Fuzzy gt-set and fuzzy gt-nowhere dense sets.

S. Anjalmose¹ and M. Kalaimathi²

¹PG and Research Department of Mathematics,
²Research Scholar, PG and Research Department of Mathematics,
^{1, 2}St. Joseph's College of Arts and Science (Autonomous),
Affiliated to Thiruvalluvar University
Cuddalore – 607001, Tamilnadu, India.

Abstract: In this paper we introduce a new concept of fuzzy set theory that is fuzzy gt-set, fuzzy gt- G_{δ} -set, fuzzy gt- F_{σ} -set, fuzzy gt-dense set, fuzzy gt-nowhere dense set. Several properties are also discussed. Illustrate with suitable examples.

Keywords: Fuzzy sets, fuzzy locally open sets, fuzzy locally closed sets, fuzzy gt-sets, fuzzy gt-dense sets, and fuzzy gt-nowhere dense sets.

1. Introduction

In order to deal with uncertainties, the idea of fuzzy sets and fuzzy set operations was introduced by L. A. Zadeh [8] in the year 1965. This inspired mathematician to fuzzify Mathematical Structures. The first notion of fuzzy topological space had been defined by C. L. Chang in 1968 [2]. The fuzzy nowhere dense set were introduced and studied by the authors in Dr. G. Thangaraj and Dr. G. Balasubramanian [7]. The fuzzy locally nowhere dense set were introduced and studied by the authors in Dr. S. Anjalmose and A. Saravanan [1]. In this paper we introduce a new class of fuzzy gt-sets, (in the name of Professor G. Thangaraj, simply gt) fuzzy gt-dense sets, fuzzy gt-nowhere dense sets. Several properties are also discussed with suitable examples.

2. Preliminaries

Definition 2.1: [3]

By a fuzzy topological space a non - empty set X together with a fuzzy topology T (in the sense of Chang) and denote it by (X, T).

Let λ and μ be any two fuzzy sets in (X, T). Then we define $\lambda \lor \mu : X \to [0,1]$ and $\lambda \land \mu : X \to [0,1]$ as follows: $(\lambda \lor \mu)$ (x) = Max { λ (x), μ (x) } and ($\lambda \land \mu$) (x) = Min { λ (x), μ (x) }.

Let (X, T) be any fuzzy topological space and λ be any fuzzy set in (X, T). We define $Cl(\lambda) = \wedge \{ \mu / \lambda \le \mu, 1 - \mu \in T \}$ and int (λ) = $\vee \{ \mu / \mu \le \lambda, \mu \in T \}$. For any fuzzy set λ in a fuzzy topological space (X, T).

Definition 2.2: [5]

A fuzzy set λ in a fuzzy topological space (X, T) is called fuzzy G_{δ} - set in (X, T) if $\lambda = \wedge_{i=1}^{\infty} (\lambda_i)$, where $\lambda_i \in T$ for $i \in I$.

Definition 2.3: [5]

A fuzzy set λ in a fuzzy topological space (X, T) is called fuzzy F_{σ} - set in (X, T) if $\lambda = \wedge_{i=1}^{\infty} (\lambda_i)$, where $\lambda_i \in T$ for $i \in I$.

Definition 2.4: [4]

A subset β of a fuzzy topological space X is called fuzzy locally closed set if $\beta = \alpha \Lambda \delta$, where α is a fuzzyopen set and δ is fuzzy-closed set.

The complement of fuzzy-locally closed set is called fuzzy-locally open set.

Definition 2.5: [7]

A fuzzy set λ in a fuzzy Topological space (X; T) is called fuzzy dense if there exists no fuzzy closed set in (X; T) such that $\lambda < \mu < 1$.

Definition 2.6: [6]

A fuzzy set λ in a fuzzy topological space (X,T) is called fuzzy nowhere dense if there exists no non-zero fuzzy open set μ in (X,T) such that $\mu < cl(\lambda)$. That is, int $cl(\lambda) = 0$.

Definition 2.7: [1]

A fuzzy set λ in a fuzzy topological space (X, T) is called fuzzy locally dense if there exists no fuzzy locally closed set μ in (X, T) such that $\lambda \le \mu \le 1$.

Definition 2.8: [1]

A fuzzy set λ in a fuzzy topological space (X, T) is called fuzzy locally nowhere dense if there exists no non-zero fuzzy locally-open set μ in (X,T) such that $\mu < 1$ -cl(λ). That is, 1-int 1-cl(λ) = 0.

3. Fuzzy gt-set.

A fuzzy set λ in a fuzzy topological space (X, T) is called fuzzy gt-closed if $\lambda = \mu \wedge \gamma$, where μ is fuzzy closed and γ is fuzzy locally open in (X, T). The complement of fuzzy gt-closed is fuzzy gt-open.

Example 3.1:

Let $X = \{a, b\}$. The fuzzy sets λ , and μ are defined on X as follows:

 $\lambda : X \rightarrow [0,1]$ defined as $\lambda(a) = 0.2$; $\lambda(b) = 0.7$, $\mu: X \rightarrow [0,1]$ defined as $\mu(a) = 0.1$; $\mu(b) = 0.5$, Then T = $\{0, \lambda, \mu, 1\}$ is a fuzzy topology on X.

The fuzzy sets $\lambda \Lambda(1-\lambda) = \alpha$ (say), $\lambda \Lambda(1-\mu) = \beta$ (say), $\mu \Lambda(1-\lambda) = \eta$ (say), $\mu \Lambda(1-\mu) = \zeta$ (say), therefore the fuzzy sets α , β , η , ζ are fuzzy locally closed sets.

Now the fuzzy sets $(1-\lambda)\wedge(1-\alpha) = 1-\lambda$, $(1-\mu)\wedge(1-\alpha) = 1-\beta$, $(1-\mu)\wedge(1-\eta) = 1-\mu$ are fuzzy gt-closed sets, where 1- λ , 1- μ are fuzzy closed and 1- α , 1- β , 1- η , 1- ζ are fuzzy locally open set in (X,T). The fuzzy sets λ , β , μ are fuzzy gt-open sets in (X, T).

Proposition 3.1:

If λ is a fuzzy gt-closed in a fuzzy topological space (X, T) then λ is fuzzy locally open set in (X, T). Converse need not be true.

Proof:

In example 3.1, 1- β is fuzzy gt-closed set in (X, T) and fuzzy locally open set in (X, T).

Converse need not be true. Consider the above example.

In example 3.1, the fuzzy set $1-\alpha$ is fuzzy locally open but not of fuzzy gt-closed set in (X, T).

Proposition 3.2:

If λ is a fuzzy closed in a fuzzy topological space (X, T) then λ is fuzzy gt-closed set in (X, T). Converse need not be true.

Proof:

In above example 3.1, $1-\lambda$ and $1-\mu$ are fuzzy closed set in (X, T) and fuzzy gt-closed set in (X, T).

Converse need not be true. Consider the above example.

In example 3.1, the fuzzy set $1-\beta$ is fuzzy gt-closed but not of fuzzy closed set in (X, T).

Proposition 3.3:

If λ is a fuzzy open in a fuzzy topological space (X, T) then λ is fuzzy gt-open set in (X, T). Converse need not be true.

Proof:

In above example 3.1, λ and μ are fuzzy open set in (X, T) and fuzzy gt-open set in (X, T). Converse need not be true. Consider the above example. In example 3.1, the fuzzy set β is fuzzy gt-open but not of fuzzy open set in (X, T).

4. Fuzzy gt- G_{δ} -set, Fuzzy gt- F_{σ} -set.

A Fuzzy set λ in a Fuzzy topological space (X; T) is called a Fuzzy gt-G_{δ}-set in (X, T) if $\lambda = \Lambda_{i=1}^{\infty}(\lambda_i)$ where λ_i 's are fuzzy gt-open sets for i \in I, Consider the following example.

Example 4.1

Let $X = \{a, b, c\}$. The fuzzy sets λ , μ , and γ are defined on X as follows:

 $\lambda : X \rightarrow [0,1]$ defined as $\lambda(a) = 0.2$; $\lambda(b) = 0.3$, $\mu: X \rightarrow [0,1]$ defined as $\mu(a) = 0.1$; $\mu(b) = 0.4$.

Then $T = \{0, \lambda, \mu, \lambda \lor \mu, \lambda \land \mu, 1\}$ is a fuzzy topology on X.

Now the fuzzy sets $\lambda \Lambda(1-\lambda) = \lambda$, $\lambda \Lambda(1-\mu) = \lambda$, $\lambda \Lambda(1-\lambda\wedge\mu) = \lambda$, $\lambda \Lambda(1-\lambda\vee\mu) = \lambda$, $\mu \Lambda(1-\lambda) = \mu$, $\mu \Lambda(1-\mu) = \mu$, $\mu \Lambda(1-\lambda\wedge\mu) = \mu$, $\mu \Lambda(1-\lambda) = \mu$, $\mu \Lambda(1-\lambda) = \lambda\wedge\mu$, $(\lambda\wedge\mu) \Lambda(1-\mu) = \lambda\wedge\mu$, $(\lambda\wedge\mu) \Lambda(1-\lambda) = \lambda\wedge\mu$, $(\lambda\vee\mu)\wedge(1-\lambda) = \lambda\vee\mu$, $(\lambda\vee\mu)\wedge(1-\lambda) = \lambda\vee\mu$, $(\lambda\vee\mu)\wedge(1-\lambda\wedge\mu) = \lambda\vee\mu$, $(\lambda\vee\mu)\wedge(1-\lambda\wedge\mu) = \lambda\vee\mu$, $(\lambda\vee\mu)\wedge(1-\lambda\vee\mu) = \lambda\vee\mu$,

Therefore the fuzzy sets λ , μ , $\lambda \wedge \mu$, $\lambda \vee \mu$ are fuzzy locally closed sets, then $1-\lambda$, $1-\mu$, $1-\lambda \wedge \mu$, $1-\lambda \vee \mu$ are fuzzy locally open sets.

Now $(1-\lambda)\Lambda(1-\lambda) = 1-\lambda$, $(1-\lambda)\Lambda(1-\mu) = 1-\lambda \lor \mu$, $(1-\lambda)\Lambda(1-\lambda \land \mu) = 1-\lambda$, $(1-\lambda)\Lambda(1-\lambda \lor \mu)$, $(1-\mu)\Lambda(1-\lambda) = 1-\lambda \lor \mu$, $(1-\mu)\Lambda(1-\mu) = 1-\mu$, $(1-\mu)\Lambda(1-\lambda \land \mu) = 1-\mu$, $(1-\mu)\Lambda(1-\lambda \land \mu) = 1-\lambda \lor \mu$, $(1-\lambda) \lor \mu$, $(1-\lambda$

 $\lambda \lor \mu$) = $1 - \lambda \lor \mu$. Therefore the fuzzy sets $1 - \lambda$, $1 - \mu$, $1 - \lambda \land \mu$, $1 - \lambda \lor \mu$ are fuzzy gt-closed set in (X, T), Hence $[\lambda \land \mu \land (\lambda \land \mu) \land (\lambda \lor \mu)] = \lambda \land \mu$ is fuzzy gt- G_{δ} -set in (X,T).

Proposition 4.1

A Fuzzy set λ in a Fuzzy topological space (X, T) is called a Fuzzy gt- F_{σ} -set in (X; T) if $\lambda = V_{i=1}^{\infty}(\lambda_i)$, where λ_i 's are fuzzy gt-closed sets for $i \in I$, Consider the following example.

Proof:

In the above example 4.1, the fuzzy sets $1-\lambda$, $1-\mu$, $1-\lambda\wedge\mu$, $1-\lambda\vee\mu$ are fuzzy locally closed sets, then $[(1-\lambda)\vee(1-\mu)\vee(1-\lambda\wedge\mu)\vee(1-\lambda\vee\mu)] = 1-\lambda\wedge\mu$ is fuzzy gt- F_{σ} -set in (X, T).

5. Fuzzy gt-dense sets.

A fuzzy set λ in a fuzzy topological space (X, T) is called fuzzy gt-dense if there exists no fuzzy gt-closed set μ in (X, T) such that $\lambda < \mu < 1$.

Example 3.1:

Let $X = \{a, b\}$. The fuzzy sets λ , and μ are defined on X as follows:

 $\lambda : X \rightarrow [0,1]$ defined as $\lambda(a) = 0.2$; $\lambda(b) = 0.7$, $\mu: X \rightarrow [0,1]$ defined as $\mu(a) = 0.1$; $\mu(b) = 0.5$, Then T = $\{0, \lambda, \mu, 1\}$ is a fuzzy topology on X.

The fuzzy sets $\lambda_{\Lambda}(1-\lambda) = \alpha$ (say), $\lambda_{\Lambda}(1-\mu) = \beta$ (say), $\mu_{\Lambda}(1-\lambda) = \eta$ (say), $\mu_{\Lambda}(1-\mu) = \zeta$ (say), therefore the fuzzy sets α , β , η , ζ are fuzzy locally closed sets.

Now the fuzzy sets $(1-\lambda)\wedge(1-\alpha) = 1-\lambda$, $(1-\mu)\wedge(1-\alpha) = 1-\beta$, $(1-\mu)\wedge(1-\eta) = 1-\mu$ are fuzzy gt-closed sets, where $1-\lambda$, $1-\mu$ are fuzzy closed and $1-\alpha$, $1-\beta$, $1-\eta$, $1-\zeta$ are fuzzy locally open set in (X,T). The fuzzy sets λ , β , μ are fuzzy gt-open sets in (X, T). The fuzzy set λ if fuzzy gt-dense in (X, T), since gt-cl(λ) = 1.

Proposition 3.6:

If a fuzzy locally dense set in a fuzzy topological space (X, T) is need not be fuzzy gt-dense set in (X, T). Consider the example.

Example 3.2:

Let $X = \{a, b, c\}$. The fuzzy sets λ , μ , and β are defined on X as follows:

 $\lambda : X \rightarrow [0,1]$ defined as $\lambda(a) = 0$; $\lambda(b) = 0.2$; $\lambda(c) = 0.5$, $\mu: X \rightarrow [0,1]$ defined as $\mu(a) = 0.1$; $\mu(b) = 0.2$; $\mu(c) = 0.7$, $\beta : X \rightarrow [0,1]$ defined as $\beta(a) = 0.3$; $\beta(b) = 0.5$; $\beta(c) = 0.9$.

Then $T = \{0, \lambda, \mu, \beta, 1\}$ is a fuzzy topology on X.

Now the fuzzy sets $\lambda \Lambda(1-\lambda) = \lambda$, $\lambda \Lambda(1-\mu) = \gamma$ (say), $\lambda \Lambda(1-\beta) = \delta$ (say), $\mu \Lambda(1-\lambda) = \eta$ (say), $\mu \Lambda(1-\mu) = \zeta$ (say), $\mu \Lambda(1-\beta) = \chi$ (say), $\beta \Lambda(1-\lambda) = \kappa$ (say), $\beta \Lambda(1-\mu) = \nu$ (say), $\beta \Lambda(1-\beta) = \iota$ (say), therefore the fuzzy sets λ , γ , δ , η , ζ , χ , κ , ν , ι are fuzzy locally closed sets. The fuzzy sets $1-\lambda$, $1-\gamma$, $1-\delta$, $1-\eta$, $1-\zeta$, $1-\chi$, $1-\kappa$, $1-\nu$, $1-\iota$ are fuzzy locally open sets,

Now since $(1-\lambda)\land (1-\lambda) = 1-\lambda$, $(1-\lambda)\land (1-\gamma) = 1-\lambda$, $(1-\lambda)\land (1-\delta) = 1-\lambda$, $(1-\lambda)\land (1-\eta) = 1-\eta$, $(1-\lambda)\land (1-\zeta) = 1-\eta$, $(1-\mu)\land (1-\lambda) = 1-\eta$, $(1-\mu)\land (1-\gamma) = 1-\eta$, $(1-\mu)\land (1-\lambda) = 1-\mu$, $(1-\mu)\land (1-\gamma) = 1-\mu$, $(1-\mu)\land (1-\lambda) = 1-\mu$, $(1-\mu)\land (1-\gamma) = 1-\mu$, $(1-\mu)\land (1-\eta) = 1-\mu$, $(1-\mu)\land (1-\gamma) = 1-\mu$, $(1-\mu)\land (1-\mu)\land (1-\mu) = 1-\mu$.

the fuzzy sets 1- λ , 1- η , 1- ι , 1- μ , α , 1- β , are fuzzy gt-closed, and then the fuzzy sets λ , η , ι , μ , 1- α , β are fuzzy gt-open. The fuzzy set 1- η is fuzzy locally dense but not of fuzzy gt-dense in (X, T).

6. Fuzzy gt-nowhere dense sets.

A fuzzy set λ in a fuzzy topological space (X, T) is called fuzzy gt-nowhere dense if there exists no non-zero fuzzy gt-open set μ in (X,T) such that $\mu < \text{gt-cl}(\lambda)$. That is, gt-int gt-cl(λ) = 0.

Example 5.1:

Let $X = \{a, b\}$. The fuzzy sets λ , and μ are defined on X as follows:

 $\lambda : X \rightarrow [0,1]$ defined as $\lambda(a) = 0.2$; $\lambda(b) = 0.7$, $\mu: X \rightarrow [0,1]$ defined as $\mu(a) = 0.1$; $\mu(b) = 0.5$, Then $T = \{0, \lambda, \mu, 1\}$ is a fuzzy topology on X.

The fuzzy sets $\lambda_{\Lambda}(1-\lambda) = \alpha$ (say), $\lambda_{\Lambda}(1-\mu) = \beta$ (say), $\mu_{\Lambda}(1-\lambda) = \eta$ (say), $\mu_{\Lambda}(1-\mu) = \zeta$ (say), therefore the fuzzy sets α , β , η , ζ are fuzzy locally closed sets.

Now the fuzzy sets $(1-\lambda)\wedge(1-\alpha) = 1-\lambda$, $(1-\mu)\wedge(1-\alpha) = 1-\beta$, $(1-\mu)\wedge(1-\eta) = 1-\mu$ are fuzzy gt-closed sets, where 1- λ , 1- μ are fuzzy closed and 1- α , 1- β , 1- η , 1- ζ are fuzzy locally open set in (X,T). The fuzzy sets λ , β , μ are fuzzy gt-open sets in (X, T). The fuzzy set 1- λ , is fuzzy gt-nowhere dense set, since gt-int gt-cl $(1-\lambda) = 0$. 1- β and 1- μ are not of fuzzy gt-nowhere dense sets, since gt-int gt-cl $(1-\beta) \neq 0$ and gt-int gt-cl $(1-\mu) \neq 0$.

Proposition 5.1:

If λ is fuzzy gt-nowhere dense set in (X, T), then gt-int(λ) = 0

Proof:

Let λ is fuzzy gt-nowhere dense set in (X, T), therefore gt-int gt-cl(λ) = 0. Now $\lambda \leq$ gt-cl(λ) implies that gt-int (λ) \leq gt-int gt-cl(λ). Hence gt-int (λ) = 0.

Proposition 5.2:

If λ is a fuzzy gt-nowhere dense set in (X, T), then (1- λ) is fuzzy gt-dense set in (X, T).

Proof:

If λ is a fuzzy gt-nowhere dense set in (X, T), By proposition 5.1, gt-int(λ) = 0. Now gt-cl(1- λ) = 1- gt-int(λ) = 1 - 0 = 1. Hence 1- λ is fuzzy gt-dense in (X, T).

Proposition 5.3:

If λ and μ are fuzzy gt-nowhere dense sets in a fuzzy topological space (X, T), then $\lambda \wedge \mu$ is also a fuzzy gt-nowhere dense set in (X, T).

Proof:

Let λ and μ is a Fuzzy gt-nowhere dense set in a fuzzy topological space (X; T). Then by proposition 5.1, gtint(λ) = 0 and gt-int(μ)=0. Now gt-int($\lambda \wedge \mu$)= gt-int(λ) \wedge gt-int(μ) = 0 \wedge 0 = 0. Hence $\lambda \wedge \mu$ is fuzzy gt-nowhere dense set in (X, T).

Proposition 5.4

If $\lambda \leq \mu$ and μ is a fuzzy gt-nowhere dense set in a fuzzy topological space (X, T), then λ is also fuzzy gt-nowhere dense set in (X, T).

Proof:

Now $\lambda \le \mu$ implies that gt-int gt-cl(λ) \le gt-int gt-cl(μ). Since μ is a fuzzy gt-nowhere dense set, hence gt-int gt-cl(μ) = 0. Then gt-int gt-cl(λ) = 0. Hence λ is a fuzzy gt-nowhere dense set in (X, T).

Proposition 5.5

If λ is a fuzzy gt-nowhere dense set and μ is any fuzzy set in a fuzzy topological space (X, T), then $(\lambda \wedge \mu)$ is a fuzzy gt-nowhere dense set in (X, T).

Proof:

Let λ be a fuzzy gt-nowhere dense set in (X,T), then gt-int gt-cl(λ) = 0. Now ($\lambda \wedge \mu$) = gt-int gt-cl($\lambda \wedge \mu$ = gt-int gt-cl($\lambda \wedge \mu$) = gt-int gt-cl($\lambda \wedge \mu$ = gt-int gt-cl($\lambda \wedge \mu$) = gt-int gt-cl($\lambda \wedge \mu$ = gt-int gt-cl($\lambda \wedge \mu$) = gt-int gt-cl($\lambda \wedge \mu$ = gt-int gt-cl($\lambda \wedge \mu$) = gt-int gt-cl($\lambda \wedge \mu$ = gt-int gt-cl($\lambda \wedge \mu$) = gt-int gt-cl

Proposition 5.6:

If λ is a fuzzy gt-nowhere dense set and fuzzy gt-closed in a fuzzy topological space (X, T), then $1 - \text{gt-cl}(\lambda)$ is a fuzzy gt-dense set in (X, T).

Proof

Let λ be a fuzzy gt-nowhere dense set in (X, T). Now gt-cl(λ) = λ , since λ is fuzzy gt-closed set. Therefore 1-gt-cl(λ) = 1- λ . Hence by proposition 5.2, 1- λ is fuzzy gt-dense set in (X, T).

Proposition 5.7:

If λ is a fuzzy gt-closed set in a fuzzy topological space (X; T) with gt-int(λ) = 0, then λ is a fuzzy gt-nowhere dense set in (X; T).

Proof

Let λ be a fuzzy gt-closed and gt-int(λ) = 0, then gt-cl(λ) = λ , therefore gt-int gt-cl(λ) = gt-int(λ) = 0. Hence λ be a fuzzy gt-nowhere dense set in (X, T).

References:

- 1. G. Balasubramanian, Maximal fuzzy topologies, Kybernetika, 31(5), 1995, 459-464.
- 2. C.L Chang, Fuzzy Topological Spaces, J. Math. Anal.Appl. 24, 1968, 182 190.
- P. K. Gain, R. P. Chakraborty and M.Pal, "Characterization of some fuzzy subsets of fuzzy ideal topological spaces and decomposition of fuzzy continuity", International Journal of Fuzzy Mathematics and Systems, 2(2), 2012, 149 – 161.
- G. Thangaraj and S. Anjalmose, A note on fuzzy Baire spaces, Inter. J. Fuzzy Math. Systems 3(4), 2013, 269-274.
- 5. G.Thangaraj and S.Anjalmose, On Fuzzy Baire space, J. Fuzzy Math. 21 (3), 2013, 667-676.
- 6. G. Thangaraj and G. Balasubramanian, on somewhat fuzzy continuous functions, J. Fuzzy Math., 11(2), 2003, 725-736.
- 7. L. A. Zadeh, Fuzzy Sets, Information and Control, 8, 1965, 338–358.

JETIR1905Y75 Journal of Emerging Technologies and Innovative Research (JETIR) <u>www.jetir.org</u> 531