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    Abstract.  The unsteady flow of a dusty incompressible Newtonian fluid with time dependent pressure 

gradient through the trachea of human respiratory system has been investigated. The effects of two 

parameters viz. f, the mass concentration and r , the relaxation time on fine and coarse dust particles are 

studied. The analytical expressions for velocity, flow rate and shear stress are obtained for clean air, air 

with fine dust particles and air with coarse dust particles respectively and their natures are shown 

graphically for different radial coordinate and different time due to dust parameters f and r  to elucidate 

the problem. 

AMS Mathematics subject classification : 76Z05 

    1. Introduction.  During inhalation various types of liquid and solid particles are transported with air 

through trachea and eventually lead to lungs. These types of particles usually generate from different kinds 

of natural and industrial sources including condensation, smokes, soils and sands, volcanic activities, pollens 

and micro flora, known as aerosols. Dusts are small particles of substances in a solid state, most of which are 

microscopic, i.e., not visible to the naked eye. These dust particles circulate in the air and often come into 

contact with human organs, which lead to number of health hazards. Various types of dusts containing the 

compounds of sulphar, iron, nitrogen, lead, carbon etc. which usually generates from mines and industries 

cause serious health hazards, e.g. 

(i)  allergic reactions and patches in the skin; 

(ii) irritation on eyes which may lead to partial loss of vision; 

(iii) poisoning of blood and harmful reactions on the excretory system leading to glomerulo                     

nephritis; 

(iv) various types of lung diseases such as pneumoconiosis, bronchitis which may lead to      bronchial 

asthma, lung cancer etc. 

So it is of great interest to the researchers to trace out the characteristics of various types of dusty fluids 

within the human organs. Saffman (1961) studied the stability of laminar flow of a dusty gas by assuming 

that the dust particles are uniform in size and shape and uniformly                distributed but the bulk 

concentration of the dust is very small. The fluid embedded with particles have been studied by Michael and 

Norey (1966), Healey and Young (1972). Liu (1966, 1967) and Michael and Miller (1966) studied the flow 

produced by the motion of an infinite plate in a dusty gas occupying the semi-infinite space above it. The 

concerning health effects of particulate matter was analyzed by Lodge et al. (1981). S. Rao (1969) studied 

the unsteady flow of a dusty fluid through a uniform pipe under the influence of experimental pressure 

gradient with respect to time. Singh (1976) and Gupta and Gupta (1976) discussed the flow of a dusty fluid 

through a channel with arbitrary time varying pressure gradient. Ratchagar and Chitra (2007) considered the 
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motion of dusty air within the trachea taking different sizes of the dust particles. The particles with size in 

the range between 0.1 m  and 2 m  are termed as fine particles whereas the particles with size above 2 m  

are termed as coarse particles. 

    In this paper we analyze the unsteady laminar flow of dusty air within the trachea taking different sizes of 

dust particles and assuming the pressure gradient to be time dependent. Since the velocity of air in the lung 

airways are always small as compared with the speed of sound, the compressibility effects can be neglected 

(1985) and so, here, we consider the air to be incompressible fluid. In this case the dust is represented by the 

number density N of small dust particles whose volume concentration is small but has appreciable mass 

concentration. We also distinguish between fine and coarse dust particles as in the work of Ratchagar and 

Chitra (2007). When the dusts are fine, the relaxation time r decreases whereas if the dusts are coarse then 

the relaxation time r increases in a manner proportional to the surface area of the particles. For these two 

extreme values of relatively small and large relaxation time r , it is possible to simplify the equation of 

motion and we shall examine these two limiting cases. The analytical expressions for flow velocity, flow 

rate and wall shear stress are derived. Also some particular cases when the pressure gradient is an 

exponentially decreasing function of time, periodic function of time etc. are discussed. The effects of 

relaxation time r , mass concentration f of the dust particles on flow velocity, flow rate and wall shear stress 

are shown through the graphs. 

 

    2. Mathematical Formulation of the Problem.  Let us consider the flow of clean air and 

dusty air through the symmetric form of a circular tube of trachea. The equations of motion for dusty air are 
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where ( , , )au r z t is the velocity of particles of clean air, ( , , )du r z t is the velocity of dust particles in the 

direction of the axis of the tube, which is taken as the z axis. 

    The initial and boundary conditions are given by 
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Here  is the density of the clean air, p is the pressure, a is the kinematic coefficient of viscosity, m is the 

mass of the dust particle, K is the Stokes’ drag coefficient (for spherical particles of radius r, K=6 r  ), 0N is 

the number density of the dust particles and t is the time. 
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    For simplicity, let us introduce non-dimensional quantities by putting 
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where r is the relaxation time, f is the mass concentration of the dust particles, 0R is the radius of the trachea 

and L is the length of the trachea. 

    Using the above non-dimensional quantities in equations (2.1) to (2.3) we get (dropping the primes) 
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Here the time varying pressure gradient is taken in the form 
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where 0p is constant and 1( )p t is a function of time. 

 

    3. Solutions of the Problem.  To find the solutions, we decompose the velocity into a steady and 

an unsteady part as 
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where asu and atu are the steady and unsteady parts of clean air and dsu and dtu are the steady and unsteady 

parts of dusty air respectively. 

    Using (3.1) in equations (2.4) and (2.5) and then separating steady part we get 

2
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The corresponding boundary conditions are 
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The solution of (3.2) subject to the boundary conditions (3.3) is 
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    Again using (3.1) in (2.4) and (2.5) and then considering unsteady parts we get 
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    The corresponding initial and boundary conditions are  
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    Applying Laplace transformations we may rewrite the boundary conditions of (3.7) as 
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where U and V are the Laplace transforms of atu and dtu respectively and s is the Laplace transform 

parameter. 

    Again from (3.5) and (3.6) and using (3.7) we get 
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Eliminating V between (3.9) and (3.10) we get 
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    Also applying the finite Hankel transform on (3.11) and by considering (3.8) we get 
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where U( , )n s  is the Hankel transform of U(r,s) with 0 ( )nrJ r  as the kernel of the transform and n  are the 

roots of the equation 0 ( )J  = 0. 

Taking inverse Hankel transform of (3.12) we get 
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    For clean air 0r   and f =0 which give A= 0p  and s  . 

    Substituting the values of A and   in (3.13) we get 

0 0
1 02 2 3

1 11 1

( ) ( )1 1
( , ) 2 ( ) 2

( ) ( )

n n

n nn n n n n n

J r J r
U r s p s p

s J s J

 

     

 

 

 
 

  .   (3.14) 

Taking inverse Laplace transform we get 
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    Hence, the expression for the velocity of the clean air is obtained from (3.4) and (3.15) as 
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    Now we consider the effects of fine and coarse dust particles which enter into the model through the 

parameters f and r . If the dusts are fine then the relaxation time r  decreases whereas when the dusts are 

coarse, the relaxation time r  increases in a manner proportional to the surface area of the particles. For 

these two extreme values of r  relatively small or large it is possible to simplify the equations of motion 

(2.4) and (2.5) and examine these two limiting cases. 

    Considering L  as length scale and U  as velocity scale we observe that the left hand side of (2.5) is of 
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    Case(i): Fine dust particles.  For fine dust particles r
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Substituting (3.17) in (2.4) we get 
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Taking 
fu  as the velocity of fine dust particles we obtain 
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The corresponding initial and boundary conditions are 
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As above we decompose ( , )fu r t  into a steady and an unsteady parts as 
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as the steady state equation. The corresponding boundary conditions as obtained from (3.20) are 
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Using (3.23) we obtain the solution of (3.22) as 
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    Similarly we obtain the unsteady state equation as 
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Then applying Laplace transform we may rewrite the boundary conditions of (3.26) as 
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where 
ftU is the Laplace transform of 

ftu and s is the Laplace transform parameter. 

Also the equation (3.25) transforms to 
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    Applying the finite Hankel transform on (3.28) and then using (3.27) we get 
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where U ( , )ft n s is the Hankel transform of 
ftU (r,s) with 0 ( )nrJ r as the kernel of the transform and n  are 

the roots of the equation 0 ( )J  = 0. 

    Inverse Hankel transform of (3.29) gives 
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Taking inverse Laplace transform of (3.30) we get 
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Thus the required velocity for fine dust is obtained from (3.24) and (3.31) as 
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L

U
   which arises due to sufficiently 

coarse dust particles or sufficiently fast flow. In this case, for disturbances of time scale 
L

U
or smaller, the 

dust perturbation velocity du is negligible. Thus equation (2.4) reduces to 

2

0 1 2

1
( )a a a

a

u u u
p p t u

t r r r


  
   

  
.     (3.33) 

Taking cu as the velocity of the coarse dust particle we rewrite (3.33) as 
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The corresponding initial and boundary conditions are 
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As above we decompose cu  in a steady and an unsteady part as 
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    Applying finite Hankel transform on (3.37) and then using (3.38) we obtain 

   0 1

2

( ) 1n
cs

n n

p J
U



  



.      (3.39) 

where Ucs ( n ,s) is the Hankel transform of csU (r,s) with 0 ( )nrJ r as the kernel of the transform and n  are 

the roots of the equation 0 ( )J  = 0. 

Taking inverse Hankel transform of (3.39) we get 

   0
0 2

1 1

( )
( ) 2

( ) ( )

n
cs

n n n n

J r
u r p

J



   








 .     (3.40) 

    Finally from (3.34) we get the equation for unsteady state as 

2

12

1
( )ct ct ct

ct

u u u
u p t

t r r r


  
   

  
.     (3.41) 

and the corresponding initial and boundary conditions are 

0
0 2

1 1

( )
2         at  t = 0,

( ) ( )

0                                                  at  r = 0,

0                                                     at  r = 1

n
ct cs

n n n n

ct
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J r
u u p

J

u

r

u



   






  




 
 
 






.   (3.42) 

Applying Laplace transform we rewrite the boundary conditions of (3.42) as 

   
0         at  r = 0,

0            at  r = 1

ct

ct

U

r

U

 
 

 
 

      (3.43) 
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where ctU is the Laplace transform of ctu and s is the Laplace transform parameter. 

    Thus from (3.41) and (3.42) we get 

2

0
1 02 2

1 1

( )1
( ) ( ) 2

( ) ( )

ct ct n
ct

n n n n

d U dU J r
s U p s p

dr r dr J




   





     


 .   (3.44) 

Applying finite Hankel transform we solve (3.44) as 

 1 1 0 1

2 2 2

( ) ( ) ( )

( ) ( ) ( )

n n
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n n n n n

p s J p J
U

s s

 

       
 

    
     (3.45) 

where U ( , )ct n s is the Hankel transform of ctU (r,s) with 0 ( )nrJ r as the kernel of the transform and n  being 

the roots of the equation 0 ( )J  = 0. Inverse Hankel transform of (3.45) gives 
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1 2 22

1 11 1
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2 ( ) 2
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    (3.46) 

and inverse Laplace transform of (3.46) gives 

2 2( ) ( )0 0
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 

 
   
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  . (3.47) 

Thus the required velocity for coarse dust is obtained from (3.40) and (3.47) as 
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  . (3.48) 

 

Flow rate 

    The flow rate for clean air is given by 

12
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The flow rate for fine dusty air is given by 
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and that for coarse dusty air is given by 
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Wall shear stress 

    The wall shear stress for clean air is 
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    The wall shear stress for fine dusty air is 
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whereas that for coarse dusty air is 
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    Particular cases : 

    Case (i). When the pressure gradient is exponentially decreasing function of time 

    Here we consider 
1( ) tp t Ce  . Then from (3.16) 
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Also from (3.32), we have 
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and from (3.48) 
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Flow rate 

    The flow rate for clean air from (3.49) is given by 
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and that for fine dusty air from (3.50) is 
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Finally, the flow rate for coarse dusty air from (3.51) is obtained as 
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Wall shear stress 

    The wall shear stress for clean air from (3.52) is 
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The wall shear stress for fine dusty air from (3.53) is 

f t   =

2

2
1( )

2 10
0 02 2

1 1

2 1 2
2

1

n

n
t

t ft
f

a

n nn n

p Ce e
e p

f


 

 
 




   



 

 
   
    
     

  .   (3.62) 

The wall shear stress for coarse dusty air from (3.54) is 
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    Case (ii). When the pressure gradient is constant 

    Here we put  =0 in case (i) and then we get similar results as in Ratchagar and Chitra (2007). 

In a similar manner we may consider the following cases : 

    Case (iii). When the pressure gradient is periodic function of time 

 i.e., 1( ) sinp t C t  . 

    Case (iv). When 
1( ) tp t Cte  . 

 

    4. Numerical Results and Discussions.  From the above mathematical analysis it is clear that 

the velocity, flow rate and wall shear stress depend upon the dust parameters f and r . Here the effects of 

these parameters on velocity, flow rate and wall shear stress are shown through figures 1 - 4 . 

    In fig. 1, the changes in velocity for clean air, fine dusty air and coarse dusty air with radial coordinate are 

shown. It is observed in fig. 1 that increase in time t decreases velocities. Also the velocity for clean air 

attains its maximum, whereas the velocity for coarse dusty air attains its minimum at the same values of the 

parameters, i.e., 

        , , ,a f cu r t u r t u r t   for  0 < r < 1. 

    In fig. 2, the changes in velocity for clean air, fine dusty air and coarse dusty air with time are shown. 

Here we observe that 

        , , ,a f cu r t u r t u r t   for  0 < t < 1. 

In fact, in the case of clean air there is no resistance due to the dust particles, whereas due to the presence of 

fine dust particles the velocity of the fine dusty air is lesser than the clean air. In the case of coarse dust 

particles the resistance is high and for this reason, the velocity of coarse dusty air is minimum. 

    In fig. 3, the variations in flow rate with time is shown. The resistance of dust particles reduces the flow 

rate of air. Hence the flow rate of clean air is maximum and coarse dusty air is minimum, i.e., 

     a f cQ t Q t Q t   for  0 < t < 1. 

    In fig. 4, the changes in wall shear stress with time is shown. Due to the resistance of dust particles, the 

wall shear stress of coarse dusty air becomes maximum and the wall shear stress of clean air becomes 

minimum, i.e., 

     c f at t t     for  0 < t < 1. 
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Fig. 1 : Radial coordinate r versus axial velocity u taking different values of time t 
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Fig. 2 : Time t versus axial velocity u taking different values of radial coordinate r 
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Fig. 3 : Time t versus flow rate Q taking different values of viscosity 
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Fig. 4 : Time t versus wall shear stress   taking different values of viscosity 

 

    5. Conclusions.  In industrial areas various types of metallic dusts are found in the surrounding air 

accompanied with several kinds of harmful compounds. Also in the mines dusts of several kinds of ores are 

found in the air. These dusts usually enters into the human organs during inhalation. Thus it is quite 

necessary to trace out the flow of dusty air in trachea to reveal the flow velocity, flow rate and wall shear 

stress of the dusty air. It is expected that the dust particles resist the velocity of air within trachea, so it is 

quite natural that the velocity of clean air become more than that of the fine dusty air, which is again more 
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than that of the coarse dusty air. The flow rate is obviously maximum for clean air and minimum for coarse 

dusty air. As the resistance of dust particles increases the wall shear stress, the wall shear stress of coarse 

dusty air is maximum whereas that is minimum for clean air. Our present discussion also gives the identical 

results. 
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