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 Abstract 

This paper attempts to study Gegenbauer polynomials Orthogonal polynomials Pn  λ−1/2 h  λ−1/2; a 

particular case of the Jacobi polynomials . In the constructive theory of spherical functions the Gegenbauer 

polynomials play an important role. Apart from constant factors they are certain Jacobi polynomials. For α, 

β> −1, the indices, the Jacobi polynomials P µ  . A new formula expressing explicitly the integrals of 

ultraspherical polynomials of any degree that has been integrated an arbitrary number of times of ultraspherical 

polynomials is given.  

The tensor product of ultraspherical polynomials is used to approximate a function of more than one 

variable. Formulae expressing the coefficients of differentiated expansions of double and triple ultraspherical 

polynomials in terms of the original expansion are stated and proved. The Weierstrass elliptic function is 

implemented in the Wolfram Language as WeierstrassP[u, g2, g3 ]. Half-periods and invariants can be 

interconverted using the Wolfram Language commands Weierstrass Invariants[ omega1, omega2 ] 

and Weierstrass Half Periods[ g2, g3 ]. The derivative of a Weierstrass elliptic function is implemented 

as WeierstrassPPrime[u, g2, g3 ], and the inverse Weierstrass function is implemented as Inverse 

WeierstrassP[p, g2, g3 ]. Inverse WeierstrassP[ p, q , g2, g3 ] finds the unique value of  for 

which  and . A symmetric polynomial on  variables , ...,  (also called a 

totally symmetric polynomial) is a function that is unchanged by any permutation of its variables. In other 

words, the symmetric polynomials satisfy 

 

(1) 

where  and  being an arbitrary permutation of the indices 1, 2, ..., . 

For fixed , the set of all symmetric polynomials in  variables forms an algebra of dimension . The 

coefficients of a univariate polynomial  of degree  are algebraically independent symmetric polynomials 

in the roots of , and thus form a basis for the set of all such symmetric polynomials. 

There are four common homogeneous bases for the symmetric polynomials, each of which is indexed 

by a partition  (Dumitriu et al. 2004). Letting  be the length of , the elementary functions , complete 

homogeneous functions , and power-sum functions  are defined for  
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Introduction 

The (associated) Legendre function of the first kind  is the solution to the Legendre differential 

equation which is regular at the origin. For  integers and  real, the Legendre function of the first kind 

simplifies to a polynomial, called the Legendre polynomial. The associated Legendre function of first kind is 

given by the Wolfram Language command LegendreP[n, m, z], and the unassociated function 

by LegendreP[n, z]. 3-parameter class of Askey-Wilson polynomials being expanded in terms of continuous q-

ultraspherical polynomials with a product of two 2ϕ2's as coefficients, and an analytic proof will be given for 

it. Then Gegenbauer's addition formula for ultraspherical polynomials and Rahman's addition formula for q-

Bessel functions will be obtained as limit cases. This q-analogue of Gegenbauer's addition formula is quite 

different from the addition formula for continuous q-ultraspherical polynomials obtained by Rahman and 

Verma in 1986. Furthermore, the functions occurring as factors in the expansion coefficients will be interpreted 

as a special case of a system of biorthogonal rational functions with respect to the Askey-Roy q-beta measure. 

A degenerate case of this biorthogonality are Pastro's biorthogonal polynomials associated with the Stieltjes-

Wigert polynomials. The Weierstrass constant is defined as the value , where  is 

the Weierstrass sigma function with half-periods  and . Amazingly, it has the closed form 

(OEIS A094692), where  is the gamma function. The case of the Weierstrass elliptic function with 

invariants  and . The half-periods for this case are  and , where  is 

the lemniscate constant 

The second-order ordinary differential equation 

 

  

sometimes called the hyperspherical differential equation  . The solution to this equation is 

 

  

where  is an associated Legendre function of the first kind and  is an associated Legendre 

function of the second kind. 

A number of other forms of this equation are sometimes also known as the ultraspherical or 

Gegenbauer differential equation, including 

 

  

The general solutions to this equation are 
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If  is an integer, then one of the solutions is known as a Gegenbauer polynomials , 

also known as ultraspherical polynomials. 

The form 

 

  

is also given by Infeld and Hull   and Zwillinger  . It has the solution 

 

 

  

Objective: 

This paper intends to explore Gegenbauer polynomials or ultraspherical polynomials C α–1/2. They 

generalize Legendre polynomials and Chebyshev polynomials, and are special cases of Jacobi polynomials. 

Gegenbauer polynomials  

The Gegenbauer polynomials  are solutions to the Gegenbauer differential equation for integer . They 

are generalizations of the associated Legendre polynomials to -D space, and are proportional to (or, 

depending on the normalization, equal to) the ultraspherical polynomials . 

Following Szegö, in this work, Gegenbauer polynomials are given in terms of the Jacobi 

polynomials  with  by 

 

  

(Szegö 1975, p. 80), thus making them equivalent to the Gegenbauer polynomials implemented in 

the Wolfram Language as GegenbauerC[n, lambda, x]. These polynomials are also given by the generating 

function 

 

  

The first few Gegenbauer polynomials are 
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In terms of the hypergeometric functions, 

 

 

 

  

  

 

  

  

 

  

They are normalized by 

 

( 

for . 

Derivative identities  
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Consider the probability  that no two people out of a group of  will have matching birthdays out 

of  equally possible birthdays. Start with an arbitrary person's birthday, then note that the probability that the 

second person's birthday is different is , that the third person's birthday is different from the first two 

is , and so on, up through the th person. Explicitly, 

  

 

  

  

 

  

But this can be written in terms of factorials as 

 

  

so the probability  that two or more people out of a group of  do have the same birthday is therefore 

   

  

  

 

  

In general, let  denote the probability that a birthday is shared by exactly  (and no more) people out of 

a group of  people. Then the probability that a birthday is shared by  or more people is given by 

 

  

In general,  can be computed using the recurrence relation 

 

  

 However, the time to compute this recursive function grows exponentially with  and so rapidly becomes 

unwieldy. 

If 365-day years have been assumed, i.e., the existence of leap days is ignored, and the distribution of birthdays 

is assumed to be uniform throughout the year  , then the number of people needed for there to be at least a 

50% chance that at least two share birthdays is the smallest  such that . This is given by , 

since 
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The number  of people needed to obtain  for , 2, ..., are 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, ...  . 

The Jacobi polynomials, also known as hypergeometric polynomials, occur in the study of rotation groups and 

in the solution to the equations of motion of the symmetric top. They are solutions to the Jacobi differential 

equation, and give some other special named polynomials as special cases. They are implemented in 

the Wolfram Language as JacobiP[n, a, b, z]. 

For ,  reduces to a Legendre polynomial. The Gegenbauer polynomial 

 

  

and Chebyshev polynomial of the first kind can also be viewed as special cases of the Jacobi polynomials. 

Plugging 

 

  

into the Jacobi differential equation gives the recurrence relation 

 

  

for , 1, ..., where 

 

  

 

Solving the recurrence relation  

 

 

  

for . They form a complete orthogonal system in the interval  with respect to the weighting 

function 

 

  

and are normalized according to 
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where  is a binomial coefficient. Jacobi polynomials can also be written 

 

  

where  is the gamma function and 

 

  

Jacobi polynomials are orthogonal polynomials and satisfy 

 

 

The coefficient of the term  in  is given by 

 

  

They satisfy the recurrence relation 

 

 

hypergeometric function of probability  

The probability  can be estimated as 

   

 

  

 

  

where the latter has error 

 

  

 . 

 can be computed explicitly as 
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where  is a binomial coefficient and  is a hypergeometric function. This gives the explicit 

formula for  as 

   

  

  

 

  

where  is a regularized hypergeometric function. 

A good approximation to the number of people  such that  is some given value can be given by 

solving the equation 

 

  

for  and taking , where  is the ceiling function  . For  and , 2, 3, ..., this formula gives , 

23, 88, 187, 313, 459, 622, 797, 983, 1179, 1382, 1592, 1809, ... (OEIS A050255), which differ from the true 

values by from 0 to 4. A much simpler but also poorer approximation for  such that  for  is given 

by 

 

  

 , which gives 86, 185, 307, 448, 606, 778, 965, 1164, 1376, 1599, 1832, ... for ,     and  are labeled 

such that , where  is the imaginary part. 

Conclusion 

The solutions are Jacobi polynomials  or, in terms of hypergeometric functions, as 

 

  

The equation (2) can be transformed to 

 

 

where 
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A "cell" of an elliptic function is defined as a parallelogram region in the complex plane in which the function 

is not multi-valued. Properties obeyed by elliptic functions include 

1. The number of poles in a cell is finite. 

2. The number of roots in a cell is finite. 

3. The sum of complex residues in any cell is 0. 

4. Liouville's elliptic function theorem: An elliptic function with no poles in a cell is a constant. 

5. The number of zeros of   , this is impossible. 

7. Elliptic functions with a single pole of order 2 with complex residue 0 are called Weierstrass elliptic 

functions. Elliptic functions with two simple poles having residues  and  are called Jacobi elliptic 

functions. 

8. Any elliptic function is expressible in terms of either Weierstrass elliptic function or Jacobi elliptic 

functions. 

9. The sum of the affixes of roots equals the sum of the affixes of the poles. 

10. An algebraic relationship exists between any two elliptic functions with the same periods. 

The elliptic functions are inversions of the elliptic integrals. The two standard forms of these functions are 

known as Jacobi elliptic functions and Weierstrass elliptic functions. Jacobi elliptic functions arise as 

solutions to differential equations of the form 
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