding of the system, resulting in confusion and failure of predictive replication. To overcome these inhibitions, RSM is employed more often and this technique explores the interactions between numerous illustrative variables and one or more response variables. RSM was introduced by Box and Wilson in 1951. It is an accumulation of statistical techniques for designing experiments, building blocks, assessing the effects of factors probing for the optimal conditions. It has been prosperously utilized in the optimization of bioprocesses (Cui *et al.* 2009; Shukla *et al.* 2007; Chandrika and Fereidoon 2005; Kristo *et al.* 2003; Wejse *et al.* 2003).

The classical quadratic designs fall into two categories: Box-Behnken designs and Box-Wilson central composite designs. The Box-Behnken design (Box and Behnken 1960) is an independent quadratic design in which it does not contain an embedded factorial or fractional factorial design. In this design the treatment amalgamations are at the midpoints of edges of the process space and at the center. These designs are rotable and require three levels of each factor. The designs have circumscribed capability for orthogonal blocking compared to the central composite designs. It accommodates as a popular cull to fit a second-order replication surface model with good prognostication variance and has been widely utilized in consummately randomized experiments, split-plot experiments and within the robust parameter design setting (Ferreira *et al.* 2007).

A Box-Wilson Central Composite Design, commonly called a central composite design,' contains an imbedded factorial or fractional factorial design with center points that is augmented with a group of 'star points' that sanction estimation of curvature. Statistical optimization of FAE from selected microorganisms has resulted in incremented activity as well as productivity. The mathematical dependences obtained are utilized for presage of the optimum values of the independent variables ascertaining the maximum enzyme activity (Zhang *et al.* 2010; Katapodis *et al.* 2007; Bocchini *et al* 2002; Techapun *et al.* 2002). The statistical implement has been efficiently utilized for optimization of culture conditions (Chapla *et al.* 2010; Jatinder *et al.* 2005) as well as optimization of media components (Fang *et al.* 2010; Dobrev *et al.* 2006).

www.jetir.org (ISSN-2349-5162)

Table 2 different studies showing microorganism, carbon sources, culture time and activity obtained.

Tuble 2 unterent studies shown	ng meroorganism, earboir sourc	ces, culture	e unice unice uccuvity (botunica.	
Microorganism	Carbon source	Culture time	FAE activity	Reference	
Aspergillus niger NRCC 401127	De-starched wheat bran	4 d	10,580 mU/mg	Johnson <i>et al.</i> 1989	
Streptomyces C 254	De-starched wheat bran	3 d	80 mU/ml	Johnson <i>et al.</i> 1989	
Streptomyces olivochromogenes NRCC 2258	De-starched wheat bran	3 d	1200 mU/ml	Johnson <i>et al.</i> 1989	
Orpinomyces PC 1	Coastal Bermuda grass + Sisal	5 d	220	Borneman et al. 1990	
Piromyces MC 1	Coastal Bermuda grass + Sisal	5 d	560 mU/ml	Borneman et al. 1990	
Aspergillus foetidus VTTD 71002 Aspergillus niger VTTD 77050	Wheat straw Solka-Floc cellulose	7 d 7 d	12 mU/ml 132 mU/mg	Tenkanen <i>et al.</i> 1991 Tenkanen <i>et al.</i> 1991	
Aspergillus oryzae VTTD 85248	Wheat bran	7 d	72 mU/mg	Tenkanen <i>et al.</i> 1991	
Trichoderma reesei QM 9414	Meadow fescue grass + Glucose	7 d	3000 mU/mg	Smith <i>et al.</i> 1991	
Penicillium pinophilum CMI 87160ii	Wheat bran+Oat spelt	12 d	156 mU/ml	Castanares et al. 1992	
Aspergillus niger CBS 120.49	Sugar beet pulp	4 d	10 mU/ml	Faulds et al. 1994	
Aspergillus awamori IFO 4033	De-starched	3 d	6900 mU/ml	Koseki et al. 1998	
Bacillus subtilis ATCC 7661	Methyl ferulate	1 d	1.30 mU/ml	Donaghy et al. 1998	
Bacillus subtilis FMCCDL 1	Methyl ferulate	1 d	19.90 mU/ml	Donaghy et al. 1998	
Bacillus subtilis NCIMB 3610	Methyl ferulate	1 d	3.40 mU/ml	Donaghy et al. 1998	
Clostridium stercorarium NCIMB 11754	De-starched wheat bran	3 d	3.40 mU/ml	Donaghy et al. 2000	
Penicillium funiculosum IMI 134756	Sugar beet pulp	6 d	120 mU/mg	Kroon <i>et al.</i> 2000	
Aspergillus flavipes	Wheat bran	5 d	33,180 mU/mg	Bartolome et al. 2003	
Aspergillus niger 1-1472	Corn bran	5 d		Crepin et al. 2003	
Aspergillus niger CS 180	Sugar beet pulp	5 d	10.30 mU/mg	Crepin et al. 2003	
Aureobasidium pullulans NRRLY 23311-1	Birchwood xylan	2.5 d	347 mU/mg	Rumbold et al. 2003	
Fusarium oxysporum F3	De-starched wheat bran	3 d	98 mU/mg	Topakas et al. 2003	
Neurospora crassa STA(74 A)	Wheat bran	3 d	9000 mU/ml	Crepin et al. 2003	
Sporotrichum thermophile ATCC 34628	Wheat straw	7 d	156 mU/mg	Topakas et al. 2003	
Streptomyces avermitilis CECT	De-starched wheat bran	2 d	16.80 mU/mg	Faulds et al. 2003	
<i>Talaromyces stipitatus</i> CBS 375.48	Wheat bran	7d	27 mU/mg	Garcia-Conesa <i>et al.</i> 2004	
Aspergillus niger NRRL3	Corn bran	5 d	13.90 mU/mg	Shin and Chen 2006	
<i>Fusarium proliferatum</i> NRRL 26517	Corn bran	5 d	33.46 mU/mg	Shin and Chen 2006	
Penicillium brasilianum IBT 20888	Brewer's spent grain	8 d	1542 mU/ml	Panagiotou et al. 2006	
<i>Streptomyces avermitilis</i> UAH	De-starched wheat bran	4 d	1.75 mU/ml	Wong et al. 2006	

© 2019 JETIR March 2019, Vo	olume 6, Issue 5		www.jet	tir.org (ISSN-2349-5162)
Humicola grisea	Brewers' spent grain	>8 d	$0.47 \pm 0.01 \text{ mU/g}$	Mandalari <i>et al.</i> 2008
Humicola grisea	Wheat bran	10 d	$0.33 \pm 0.00 \text{ mU/g}$	Mandalari <i>et al.</i> 2008
Aspergillus niger CFR 1105	Wheat bran	>4 d	32.5 mU/g	Hegde et al. 2009
Bifidobacterium animalis Bi30	Methyl-p-Coumarate	36 h	14.95 mU/g	Szwajgier et al. 2010
Bifidobacterium longum KN29 Aspergillus niger ATCC 16404	Methyl- <i>p</i> -Coumarate Wheat bran	36 h 72 h	13.53 mU/g 3.8 ± 0.12 mU/g	Szwajgier <i>et al.</i> 2010 Ou <i>et al.</i> 2011
Aspergillus terreus GA2	Potato starch	7 d	860 U/gds	Kumar <i>et al.</i> 2011
Lactobacillus acidophilus K1	Methyl Ferulate	60 h	23.32 ± 0.05 mU/g	Szwajgier <i>et al.</i> 2011
Lactobacillus rhamnosus OXY	Methyl-p-Coumarate	36 h	$3.64 \pm 0.84 \text{ mU/g}$	Szwajgier et al. 2011

3. Ferulic acid esterase purification

The various purification procedures have been employed for obtaining pure FAE enzyme from the crude extract obtained from different bacteria, fungi and plant sources. PeFAE from *Pleurotus eryngine* has been purified using cation exchange hydrophobic interaction (HIC) and finally size exclusion chromatography (SEC) (Nieter *et al.* 2014). Kuhnel *et al.* (Kuhnel *et al.* 2012) purified an extracellular enzyme FeaA2 from culture filtrate produced from *Chrysosporium lucknowense* C1 and FAEB2 by hydrophobic interaction chromatography followed by anion exchange chromatography using an AKTA explorer 100 preparative system (GE healthcare) (Table 3).

Ammonium sulphate precipitation (ASP) method is the most common type of protein precipitation techniques. Different types of salts such as sodium sulphate and ammonium sulphate are widely used to precipitate out proteins. Among which, ammonium sulphate is the most widely used salt for the precipitation of proteins as it is inexpensive, highly soluble and easily available in highest purity level and moreover in most of the cases it does not denature proteins. Ammonium sulphate can be used for precipitation of protein to approx. 90% saturation or for differential precipitation level of proteins using different saturation of salts. Various reports are available where FAE has been purified using ammonium sulphate precipitation method followed by chromatographic methods like AnFAE and AaFAE (Hegde and Muralikrishna 2009 and Koseki *et al.* 1997).

All chromatographic techniques depend on differences in the distribution of the sundry compounds in the applied mixture between the mobile phase and the stationary phase. Ion exchange chromatography is the most popular method for the purification of proteins and other charged biomolecules based on the reversible interaction between the molecule and oppositely charged chromatography medium. This chromatography helps to speed biomolecules with even a small difference in their surface charge by choosing the optimal buffer pH and ion exchange. DEAE- anion exchange resins have been used for the purification of most of the proteins (Wu *et al.* 2011).

Thin layer chromatography is simple, rapid, and inexpensive method for the separation, tentative identification, and visual semi-quantification of a wide variety of substances. Gel filtration chromatography is a separation technique used to separate proteins on the basis of shape and their size, additionally applicable for the separation of molecular weight of proteins. The main aim of the gel filtration chromatography is fractionation of proteins. Smaller molecules incline to spend more time in the matrix, whereas the higher molecular weight molecule elute from the column before the minute molecules. Matrixes used to purify esterases from the microbes are sepharose, sephacryl, and sephadex etc. FAE was purified from *lactobacillus acidophilus* by gel filtration chromatography utilizing sephacryl S-300 (Szwajgier *et al.* 2010)

Microorganisms	Purification steps	FAE activity (U/mg protein)	Yield (%)	Purificati on (fold)	References
Aspergillus awamori	Culture supernatant	0.6	100	1.0	Koseki et
IFO4033	Ammonium sulphate precipitation fractions (40 ± 80%)	1.1	74.5	1.8	al. 1997
	DEAE-5PW	2.6	49.0	4.3	
	G-2000SW	4.3	38.7	7.2	
	Phenyl-5PW	13.2	20.3	22.0	

Table.3 comparison of consecutive steps of ferulic acid esterase purification from Individual microorganisms

© 2019 JETIR March 2	www.jetir	.org (ISSN	-2349-5162)		
Fusarium oxysporum	Culture filtrate	1.7	100.0	1.0	Topakas et
	SP-Sepharose	2.3	80.0	1.4	al. 2003
	1st t-butyl-HIC	4.3	46.0	2.5	
	2nd t-butyl-HIC	5.4	23.0	3.2	
	Sephacryl S-200	22.5	21.0	13.2	
Aspergillus niger	Crude	3.23	100	1.0	Hegde and
CFR1105	Ammonium sulphate precipitation fraction	11.9	66.7	3.7	Muralikris
	(30-60%)				hna
	DEAE cellulose, FAE-1 and FAE-2	21.5, 30.1	10.0, 8.4	7.6, 9.3	2009
	respectively				
	Sephacryl 100-HR, FAE-1 and FAE-2	35.9, 80.0	4.3, 2.5	11.11,	
	respectively			24.8	
Lactobacillus acidophilus	Crude enzyme solution	1.58	100.00	1.0	Szwajgier
K1	Ultrafiltration	1.6	5.82	1.01	<i>et al.</i> 2010
	Dialysis	7.81	12.62	4.94	
	Vacuum concentration	13.2	11.39	8.35	
	Ion exchange chromatography	17.62	5.45	11.15	
	Size exclusion chromatography, Sephacryl	48.97	2.25	30.99	
	S-300				

4. Purity criteria of Ferulic acid esterase

Different methods are in use to assure the homogeneity of enzyme which includes Polyacrylamide gel electrophoresis (PAGE), which separates molecules according to their size and charge. During electrophoresis there is an interaction of samples, gel matrix buffers, and electric current resulting in separate bands of individual molecules. Empirically the pore size providing optimum resolution for proteins is that which results in the relative mobility (Rf) value between 0.55-0.6. Rf values for categorical proteins is calculated as follows:

 $Rf = \frac{\text{Distance migrated by protein of interest}}{\text{Distance migrated by ion front}}$

Almost all analytical electrophoresis of proteins are carried out with SDS PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis). SDS PAGE was carried out under conditions that ascertain dissociation of proteins into their individual polypeptide subunits and that minimize aggregation. The Laemmli buffer system is a discontinuous buffer system that incorporates SDS, a vigorously anionic detergent in buffer (Laemmli 1970). The proteins are separated according to their molecular weight, making this system astronomically subsidiary for calculating molecular weight and to assure purity.

5. Physiochemical properties of ferulic acid esterases

FAEs have been purified and characterized from different microorganisms named *Penicillium brevicompactum, Talaromyces stipitatus* CBS 375.48, *Lactobacillus acidophilus* IFO13951, *Chrysosporium lucknowense* C1 and *Pleurotus eryngii* (Nieter *et al.* 2014; Kuhnel *et al.* 2012; Garcia *et al.* 2004; Donaghy *et al.* 1995). FAE activity was also observed in various *Aspergillus* species such as *Aspergillus niger, Aspergillus awamori, Aspergillus flavipes* and *Aspergillus nidulans* (Debeire *et al.* 2012; Shin and Chen 2007; Koseki *et al.* 2005; Mathew *et al.* 2005; Faulds *et al.* 1995). Purified FAEs show significant variation in physical and chemical characteristics such as isoelectric point, molecular weight and optimal hydrolytic reaction conditions. The molecular weight of the purified FAE ranges from the 11-210 kDa. FAEA1 and FAEB2 from the *Chrysosporium lucknowense C1* have been reported with molecular weight (determined by SDS-PAGE) of 29, 36 kDa and isoelectric point 5.5, 5.2, respectively (Kuhnel *et al.* 2012). However the FAEA2 from the same organism was reported to have a molecular weight of 33 kDa and PI of 6.0A. FAE from *Aspergillus niger* CS180 is a heavily glycosylated dimer (Kroon *et al.* 1996). FAE from *Aureobasidium pullulans* was found with 48% glycosylation (Rumbold *et al.* 2003). A glycosylated FAE (TsFAEC) has been isolated from the fungus *Talaromyces stipitatus* (Garcia-Conesa *et al.* 2004) (Table 4).

Microbial FAE has a broad range of temperature and pH dependence. They exhibit optimal activities between temperature 30 to 65 °C and pH 4.0 to 8.0. FAEA1 and FAEB2 from *Chrysosporium lucknowense* C1 have been reported to be highly active in the range of 45 to 60 °C and pH 5.0 to 7.0 respectively, whereas FAEA2 was less stable than FAEA1 and FAEB2, showing the optimum temperature in the range of 35 to 40 °C Kuhnel *et al.* 2012. FAE from *Pleurotus eryngii* showed an optimum pH of 5.0 and showed more than 50% residual activity over a broad pH range from 3.5 to 7.0 and optimum temperature for maximum enzyme activity was 50 °C. The PeFAEA showed good activity at a temperature ranging from 40-50 °C (Table 5).

Table 4	molecular	weight,	optimum	ph	and	temperature	for	ferulic	acid	esterase	released	from	individual
microorg	ganisms												

Microorganisms	Enzyme	Enzyme	Molecular	pН	Thermo	Reference
		type	weight (kDa) optimum -			
			20	1 - ()	stability	T. 1
Aspergillus oryzae	FAE		30	4.5-6.0	45	Tenkanen <i>et al.</i> 1991
Neocallimastix	FAE		69	5.5-6.8		Borneman <i>et al.</i> 1992
Penicillium pinophilum	FAE		57	6	55	Castanares et al. 1992
Aspergillus niger	FAE	В	29			Faulds and Williamson 1993
Aspergillus niger	FAE	А	36	5	60	de Vries <i>et al.</i> 1997
Aspergillus tubigensis	FAE	А	36	5	60	de Vries <i>et al.</i> 1997
Penicillium expansum	FAE		65	5.6	37	Donaghy <i>et al.</i> 1997
Aspergillus awamori	AwFAE	А	37	7	45	Koseki et al. 1998
Aspergillus nidulans	AnFAE	В	56	7	45	Donaghy et al. 1998
Aureobasidium pullulans	FAE	В	210	6.7	60	Donaghy et al. 1998
Clostridium stercorarium	FAE	C, D	33	8	65	Donaghy et al. 2000
Penicillium funiculosum	FAE	В	53			Kroon <i>et al.</i> 2000
Streptomyces	FAE		29	5.5	30	Donaghy et al. 2000
olivochromogenes						
Talaromyces stipitatus	TsFAE	А, В, С	35, 35, 65	6.0-7.0	60	Malherbe <i>et al.</i> 2002
Aspergillus sp.	FAE		42	4	50	Record et al. 2003
Fusarium proliferatum	FAE	В	31	6.5-7.5	56	Rumbold et al. 2003
Neurospora crassa	FAE	B, D	35	6	55	Crepin et al. 2003
Talaromyces stipitatus	TsFAE	С	66	6.0-7.0	60	Crepin et al. 2003b
Fusarium oxysporum	FoFAE	Α, Β	27, 31	7	45-55	Nikos <i>et al.</i> 2004;
Neurospora crassa	FAE	D	32			Crepin <i>et al.</i> 2004a
Sporotrichum thermophile	StFAE	С	23	6	55	Topakas <i>et al.</i> 2004
Talaromyces stipitatus	TsFAE	А	35			Garcia-conesa et al. 2004
Talaromyces stipitatus	TsFAE	В	35			Garcia-conesa et al. 2004
Sporotrichum thermophile	StFAE	А, В, С	<mark>33,</mark> 23	6	55	Vafiadi et al. 2005
Aspergillus nidulans	FAE	В	130	7	45	Shin and Chen 2007
Aspergillus niger	FAE	А, В	36	5	55	Zheng <i>et al.</i> 2007;
Aspergillus oryzae	AoFAE	В	61	6	55	Koseki et al. 2009
Aspergillus oryzae	AoFAE	С	75	6	60	Koseki et al. 2009

www.jetir.org (ISSN-2349-5162)

TABLE 5 OPTIMUM PH AND TEMPERATURE FOR FERULIC ACID ESTERASE ACTIVITY

Microorganism	Optimal pH	Optimal Temperature (°C)	Reference
Aspergillus oryzae	4.5-6.0	Upto 45	Tenkanen <i>et al.</i> 1991
Aspergillus niger CBS 120.49	5.0	55-60	Faulds and Williamson 1994
Streptomyces avermitilis CECT 3339	6.0	50	Garcia <i>et al.</i> 1998
Fusarium oxysporum	7	45	Topakas et al. 2004
Bifidobacterium animalis Bi30	6.3	37	Szwajgier et al. 2010
Bifidobacterium catenulatum KD 14	6.3	37	Szwajgier <i>et al.</i> 2010
Aspergillus niger (ATCC 16404)	-	36	Ou et al. 2011
Lactobacillus acidophilus K1	6.3	37	Szwajgier <i>et al.</i> 2011
Lactobacillus rhamnosus E/N	6.5	37	Szwajgier <i>et al.</i> 2011
lactobacillus rhamnosus oxy	6.3	37	Szwajgier <i>et al.</i> 2011
Aspergillus flavus CBE 332.1	5.5	58	Zhang et al. 2013
Pleurotus eryngii	5.0	50	Nieter et al 2014
Mucor hiemalis NCIM 837	5.0	30	Singh <i>et al.</i> 2015

CONCLUSION

Microbial production of ferulic acid esterase as biocalyst for release of ferulic acid from agroresidues, suggest that these microorganisms may be useful in ferulic acid esterase production on a large scale. FAEs are highly applicable in pharmaceutical, food and cosmetic industries. Furthermore, the purified enzyme may contribute significantly to the production of ferulic acid, which is applied in production of vanillin; the most flavoring agent. Recently, due to advances in biology and computational approaches, the information can be used to identify and characterize the gene, which are involved in the release of ferulic acid esterase. This will offer new opportunities on a metabolic level to develop more efficient industrial process for production of ferulic acid esterase.

ACKNOWLEDGEMENTS

This work was supported by the Science and Engineering Research Board, Govt. of India. Surabhi Singh acknowledge the facility provided by BIT Mesra.

AUTHOR CONTRIBUTION

SS and AS contributed to the design and implementation of the review article. SS wrote the article under the supervision of AS.

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors

REFERENCES

- [1]. Bartolome B, Gomes-Cordoves C, Sancho AI, Diez N, Ferreira P, Soliveri J, Copa-Patino JL (2003). Growth and release of hydroxycinnamic acids from Brewer's spent grain by Streptomyces avermitilis CECT 3339. Enzyme Microb Technol 32:140-144.
- [2]. Blum DL, Kataeva IA, Li XL (2000). Feruloyl esterase activity of the *Clostridium thermocellum* cellulosome can be attributed to previously unknown domains of xyny and xynz. J Bacteriol 182:1346-1351.
- [3]. Bocchini DA, Alves-Prado LC, Roberto IC, Gomes E, Da SR (2002). Optimization of xylanase production by *Bacillus circulans* D1 in submerged fermentation using reponse surface methodology. Process Biochem 38:727-731.
- [4]. Borneman WS, Hartley RD, Morrison WH, Akin DE, Ljungdahl LG (1990). Feruloyl and *p*-coumaroyl esterase from anaerobic fungi in relation to plant cell wall degradation. Appl Microbiol Biotechnol 33:345-351.
- [5]. Borneman WS, Ljungdahl LG, Hartley RD, Akin E (1992). Purification and partial characterization of two feruloyl esterases from the anaerobic fungus *Neocallimastix* strain mc-2. Appl Environ Microbiol 58:3762-3766.
- [6]. Box GEP, Behnken DW (1960). Some new three level design for the study of quantitative variables. Technometrics 2:455-475.
- [7]. Castanares A, McCrae SI, Wood TM (1992). Purification and properties of a feruloyl/p coumaroyl esterase from the fungus *Penicillium pinophilum*. Enzyme Microbiol Technol 14:875-884.
- [8]. Chandrika LP, Fereidoon S (2005). Optimization of extraction of phenolin compounds from wheat using response surface methodology. Food Chem 93:47-56.
- [9]. Chapla D, Divechab J, Madamwara D, Shaha A (2010). Utilization of agro-industrial waste for xylanase production by *Aspergillus foetidus* MTCC 4898 under solid state fermentation and its application in saccharification. Bioche Eng J 49:361-369.

- [10]. Crepin VF, Faulds CB, Connerton IF (2003). A non-modular type-B feruloyl esterase from *Neurospora crassa* exhibits concentration dependent substrate inhibition. Biochem J 370:417-427.
- [11]. Crepin VF, Faulds CB, Connerton IF (2003). Production and characterization of the *Talaromyces stipitatus* feruloyl esterase FAEc in *Pichia pastoris*: identification of the nucleophilic serine. Protein Expr Purif 29:176-184.
- [12]. Crepin VF, Faulds CB, Connerton IF (2004) Functional classification of the microbial feruloyl esterases. Appl Microbiol Biotechnol 63:647-652.
- [13]. Cui F, Li Y, Liu Z, Zhao H, Ping L, Ping L, Yang Y, Zue Y, Yan L (2009). Optimization of fermentation conditions for production of Xylanase by a newly isolated strain, *Penicillium thiersii* ZH-19. World J Microbiol Biotechnol 25:721-725.
- [14]. de Vries RP, Michelsen B, Poulsen CH, Kroon PA, Van den Heuvel RH, Faulds CB, Williamson G, Van den Hombergh JP, Visser J (1997). The FAEa genes from *Aspergillus niger* and *Aspergillus tubingensis* encode ferulic acid esterases involved in the degradation of complex cell wall polysaccharides. Appl Environ Microbiol 63:4638-4644.
- [15]. Debeire P, Khoune P, Jeltsch JM, Phalip V (2012). Product patterns of a feruloyl esterase from *Aspergillus nidulans* on large feruloyl-arabino-xylo-oligosaccharides from wheat bran. Bioresour Technol 119:425-428.
- [16]. Dobrev GT, Pishtiyski IG, Stanchev VS, Mircheva R (2006). Optimization of nutrient medium containing agricultural wastes for xylanase production by *Aspergillus niger* B03 using optimal composite experimental design. Bioresour Technol 97:1794-1800.
- [17]. Donaghy J, Kelly PF, McKay AM (1998). Detection of ferulic acid esterase production by Bacillus spp. and lactobacilli. Appl Microbiol Biotechnol 50:257-260.
- [18]. Donaghy J, McKay AM (1997). Purification and characterization of a feruloyl esterase from the fungus *Penicillium expansum*. J Appl Microbiol 83:718-726.
- [19]. Donaghy JA, Bronnenmeier K, Soto-Kelly PF, McKay AM (2000). Purification and characterization of an extracellular feruloyl esterase from the thermophilic anaerobe *Clostridium stercorarium*. J Appl Microbiol 88:458-466.
- [20]. Donaghy JA, McKay AM (1995). Production of feruloyl/p-coumaroyl esterase activity by *Penicillium expansum*, *Penicillium brevicompactum* and *Aspergillus niger*. J Appl Bacteriol 79:657-662.
- [21]. Fang TJ, Liao BC, Lee SC (2010). Enhanced production of xylanase by *Aspergillus carneus* M34 in solid-state fermentation with agricultural waste using statistical approach. New Biotechnol 27:25-32.
- [22]. Faulds CB, Kroon PA, Saulnier L, Thibault JF, Williamson G (1995). Release of ferulic acid from maize bran and derived oligosaccharides by *Aspergillus niger* esterases. Carbohydr Polym 27:187-190.
- [23]. Faulds CB, Molina R, Gonzalez R, Husband F, Juge N, Sanz-Aparicio J, Hermoso JA (2005). Probing the determinants of substrate specificity of a feruloyl esterase, AnFAEA, from *Aspergillus niger*. Eur J Biochem 272:4362-4371.
- [24]. Faulds CB, Williamson G (1993). Ferulic acid esterase from *Aspergillus niger*: purification and partial characterization of two forms from a commercial source of pectinase. Biotechnol Appl Biochem 17:349-359.
- [25]. Faulds CB, Williamson G (1994). Purification and characterization of a ferulic acid esterase (FAE-III) from *Aspergillus niger*: Specificity for the phenolic moiety and binding to microcrystalline cellulose. Microbiology 140:779-787.
- [26]. Ferreira P, Diez N, Faulds CB, Soliveri J, CopaPatino JL (2007). Release of ferulic acid and feruloylated oligosaccharides from sugar beet pulp by *Streptomyces tendae*. Bioresour Technol 98:1522-1528.
- [27]. Garcia BL, Ball AS, Rodriguez J, Perez-Leblic MI, Arias ME, Copa-Patino JL (1998). Induction of ferulic acid esterase and xylanase activities in *Streptomyces avernitilis* UAH30. FEMS Microbiol Lett 158:95-99.
- [28]. Garcia-Conesa MT, Crepin VF, Goldson AJ, Williamson G, Cummings NJ, Connerton IF, Faulds CB, Kroon A (2004). The feruloyl esterase system of *Talaromyces stipitatus*: Production of three discrete feruloyl esterases, including a novel enzyme, TsFAEC, with a broad substrate specificity. J Biotechnol 108:227-241.
- [29]. Gong YY, Yin X, Zhang HM, Wu MC, Tang CD, Wang JQ, Pang QF (2013). Cloning, expressly of a feruloyl esterase from *Aspergillus usamii* E001 and its applicability in generating ferulic acid from wheat bran. J Ind Microbiol Biotechnol 40:1433-1441.
- [30]. Hegde S, Muralikrishna G (2009). Isolation and partial characterization of alkaline feruloyl esterases from *Aspergillus niger* CFR 1105 grown on wheat bran. World J Microbiol Biotechnol 25:1963-1969.
- [31]. Huang YC, Chen YF, Chen CY, Chen WL, Ciou YP, Liu WH, Yang CH (2011). Production of ferulic acid from lignocellulolytic agricultural biomass by *Thermobifida fusca* thermostable esterase produced in Yarrowia lipolytica transformant. Bioresour Technol 102:8117-8122.
- [32]. Jatinder K, Chadha BS, Saini HS (2005). Optimization of culture conditions for production of cellulases and xylanases by *Scytalidium thermophilum* using Response Surface Methodology. World J Microbiol Biotechnol 22:169-176.
- [33]. kinase B in rat hippocampus. Acta Pharmacologica Sin 26:943-951.
- [34]. Johnson KG, Silva MC, MacKenzie CR, Schneider H, Fontana JD (1989). Microbial degradation of hemicellulosic materials. Appl Biochem Biotechnol 21:245-258.

- [35]. Katapodis P, Christakopoulou V, Kekos D, Christakopoulos P (2007). Optimization of xylanase production by *Chaetomium thermophilum* in wheat straw using response surface methodology. Biochem Eng J 35:136-141.
- [36]. Koseki T, Furuse S, Iwano K, Matsuzawa H (1997). An Aspergillus awamori acetylesterase: purification of the enzyme, and cloning and sequencing of the gene. Biochem J 326:485-490.
- [37]. Koseki T, Furuse S, Iwano K, Matsuzawa H (1998). Purification and characterization of a feruloyl esterase from *Aspergillus awamori*. Biosci Biotechnol Biochem 62:2032-2034.
- [38]. Koseki T, Fushinobu S, Ardiansyah, Shirakawa H, Komai M (2009). Occurrence, properties, and applications of feruloyl esterases. Appl Microbiol Biotechnol 84:803-810.
- [39]. Koseki T, Takahashi K, Fushinobu S, Iefugi H, Iwano K, Hashizume K, Matsuzawa H (2005). Mutational analysis of a feruloyl esterase from *Aspergillus awamori* involved in substrate discrimination and pH dependence. Biochim Biophys Acta 1722:200-208.
- [40]. Kristo E, Biliaderis CG, Tzanetakis N (2003) Modelling of the acidification process and rheological properties of milk fermented with yogurt starter culture using response surface methodology. Food Chem 83:437-446.
- [41]. Kroon PA, Williamson G (1996). Release of ferulic acid from sugar-beet pulp by using arabinanase, arabinofuranosidase and an esterase from *Aspergillus niger*. Biotechnol Appl Biochem 23:263-267.
- [42]. Kroon PA, Williamson G, Fish NM, Archer DB, Elshaw NJ (2000). A modular esterase from *Penicillium funiculosum* which releases ferulic acid from plant cell walls and binds crystalline cellulose contains a carbohydrate binding module. Eur J Biochem 267:6740-6752.
- [43]. Kuhnel S, Pouvreau L, Appeldoorn MM, Hinz SWA, Schols HA, Gruppen H (2012). The ferulic acid esterases of *Chrysosporium lucknowense* C1: Purification, characterization and their potential application in biorefinery. Enzyme microbiol technol 50:77-85.
- [44]. Kumar CG, Kamle A, Mongolla P, Joseph J (2011). Parametric Optimization of Feruloyl Esterase Production from *Aspergillus terreus* Strain GA2 Isolated from Tropical Agro-Ecosystems Cultivating Sweet Sorghum. J Microbiol Biotechnol 21:947-953.
- [45]. Laemmli UK (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685.
- [46]. MacKenzie CR, Bilous D (1988). Ferulic acid esterase activity from *Schizophyllum commune*. Appl Environ Microbiol 54:1170-1173.
- [47]. Mackenzie CR, Bilous D, Schneider H, Johnson KG (1987). Induction of cellulolytic and xylanolytic enzyme systems in *Streptomyces*. Appl Environ Microbiol 53:2835-2839.
- [48]. Malherbe S, Cloete TE (2002). Lignocellulose biodegradation: Fundamentals and applications. Rev Environ Sci Biotechnol 1:105-114.
- [49]. Mandalari G, Bisignano G, Lo Curto RB, Waldron KW, Faulds CB (2008). Production of feruloyl esterases and xylanases by *Talaromyces stipitatus* and *Humicola grisea* var. thermoidea on industrial food processing by-products, Bioresour Technol 99:5130-5133.
- [50]. Mathew S, Abraham TE (2005). Studies on the production of feruloyl esterase from cereal brans and sugar cane bagasse by microbial fermentation. Enzyme Microbiol Technol 36:565-570.
- [51]. McDermid KP, MacKenzie CR, Forsberg CW (1990). Esterase activities of *Fibrobacter succinogenes* subsp. succinogenes S85. Appl Environ Microbiol 56:127-132.
- [52]. Mukherjee G, Singh RK, Mitra A, Sen SK (2007). Ferulic acid esterase production by *Streptomyces* sp. Bioresour Technol 98:211-213.
- [53]. Nieter A, Haase-Aschoff D, Linke D, Nimtz M, Berger RG (2014). A halotolerant type A feruloyl esterase from *Pleurotus eryngii*. Funhal boil 118:348-357.
- [54]. Nikos SH, Ioulia S (2004). Enantioselectivity and diastereoselectivity in the transesterification of secondary alcohols mediated by feruloyl esterase from *Humicola insolens*. Tetrahedron Lett 45:2755-2757.
- [55]. Ou S, Zhang J, Wang Y, Zhang N (2011), Production of Feruloyl Esterase from Aspergillus niger by Solid-State Fermentation on Different Carbon Sources Enzyme Res d.o.i 10.406/2011/848939
- [56]. Panagiotou G, Granouillet P, Olsson L (2006). Production and partial characterization of arabinoxylans degrading enzymes by *Penicillium brasilianum* under solid state fermentation. Appl Microbiol Biotechnol 27:1117-1124.
- [57]. Record E, Asther M, Sigoillot C, Pages S, Punt PJ, Haon M, Van den Hondel CAMJJ, Sigoillot JC, Lesage-Meessen L, Asther M (2003). Overproduction of the *Aspergillus niger* feruloyl esterase for pulp bleaching applications. Appl Microbiol Biotechnol 62:349-355.
- a. Rumbold K, Biely P, Mastihubova M, Gudelj M, Gubitz G, Robra KH, Prior BA (2003). Purification and properties of a feruloyl esterase involved in lignocellulose degradation by *Aureobasidium pullulans*. Appl Environ Microb 69:5622-5626.
- [58]. Sarabia LA, Ortiz MC (2009). Response surface methodology. Compre Chemom 1:345-390.
- [59]. Shin HD, Chen RR (2006). Production and characterization of a type B feruloyl esterase from *Fusarium proliferatum* NRRL 26517. Enzyme Microbiol Technol 38:478-485.

- [60]. Shin HD, Chen RR (2007). A type b feruloyl esterase from *Aspergillus nidulans* with broad pH applicability. Appl Microbiol Biotechnol 73:1323-1330.
- [61]. Shin HD, Chen RR (2007). Production and characterization of a type B feruloyl esterase from *Fusarium proliferatum* NRRL 26517. Enzyme Microbiol Technol 38:478-485.
- [62]. Shukla P, Garai D, Zafar Md, Gupta K, Shrivastava S (2007). Process parameter optimization for lipase production by *Rhizopus oryzae* KG-10 under submerged fermentation using response surface methodology. J Appl Sci Environ Sanit 3:93-103.
- [63]. Shyamala H, Gudipati M (2009). Isolation and partial characterization of alkaline feruloyl esterases from *Aspergillus niger* CFR 1105 grown on wheat bran. World J Microbiol Biotechnol 25:1963-1969.
- [64]. Singh S, Nigam VK, Sachan A (2015). Parametric optimization of ferulic acid esterase production from *Mucor hiemalis NCIM 837*. Int J Pharm Pharm Sci 7:230-233.
- [65]. Smith DC, Bhat KM, Wood TM (1991). Xylan-hydrolysing enzymes from thermophilic and mesophilic fungi. World J Microbiol Biotechnol 7:475-484.
- [66]. Szwajgier D, Wasko A, Targonski Z, Niedzwiadek M, Bancarzewska M (2010). The Use of a Novel Ferulic Acid Esterase from *Lactobacillus acidophilus* K1 for the Release of Phenolic Acids from Brewer's Spent Grain. J Inst Brew 116:293-303.
- [67]. Szwajgier D, Jakubczyk A (2011). Production of extracellular ferulic acid esterases by *Lactobacillus* strains using natural and synthetic carbon sources. Acta Sci Pol Technol aliment 10:287-302.
- [68]. Szwajgier D, K Dmowska (2010). Novel ferulic acid esterases from *Bifidobacterium* sp. Produced on selected synthetic and natural carbon sources. Acta Sci Pol Technol Aliment 9:305-318.
- [69]. Techapun C, Charoenrat T, Watanabe M, Sasaki K, Poosaran N (2002). Optimization of thermostable and alcaline-tolerant cellulase-free xylanase production from agricultural waste by thermotolerant *Streptomyces* sp. Ab 106, using the central composite experimental design. Biochem Eng J 12:99-105.
- [70]. Tenkanen M, Schuseil J, Puls J, Poutanen K (1991). Production, purification and characterisation of an esterase liberating phenolic acids from lignocellulosics. J Biotechnol 18:69-84.
- [71]. Topakas E, Kalogeris E, Kekos D, Macris BJ, Christakopoulos P (2003). Production and partial characterization of feruloyl esterase by *Sporotrichum thermophile* under solid-state fermentation. Process Biochem 38:1539-1543.
- [72]. Topakas E, Vafiadi C, Christakopoulos P (2007). Microbial production, characterization and applications of ferulic acid esterases. Process Biochem 42:497-509.
- [73]. Vafiadi C, Topakas E, Wong KKY, Suckling ID, Christakopoulos P (2005). Mapping the hydrolytic and synthetic selectivity of a type C feruloyl esterase (StFAEC) from *Sporotrichum thermophile* using alkyl ferulates. Tetrahedron: Asymmetry 16:373-379.
- [74]. Wejse PL, Ingvorsen K, Mortensen KK (2003). Xylanase production by novel halophilic bacterium increased 20-fold by response surface methodology. Enzyme Microbiol Technol 32:721-727.
- [75]. Wong DWS (2006). Feruloyl esterase: a key enzyme in biomass degradation. Appl Biochem Biotechnol 133:87-112.
- [76]. Wong DWS, Chan V, Liao H and Zidwick MJ (2013). Cloning of a novel feruloyl esterase gene from rumen microbial metagenome and enzyme characterization in synergism with endoxylanases. J Ind Microbiol Biotechnol 40:287-295.
- [77]. Wu M, Abokitse K, Grosse S, Leisch H (2011). New Feruloyl Esterases to Access Phenolic Acids fromgrass Biomass. Appl Biochem Biotechnol 168:129-143.
- [78]. Zhang C, Jia L, Wanga S, Qu J, Li K, Xu L, Shi Y, Yan Y (2010). Biodegradation of β-cypermethrin by two *Serratia* spp. with different cell surface hydrophobicity. Bioresour Technol 101:3423-3429.
- [79]. Zhang SB, Zhai HC, Wang L, Yu GH (2013). Expression, purification and characterization of a feruloyl esterase A from *Aspergillus flavus*. Protein Express Purif 92:36-40.