
© 2019 JETIR May 2019, Volume 6, Issue 5                                                             www.jetir.org (ISSN-2349-5162) 

JETIR1905X14 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 120 
 

INTUITIONISTIC FUZZY METRIC SPACE 

AND SUB-SEQUENTIAL CONTINUOUS 

MAPPINGS 
 

V.K. Gupta1, Sandeep Kumar Tiwari2 and Balaram Kalesariya3 

1Department of Mathematics, Govt. Madhav Science P.G. College, Ujjain (M.P.) 

2,3 School of Studies in Mathematics, Vikram University, Ujjain (M.P.) 

ABSTRACT 

Abstract : The present paper deals with common fixed point theorems in intuitionistic fuzzy metric 

space employing the notion of sub-sequentially continuity.  Our result extends and improves recent 

results of Singh & Jain [19] in the sense that all maps involved in the theorems are discontinuous even 

at common fixed point. 

 

Keywords : Common fixed point, intuitionistic fuzzy metric space, weakly compatible mappings, semi-

compatible mappings, sub-sequentially continuous mappings.  

AMS Subject Classification (2010) : Primary 47H10, Secondary 54H25. 

1. INTRODUCTION 

After Zadeh [21] introduced the concept of fuzzy sets in 1965, many authors have 

extensively developed the theory of fuzzy sets and its applications. Specially to mention, fuzzy 

metric spaces were introduced by Deng [4], Erceg [7], Kaleva and Seikkala [12], Kramosil and 

Michalek [13]. In this paper we use the concept of fuzzy metric space introduced by Kramosil 

and Michalek [13] and modified by George and Veeramani [8] to obtain Hausdorff topology for 

this kind of fuzzy metric space. Recently Singh et. al. [19] introduced the notion of semi-

compatible maps in fuzzy metric space and compared this notion with  the notion of 

compatible map, compatible map of type  (α), compatible map of type (β) and obtain some 

fixed point theorems in complete fuzzy metric space in the sense of Grabiec [6]. 

Atanassov [2] introduced and studied the concept of intuitionistic fuzzy set. In 2004, the notion of 

intuitionistic fuzzy metric space defined by Park [18] is a generalization of fuzzy metric space due to 

George and Veeramani [8]. Actually, Park’s concept is useful in modeling some phenomena where it is 

necessary to study relationship between two probability functions. It has a direct physics motivation in the 

context of the two slit experiment as foundation of E-infinity of high energy physics, recently studied by El 

Naschie in [5, 6].   Afterwards, using the idea of Intuitionistic Fuzzy set,  Alaca et al. [1] defined the notion 

of Intuitionistic Fuzzy Metric space, as Park [18] with the help of continuous t–norms  and continuous t–

conorms, as a generalization of fuzzy metric space due to Kramosil and Michalek [14]. Further Coker [3], 

Turkoglu [20] and others have been expansively developed the theory of Intuitionistic Fuzzy set and 

applications. After generalizing the Jungck's [11] common fixed point theorem in intuitionistic fuzzy 

metric, Turkoglu et al. [20] introduced the notion of Cauchy sequences in intuitionistic fuzzy metric space 
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space and proved the intuitionistic fuzzy version of Pant's theorem [17] by giving the definition of weakly 

commuting and R-weakly commuting mappings in intuitionistic fuzzy metric space.    

In the present paper we prove fixed point theorems in complete intuitionistic fuzzy metric space by 

replacing continuity condition with a weaker condition called subsequential continuity. Employing the 

notion of subsequential continuity of mappings we can widen the scope of many interesting fixed point 

theorems in intuitionistic fuzzy metric space. 

For the sake of completeness, we recall some definitions and known results in Fuzzy metric space.  

2. PRELIMINARIES 

Definition 2.1. [1]  A binary operation ∗ : [0,1] × [0, 1][0,1] is continuous t-norm if  

∗ satisfies the following conditions : 

(i) ∗ is commutative and associative; 

(ii) ∗ is continuous; 

(iii) a ∗ 1 = a for all a [0,1]; 

(iv) a ∗ b   c ∗ d whenever a c and b d for all a, b, c, d  [0,1].  

 Examples of t-norm are a ∗ b = min{a, b} and a ∗ b = ab.  

Definition 2.2. [1]  A binary operation : [0,1] × [0,1][0,1] is continuous t-conorm if  satisfies the 

following conditions : 

(i)  is commutative and associative; 

(ii)  is continuous; 

(iii) a  0  = a for all a [0,1]; 

(iv) a  b c d whenever a  c and b  d  

for all a, b, c, d [0,1]. 

Examples of t-conorm are a b = max{a, b} and a b= min{1, a+b}. 

Remark 2.1. [1] The concepts of triangular norms (t-norms) and triangular co-norms  

(t-conorms) are known as axiomatic skeletons that we use for characterizing fuzzy intersections and unions 

respectively.   

Definition 2.3. [1] A 5-tuple (X, M, N, ∗, ) is said to be an intuitionistic fuzzy metric space (IFM-space) if 

X is an arbitrary set, * is a continuous t-norm,  is a continuous t-conorm and M, N are fuzzy set on X2 × 

[0, ) satisfying the following conditions : 

(i) M(x, y, t) + N(x, y, t)  1 for all x, y X and t > 0;  

(ii) M(x, y, 0) = 0 for all x, y X; 

(iii) M(x, y, t) = 1 for all x, y X and t > 0 if and only if x = y; 

(iv) M(x, y, t) = M(y, x, t) for all x, y X and t > 0; 

(v) M(x, y, t) ∗ M(y, z, s)  M (x, z, t+s) for all x, y, z X and s, t >0; 

(vi) for all x, y X, M(x, y, .) : [0, ) [0,1] is left continuous; 

(vii) limt M(x, y, t) = 1 for all x, y X and t > 0; 
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(viii) N(x, y, 0) = 1 for all x, y X; 

(ix) N(x, y, t) = 0 for all x, y X and t > 0 if and only if x = y; 

(x) N(x, y, t) = N(y, x, t) for all x, y  X and t > 0; 

(xi) N(x, y, t)  N(y, z, s)  N(x, z, t + s)  for all x, y, z X and s, t > 0; 

(xii) for all x, y X,  N(x, y, .) : [0,)  [0,1] is right continuous ; 

(xiii) limt N(x, y, t) = 0 for all x, y in X. 

 Then (M, N) is called an intuitionistic fuzzy metric on X. The functions M(x,y,t) and N(x,y,t) 

denote the degree of nearness and the degree of non-nearness between x and y with respect to t, 

respectively. 

Remark 2.2. [1] Every fuzzy metric space (X, M, ∗) is an intuitionistic fuzzy metric space of the form (X, 

M, 1 - M, ∗, ) such that t-norm * and t-conorm  are associated, i.e,   

              x  y = 1 – [(1 - x) ∗ (1 - y)]   for all  x, y X. 

Example 2.1. [1] Let (X, d) be a metric space. Define t-norm a ∗ b = min{a,b} and  

t -conorm a b = max{a, b} and for all x, y X and t >  0, 

d d

t d(x, y)
M (x, y, t) , N (x, y, t) .

t d(x, y) t d(x, y)
 

 
 

Then (X, M, N, ∗, ) is an IFM-space and the intuitionistic fuzzy metric (M, N) induced 

by the metric d is often referred to as the standard intuitionistic fuzzy metric. 

Remark 2.3. [1] In intuitionistic fuzzy metric space (X, M, N, ∗, ), M(x, y, .) is non-decreasing and N(x, 

y, .) is non-increasing for all x, y X.  

Definition 2.4. [1] Let (X, M, N, ∗, ) be an intuitionistic fuzzy metric space. Then  

(a) a sequence {xn} in X is said to be Cauchy sequence if, for all t > 0 and p > 0,           

   
n
lim


M(xn+p, xn, t) = 1  and    
n
lim


N(xn+p, xn, t) = 0. 

(b) a sequence {xn} in X is said to be convergent to a point x  X if, for all t > 0, 

   
n
lim


M(xn, x, t) = 1     and     
n
lim


N(xn, x, t) = 0. 

Since ∗ and  are continuous, the limit is uniquely determined from (v) and (xi) respectively. 

Definition 2.5. [1] An intuitionistic fuzzy metric space (X, M, N, ∗, ) is said to be complete if and only if 

every Cauchy sequence in X is convergent. 

Lemma 2.1. [2] Let (X, M, N, ∗, ) be an intuitionistic fuzzy metric space. If there exists k (0,1) such 

that  

M(x,y,kt) M(x,y,t) and N(x,y,kt) N(x,y,t) for x, y  X.  

Then x = y. 

Definition 2.6.[1] Two maps A and B from an intuitionistic fuzzy metric space  

(X, M, N, ∗, ) into itself are said to be compatible if  

 
n
lim


M(ABxn, BAxn, t) = 1  and    
n
lim


N(ABxn, BAxn, t) = 0 

for all t > 0, whenever {xn} is a sequence in X such that  
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n
lim


Axn = 
n
lim


Bxn= x   for some x  X. 

Definition 2.7. [15] Two maps A and B from an intuitionistic fuzzy metric space  

(X, M, N, *, ) into itself are said to weakly compatible if they commute at their coincidence points.  

Remark 2.4. [15]  Weak compatible maps are more general than compatible maps.  

Motivated by [19], we define the following : 

Definition 2.6.[1] Two maps A and B from an intuitionistic fuzzy metric space  

(X, M, N, ∗, ) into itself are said to be semi-compatible if  

 
n
lim


M(ABxn, Bx, t) = 1  and    
n
lim


N(ABxn, Bx, t) = 0 

for all t > 0, whenever {xn} is a sequence in X such that  

  
n
lim


Axn = 
n
lim


Bxn= x   for some x  X. 

Definition 2.8. Two self maps A and S of an intuitionistic fuzzy metric space are called reciprocal 

continuous if   
n
lim


ASxn= At  and  
n
lim


SAxn= St for some t in X whenever {xn}is a sequence in X such that 

  n
lim


Axn = 
n
lim


Sxn= t. 

Definition 2.9. [16] Two self maps A and S of an intuitionistic fuzzy metric space are said to be 

subsequentially continuous if and only if there exists a sequence {xn} in X such that  

n
lim


Axn= 
n
lim


Sxn= t for some t in X and satisfy   

n
lim


ASxn=At    and 
n
lim


SAxn= St.  

Clearly, if A and S are continuous then they are obviously sub-sequentially continuous. The next 

example shows that there exist sub-sequential continuous pairs of mappings which are neither continuous 

nor reciprocally continuous. 

Example 2.2. Let X = R, endowed with metric d. Define t-norm a ∗ b = min{a,b} and  

t -conorm a b = max{a, b} and for all x, y X and t >  0, 

d d

t d(x, y)
M (x, y, t) , N (x, y, t) .

t d(x, y) t d(x, y)
 

 
 

Define the self mappings A, S as follows :  

A(x) = {
2,      x < 3
x,      x ≥ 3

}    and         S(x) = {
2x − 4,      x ≤ 3
 3,                x > 3

}. 

Consider a sequence    xn = 3 +
1

n
 ; then, 

A(xn) = (3 +
1

n
) → 3 , S(xn) = 3,SA(xn) = S (3 +

1

n
) = 3 ≠ S(3) = 2, as  n→∞ . 

Thus A and S are not reciprocally continuous but, if we consider a sequence n

1
x 3 ,

n
    then  

A(xn) = 2, S(xn) = 2 (3 −
1

n
) − 4 = (2 −

2

n
) = 2 as  n→∞ 

AS(xn) = A (2 −
2

n
) = 2 = A(2), SA(xn) = S(2) = 0 = S(2)as n→∞ 

Therefore, A and S are sub sequentially continuous. 
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Remark 2.5. [10] If A and S are continuous or reciprocally continuous then they are obviously sub 

sequentially continuous, but converse is not true. 

3. MAIN RESULTS. 

 In the following theorem we replace the continuity condition by weaker notion sub-sequential 

continuous to get more general form of result 4.1, 4.2 and 4.9 of [19] in intuitionistic fuzzy metric 

space. 

Theorem 3.1. Let A, B , S and T be self maps on a complete intuitionistic fuzzy metric space ( X, 

M, N, ∗, ) where * is a continuous t-norm and  is a continuous t –conorm satisfying : 

(3.1)  A(X)  T(X), B(X)  S(X); 

(3.2)  (B, T) is weak compatible; 

(3.3)  for all x, y  X and  t > 0, M(Ax, By, t)  (M(Sx, Ty, t)),  

                                                      N(Ax, By, t)  (N(Sx, Ty, t)), 

where [0,1]  [0, 1] is a continuous function such that 

(1) = 1, (0) = 0 and  (a) > a for each 0 < a < 1. 

 If (A, S) is semi-compatible pair of sub-sequential continuous maps then A, B, S and T have a 

unique common fixed point. 

Proof.  Let x0  X be any arbitrary point. Then for which there exists  

x1, x2 X such that Ax0 = Tx1 and Bx1 = Sx2. Thus  we can  construct a sequences {yn} and {xn} 

in X such that  

y2n+1= Ax2n = Tx2n+1 , y2n+2 = Bx2n+1 = Sx2n+2 for n  = 0, 1, 2, 3,  . . . . 

By contractive condition, we get 

       M(y2n+1, y2n+2, t) = M(Ax2n, Bx2n+1, t) 

                                   (M(Sx2n, Tx2n+1 , t ))  

               = (M(y2n, y2n+1, t))  

    > M(y2n, y2n+1, t )  and 

       N(y2n+1, y2n+2, t) = N(Ax2n, Bx2n+1, t) 

                                  (N(Sx2n, Tx2n+1 , t ))  

              = (N(y2n, y2n+1, t))  

    < N(y2n, y2n+1, t ). 

Similarly,  we get 

    M(y2n+2, y2n+3, t) > M(y2n+1, y2n+2, t )  and 

    N(y2n+2, y2n+3, t) <  N(y2n+1, y2n+2, t ). 

In general, 

  M(yn+1, yn, t)  (M(yn, yn−1, t)) 

           > M(yn, yn−1, t ) and 

N(yn+1, yn, t)   (N(yn, yn−1, t)) 
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          <  N(yn, yn−1, t ). 

We claim that l = 1 .   

If l < 1 then M(yn+1, yn, t)  M(yn, yn−1, t) and 

            N(yn+1, yn, t)  M(yn, yn−1, t).     

On letting n  we get 

   
n
lim


M(yn+1, yn, t)   (
n
lim


M(yn , yn−1, t )) and 

n
lim


N(yn+1, yn, t)   (
n
lim


N(yn , yn−1, t )) 

i.e. l  (l) = l, a contradiction.  

Now for any positive integer p , 

M(yn, yn+p, t)  M(yn, yn+1, t/p) * M(yn+1, yn+2,  t /p) * … 

   * M(yn+p -1, yn+p, t /p) and 

N(yn, yn+p, t) <  N(yn, yn+1, t/p) * N(yn+1, yn+2,  t /p) * … 

   * N(yn+p -1, yn+p, t /p ).  

Letting n we get 

  
n
lim


 M(yn, yn+p, t )  1 * 1 * 1 * … * 1 = 1 and 

  
n
lim


 N(yn, yn+p, t )  1 * 1 * 1 * … * 1 = 1. 

Thus, 

  
n
lim


M(yn, yn+p, t ) = 1 and 

  
n
lim


N(yn, yn+p, t ) = 1.  

Thus {yn} is a Cauchy sequence in X. Since X is complete metric space {yn} converges to a 

point z (say) in X. Hence the subsequences {Ax2n}, {Sx2n}, {Tx2n+1} and {Bx2n+1} also 

converge to z. 

Now since A and S are sub-sequential continuous and semi-compatible then we have 
n
lim


ASx2n 

= Az, 
n
lim


SAx2n = Sz and  

n
lim


M(ASx2n, Sz, t) = 1 and  

n
lim


N(ASx2n, Sz, t) = 0.  

 Therefore, we get Az = Sz. Now we will show  Az = z. For this suppose Az  z. Then by 

contractive condition, we get  

M(Az, Bx2n+1, t )  (M(Sz, Tx2n+1 , t))  and  

N(Az, Bx2n+1, t ) <  (N(Sz, Tx2n+1 , t)). 

Letting n  , we get 

M(Az, z, t)  (M(Az, z, t)) > M(Az, z, t)  and 
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N(Az, z, t)  (N(Az, z, t)) < N(Az, z, t), 

a contradiction, thus z = Az = Sz. Since A(X)   T(X), there exists u X such that z = Az = Tu.  

Putting x = x2n, y = u in (3), we get 

M(Ax2n , Bu, t ) (M(Sx2n, Tu, t)) and  

N(Ax2n , Bu, t ) (N(Sx2n, Tu, t)). 

Letting n  , we get 

M(z, Bu, t)   (M(z, z, t)) = (1) = 1 and 

N(z, Bu, t)  (N(z, z, t)) = (1) = 1, 

i.e. z = Bu = Tu and the weak-compatibility of (B, T) gives TBu = BTu, i.e. Tz =  Bz. Again by 

contractive condition and assuming Az Bz, we get Az = Bz = z.  Hence, finally we get 

z = Az = Bz = Sz = Tz, i.e. z is a common fixed point of A, B, S and T. The uniqueness 

follows from contractive condition. This completes the proof. 

 Now we prove an another common fixed point theorem with different contractive 

condition : 

Theorem 3.2.  Let A, B, S and T be self maps on a complete fuzzy metric space  ( X, M, N, ∗, ) 

where * is a continuous t-norm and  is a continuous t –conorm satisfying: 

 (3.4)    A(X)   T(X),  B(X)   S(X), 

 (3.5)    (B, T) is weak compatible, 

 (3.6)    for all x, y  X and  t > 0, 

 M(Ax, By, t) {min(M(Sx, Ty, t), M(Ax, Sx, t), M(By, Ty, t),   

M(Ax, Ty, t))} and 

 N(Ax, By, t)  {max(N(Sx, Ty, t), N(Ax, Sx, t), N(By, Ty, t),   

N(Ax, Ty, t))},  

where : [0,1][0,1] is a continuous function such that             

(1) = 1, (0) = 0 and (a) > a for each 0 < a < 1.  

If (A, S) is semi-compatible pair of sub-sequential continuous maps then A, B, S and T 

have a unique common fixed point. 

Proof. Let x0   X be any arbitrary point. Then for which there  exists  x1,  x2   X  such that Ax0 = 

Tx1 and Bx1 = Sx2. Thus we can construct sequences {yn} and {xn} in X such that                    

     y2n = Ax2n = Tx2n+1,  y2n+1 = Bx2n+1 = Sx2n+2 for n = 0, 1, 2, 3, … . 

By contractive condition, we get 

   M(y2n+1 , y2n+2, t) = M(Ax2n, Bx2n+1, t) 

  {min(M(Sx2n, Tx2n+1, t), M(Ax2n, Sx2n, t), 

      M(Bx2n+1 , Tx2n+1, t), M(Ax2n, Tx2n+1, t ))} 

= {min(M(y2n−1, y2n, t), M(y2n, y2n−1, t), 

M(y2n+1, y2n, t), M(y2n, y2n, t))}  

= {min(M(y2n−1, y2n, t), M(y2n+1, y2n, t))} 
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= {M(y2n−1, y2n, t)} 

> M(y2n−1, y2n, t) and 

   N(y2n+1 , y2n+2, t) = N(Ax2n, Bx2n+1, t) 

 {max(N(Sx2n, Tx2n+1, t), N(Ax2n, Sx2n, t), 

      N(Bx2n+1 , Tx2n+1, t), N(Ax2n, Tx2n+1, t ))} 

= {max(N(y2n−1, y2n, t), N(y2n, y2n−1, t), 

N(y2n+1, y2n, t), N(y2n, y2n, t))}  

= {max(N(y2n−1, y2n, t), N(y2n+1, y2n, t))} 

= {N(y2n−1, y2n, t)} 

< N(y2n−1, y2n, t).   

Similarly, we get 

   M(y2n+2, y2n+3, t ) >  M(y2n+1, y2n+2, t ) and 

   N(y2n+2, y2n+3, t ) <  N(y2n+1, y2n+2, t ). 

In general, 

                        M(yn+1, yn, t) (M(yn, yn−1, t)) > M(yn, yn−1, t) and 

                        N(yn+1, yn, t) (N(yn, yn−1, t)) < N(yn, yn−1, t). 

Then by the same technique of above theorem, we can easily show  that {yn}is a Cauchy 

sequence in X. Since X is complete metric space {yn} converges to a point z (say) in X. Hence, 

the subsequences {Ax2n}, {Sx2n}, {Tx2n+1} and {Bx2n+1} also converge to z. 

 Now since A and S are sub-sequential continuous and semi-compatible then we have 

  
n
lim


 ASx2n = Az, 
n
lim


SAx2n = Sz, and 
n
lim


 M(ASx2n, Sz, t) = 1 and 
n
lim


 N(ASx2n, Sz, t) = 0. 

Therefore, we get  Az = Sz. Now we will show Az = z. For this suppose Az  z. Then by (3.5), we 

get a contradiction, thus Az = z. Hence by similar techniques of above theorem, we can easily 

show that z is a common fixed point of A, B, S and T i.e. z = Az = Bz = Sz = Tz. Uniqueness of 

fixed point can be easily verify by contractive condition. This completes the proof. 

 We now give an example which not only illustrate our Theorem 2.1 but also shows that the 

notion of sub-sequential continuity of maps is weaker than the continuity of maps. 

Example 3.1.  Let (X, d)  be usual metric space where X = [2, 20]  with 
t

M(x,y, t)
t | x y |


 

and 
| x y |

N(x,y, t)
t | x y |




   

for x, y X,  t >  0. We define mappings A, B, S and T by 

A2 = 2,  Ax = 3 if x > 2 

S 2  = 2,  Sx = 6 if x > 2 

Bx = 2 if x = 2 or > 5,  Bx = 6 if 2 <  x 5  

Tx = 2, Tx = 12  if 2 < x 5, 
(x 1)

Tx
3


  if  x > 5. 
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Then A, B, S and T satisfy all the conditions of the above theorem with  
7a

(a)
(3a 4)

 


 

> a where a = 1/1 + d(Sx, Ty)/t and have  a unique common fixed point x = 2.  It may be noted 

that in this example A(X) = {2, 3}   T(X) = [2, 7]  {12} and B(X) = {2, 6} S(X) = {2, 6}. 

 Also A and S are sub-sequential continuous compatible mappings. But  neither A nor S is 

continuous not  even  at  fixed  point x = 2. The mapping B and T are non-compatible but 

weak-compatible since they commute at their coincidence points. To see B and T are non-

compatible, let us consider the sequence {xn}  in X defined by {xn} = 
1

5
n

 
 

 
;  n  1. Then, 

n
lim


 Txn = 2, 
n
lim


 Bxn = 2, 
n
lim


 TBxn = 2 and 
n
lim


 BTxn = 6. Hence B and T are non-

compatible. 

Remark 3.1.  The maps A, B, S and T are discontinuous even at the common fixed 

point x = 2. 
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