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 Abstract: In this paper, novel hybrid intelligent methods based on combined RBF neural network and 

Dynamic PSO (DYPSO-RBFNN), RBF neural network and Gaussian Mutation Strategy based self-adaptive 

Evolutionary programming(GMEP-RBFNN) have been developed and applied separately to optimize 

permanent magnet length bm and rotor slot opening bo simultaneously to maximize the linkage and mutual 

flux components and minimize the leakage flux component of PMSG. The use of self adaptive Gaussian 

mutation strategy has been applied to make the solution free from manual tuning of strategy parameters. The 

simultaneous estimation of permanent magnet length and rotor slot opening parameters provides the comfort 

in design process as well saving in the computation cost. The performance of GMEP has been compared 

with dynamic PSO to understand the relative benefits. It is observed that GMEP outperforms DYPSO in 

terms of maximizing the linkage and mutual flux components and minimizing the leakage flux component of 

PMSG. In terms of algorithm characteristics GMEP is having better and consistent convergence in compared 

to DYPSO. 
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1. INTRODUCTION  
 Wind energy is renewable, clean and is an emerging resource for the power generation. A recently 

published report [1] reports a phenomenal wind power generation growth of 17% in 2015 when compared to 

2014. Total of 433 GW power was generated from wind farm installations in 2015 globally. A rapid growth 

and additional power generation estimates till 2050 is also mentioned in the report. Conversion efficiency 

improvement and cost reduction of wind turbines play a vital role in the growth reported [1].The wind 

turbines (WT) convert kinetic energy of the wind into mechanical power. The mechanical power is 

converted to electrical power later by using a gearbox and generator assembly. The two types of Wind 

Turbines commonly used are: vertical-axis wind turbine and horizontal-axis wind turbine. Horizontal-axis 

wind turbine is the most commonly used one in which rotating blades are situated on parallel-axis to the 

land. The gearbox used in Wind Turbine Generator machine for transferring power from turbines blades to 

generator are of three types Single-Stage, Multi-Stage and Direct-drive. Researchers have proved that a 

direct drive wind turbines perform better than its geared counterparts [2, 3, and 4]. Research work presented 

in [4, 5, 6 and 7] prove that permanent magnet generators in Wind Turbine Generators are preferred and 

most widely accepted in wind farm installations. A permanent magnet generator with direct drive 

configuration is most suitable due to its low manufacturing cost, low maintenance cost, high availability and 

high efficiency. Improving efficiency to maximize electrical power generation is always a desired feature of 

Wind Turbine Generator designers. To improve efficiency of Wind Turbine Generator, numerous 

optimization techniques are incorporated at various levels of design and manufacturing. In this present work, 

we use novel hybrid intelligent methods based on combined RBF neural network and PSO (PSO-RBFNN), 

RBF neural network and Gaussian Mutation Strategy based self-adaptive Evolutionary programming 

separately to optimize permanent magnet length bm and rotor slot opening bo simultaneously to maximize 

the linkage and mutual flux components and minimize the leakage flux component of PMSG. 
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Paper organization is as follows. Literature review is presented in section 2. The PMSG transverse section 

geometry is presented in section 3. The basic concepts concerning RBFNN, the dynamic PSO and 

Evolutionary programming are presented in sections 4, 5 and 6 respectively. The methodology proposed is 

described in section 7. The experimental results and comparisons are described in section8. In section 9 

conclusions of this research work are given finally. 

 

 2. LITERATURE SURVEY 

 
Permanent magnet synchronous generator (PMSG) is eventually making a serious impact on to the direct 

drive wind power application. In [8], a 2D finite element method has been proposed for optimization of 

transverse geometry of permanent magnet synchronous generator (PMSG) used for generating wind power. 

The magnetic flux of the generator is maximized by varying the permanent magnet length and rotoric slot 

opening dimensions by keeping the same diameter of the rotor. In [9] various wind generator systems are 

evaluated by optimization designs and comparisons. In [10], the electrical parameters of a PMSG namely the 

phase resistance, the phase inductance and the linkage flux of the rotor permanent magnet were identified by 

using particle swarm optimization (PSO) algorithm based on experimental tests. An investigation is carried 

out for optimization of radial surface permanent-magnet generator (PMSG) with an outer rotor used for wind 

power applications in [11]. An optimization strategy has been proposed in [12] that take into consideration 

the annual wind profile of a wind turbine to design a high-efficiency permanent magnet synchronous 

generator. An analysis of a permanent magnet synchronous generator is proposed in [13] based on the 

reduction of cogging torque by skewing slots and simultaneously the decent output performance. A design 

procedure is adopted for the analysis of a radial flux surface mounted PMSG in [14]. The authors have 

applied ∈-constrained differential evolution with gradient based mutation optimization technique in order to 

optimize the weight and losses of the PMSG. In [15] the multidisciplinary design optimization (MDO) of a 

permanent magnet synchronous generator (PMSG) employed for Wind Energy Conversion Systems 

(WECS) has been proposed. The objective function of the MDO is the cost minimization of a medium power 

Wind Energy Conversion Systems having power rating 55 kW. In addition to the model of the PMSG, the 

WECS model includes power loss and cost models of the power electronic converter. An optimal design of a 

permanent magnet synchronous generator based on metaphysics is presented in [16]. The metaphysics model 

of the generator and the power loss and cost models of the static power electronic converters connected to 

the grid are included in the design. In [17], permanent magnet length bm and rotor slot opening bo of PMSG 

have been optimized separately and independently to maximize the linkage flux and mutual flux components 

and minimize the leakage flux component. Therefore the computational cost involved is more. In order to 

improve the performance of optimization strategy and optimization algorithm, permanent magnet length bm 

and rotor slot opening bo of PMSG have been optimized simultaneously to maximize the linkage flux and 

mutual flux components and minimize the leakage flux component, Gaussian Mutation Strategy based self-

adaptive Evolutionary programming and dynamic PSO algorithms.  
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3. TRANSVERSE SECTION GEOMETRY OF PMSG GENERATOR  

 
 

Figure 1: Transverse Section of PMSG 

 

 

The PMSG machine considered in this present research work consists of four poles. In figure 1.the 

transverse section of the PMSG machine is shown. The permanent magnets of the PMSG machine are placed 

over a parallel piped iron stump. The steel parts with special shape that provide a closed path for the 

magnetic flux lines are used to fill the spaces between the magnets (rotor slot opening). The magnetization 

direction of the permanent magnets are represented by the arrows that are placed inside the permanent 

magnets in Figure1 represent The geometrical parameters and magnetic characteristics of the PMSG 

machine considered is shown in Table1. The useful magnetic flux is the average inductor magnetic flux 

passing through a stator tooth of the PMSG machine. The geometrical cross-section and the material 

characteristics of the magnetic cores of the PMSG determine the useful magnetic flux of PMSG. 

 

 

 

Table 1. The permanent magnets of the PMSG machine are made up of NdFeB alloy and the geometrical 

and magnetic       characteristics are as follows 

Geometrical Parameters Magnet characteristics 

bt(tooth width) = 5mm, am = 38mm, ε  

= 3mm, δ= 0.5mm 

The coercivity  

Hc = 979000A/m 

hc(Stator Slot height)=20mm 

Relative permeability of 

permanent magnets 

μr = 1.049 

 Diameter of the Rotor D = 120mm 

Maximum magnetic energy of 

permanent magnets 

B.Hmax = 40 MGOe 

 Outer of Stator Diameter De=195mm 
Electrical conductivity 

 σ = 0.667 MS/m 

 

The generator shaft is made up of stainless steel and it has the following properties: the relative permeability 

μr = 1 and electrical conductivity σ= 1.35 MS/m. 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                         www.jetir.org (ISSN-2349-5162) 

JETIR1906238 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 638 
 

4. RADIAL BASIS FUNCTION (RBF) NEURAL NETWORK 

Radial basis function neural networks are widely used in many engineering applications because of their fast 

convergence, small extrapolation errors and high reliability compared to traditional multilayer perceptrons. 

Because of these benefits, in this research work to estimate the magnetic flux from the finite element 

method, a novel method of nonlinear system identification based on constructing Radial basis function 

neural network has been employed. The neural network algorithm based on supervised learning is often 

thought-about because of the curve fitting method. The training pairs are given to the neural network. Every 

training pair consists of a vector from associate input house in conjunction with a desired network response. 

The network uses an outlined learning formula for implementing the changes of its weights, in order to 

reduce the error between particular and desired response relative to some optimization criteria. After the 

accomplishment of network training, this neural network executes the interpolation within the output vector 

house. The achievement of nonlinear Mapping between the input and the output vector areas are often with 

radial basis function. The design of the RBF NN consists of 3 layers as shown in Fig2: associate input layer, 

one layer of nonlinear process neurons referred to as hidden layer and the output layer. Equation (1) is used 

to calculate output of RBFNN which is given as follows. 

 

𝑦𝑖   = 𝑓𝑖(𝑥) = ∑ 𝑊𝑖𝑘𝛷𝑘(𝑥, 𝑐𝑘  ) = 𝑁
𝑘=1   ∑ 𝑊𝑖𝑘𝛷𝑘( ‖𝑥 − 𝑐𝑘‖⃦2)    𝑁

𝑘=1                         (1) 

 

                                where                         i=1, 2,….m                

Where 1 nx  represents an input vector,  .k  represents a function from   to  , the Euclidean norm is 

denoted by 
2

. , ikW represents the weights in the output layer, N represents the number of neurons in the 

hidden layer, and 1 n
kc represents the centers of RBF in the output space. For every neuron in the hidden 

layer, the Euclidean distance between the input to the network and weights present in the output layer is 

determined. The output of the hidden layer is a nonlinear function of the distance of the neural network. 

Henceforth the neural network’s output is computed as a weighted sum of the outputs in the hidden layer. The 

functional form of   .k  is assumed to be given and is mostly Gaussian function as given by Equation (2). 

         𝛷(𝑥) = exp (− 𝑥2 𝜎2⁄ )                            (2)          

     

where   represents the spread parameter and it controls the “width” of RBF. The adequate sampling of the 

input vector space is performed by defining the centers as the defined points and they are commonly chosen 

as a subset of the input data.   In the case of the Gaussian RBF, the spread parameter   is normally set 

according to the heuristic relationship which is gives as follows   

                       𝜎 =
𝑑𝑚𝑎𝑥

√𝑘
            (3)          
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                             Figure 2.  RBF Architecture           

The centre and the width of radial basis function of the hidden layer and the weight values of the output layer 

mainly decide the performance of the RBF neural network. The neural network learning strategy of the 

traditional RBF has major drawbacks, and only finds the optimal solution in local space to determine 

parameters of the network structure. If the setting of these parameters is incorrect, it would cause decline in 

the approaching accuracy and leads to divergence of the network.  

 

 

 

4.1. Training data  

Training data as shown in Table 2 has been taken from [8]. For five different values of permanent magnet 

length bm, linkage flux, mutual flux and leakage flux are available. The rotor slot opening bo for this case is 

fixed and its value is bo=15mm. Choosing an appropriate algorithm for training a neural network is very 

important. To estimate the magnetic flux from the finite element method, system identification based on 

Radial basis function neural network has been employed in this research work. Three different RBFNN 

systems have been developed for the estimation of mutual flux, Linkage flux and leakage flux respectively 

by using the training data shown in Table 2. Pre-processing of data has been applied in terms of removal of 

the mean value and then the remaining data is normalized so that neural network could get better learning. 

The performance of training is shown in Table 3. Training data estimated by finite element method in [8] 

and those obtained from system identification are compared critically. It can be observed from Table 3 that 

there is nearly zero error in learning. Results indicate that the input-output relationships of the FEM model 

are more accurately mapped by RBFNN systems. 

Case1: Rotor slot opening bo is fixed at 15mm and permanent magnet length bm is varied   

Table.2. Training data of permanent magnet length bm for RBFNN 

Magnetic length 

bm(mm) 

Linkage flux 

фt(Wb) 
Mutual flux фu(Wb) 

Leakage flux  

фσ(Wb) 

1.800e+001 1.4150e-003     1.3120e-003     1.031e-004     

2.3000e+001     1.4450e-003     1.3260e-003     1.181e-004     

2.800e+001     1.4570e-003     1.3290e-003     1.274e-004     

3.300e+001     1.4590e-003     1.3260e-003     1.333e-004     

3.800e+001 1.4330e-003 1.301e-003 1.317e-004 
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Table.3. RBFNN performance in training  

Magnetic 

length 

bm(m

m) 

Linkage flux фt(Wb) Mutual flux фu(Wb) Leakage flux фσ(Wb) 

1.800e+001      1.414999999999946e-03 1.311999999999957e-03 1.030999999999871e-04 

2.3000e+001      1.444999999999992e-03 1.325999999999999e-03 1.180999999999922e-04 

2.800e+001      1.456999999999994e-03 1.329000000000006e-03 1.273999999999893e-04 

3.300e+001     1.459000000000017e-03 1.325999999999973e-03 1.332999999999944e-04 

3.800e+001 1.433000000000016e-03  1.300999999999974e-03 1.317000000000025e-04 

  

Case2: Permanent magnet length bm is fixed at 28mm and rotoric slot opening bo is varied   

Training data as shown in Table 4 has been taken from [8]. For four different values of rotoric slot opening 

bo, training over linkage flux, mutual flux and leakage flux has been given. The performance of training is 

shown in Table 5. Again as in the case of ‘bm’, nearly absolute training has taken place. 

Table.4. Training data of rotoric slot opening for RBFNN  

Rotoric Slot opening  

bo(mm) 
Linkage flux фt(Wb) Mutual flux фu(Wb) Leakage flux фσ(Wb) 

5.000e+000 1.4679e-003 1.1902e-003 2.7770e-004 

1.000e+001 1.4586e-003 1.2905e-003 1.6806e-004 

1.500e+001 1.4532e-003 1.3283e-003 1.2489e-004 

2.000e+001 1.4474e-003 1.3468e-003 1.0059e-004 
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Table.5. RBFNN performance in training 

Rotoric Slot 

Opening 

bo(mm) 

Linkage flux фt(Wb) Mutual flux фu(Wb) Leakage flux фσ(Wb) 

5.000e+000 1.467900000000005e-03 1.190199999999931e-03 2.777000000000303e-04 

1.000e+001 1.458600000000001e-03 1.290499999999974e-03 1.680600000000083e-04 

1.500e+001 1.453200000000003e-03 1.328299999999976e-03 1.248900000000013e-04 

2.000e+001 1.447400000000001e-03 1.346799999999964e-03 1.005900000000063e-04 

 

5. DYNAMIC PARTICLE SWARM OPTIMIZATION (DYPSO) 

ALGORITHM 

Dynamic particle swarm optimization (DYPSO) was originally proposed by Shi and Eberhart in which they 

introduced a linearly decreasing inertia weight factor into the velocity of the updated equation from the 

original PSO. Inertia weight factor 𝑤 plays the central role in the convergence characteristics of PSO. High 

value of 𝑤 makes PSO under the exploration stage. Low value will make the move towards the exploitation. 

It is very logical that at the beginning of iteration there is need of high level of exploration and as the 

iterations are increasing, level of exploration has to reduce. Mathematically in this work, this has been 

achieved by providing a reduced value of inertia weight 𝑤 as a function of iterations as given by Equation 

(4).  

  

The DYPSO balances out the global and local search abilities of the swarm effectively and therefore an 

improvement in the performance can be expected from DYPSO compared to the original version of PSO. In 

DYPSO, the inertia weight ‘w’ is linearly decreased from 1.2 to 0.1 through the search process with 

iterations 

 

𝑤 = 𝑤𝑚𝑎𝑥 − 
(𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛)

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
× 𝑖𝑡𝑒𝑟                                    (4) 

 

             

Where  𝑤𝑚𝑎𝑥: initial weight. wmin: final weight. itermax : maximum iteration number. iter:  

current iteration number. 
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6. EVOLUTIONARY PROGRAMMING  

Evolutionary computation uses computational models of evolutionary processes as key elements in the 

design and implementation of computer-based problem solving systems. There are a variety of evolutionary 

computational models that have been proposed and studied which we will refer to as evolutionary 

algorithms. They share a common conceptual base of simulating the evolution of individual structures via 

processes of selection and reproduction. These processes depend on the perceived performance (fitness) of 

the individual structures as defined by an environment. More precisely, evolutionary algorithms maintain a 

population of structures that evolve according to rules of selection and other operators, such as 

recombination and mutation. Each individual in the population receives a measure of its fitness in the 

environment. Selection focuses attention on high fitness individuals, thus exploiting the available fitness 

information. Recombination and mutation perturb those individuals, providing general heuristics for 

exploration.  

  In the most elementary of models, it may be summarized as a difference equation given by equation (5): 

 

                               x [t + 1] = s (V(x[t]))      (5) 

 

 where the population at time, t, denoted as x[t], is operated on by random variation, v, and selection, s, to 

give rise to a new population x[t + 1]. Natural evolution does not occur in discontinuous time intervals, but 

the use of a digital computer requires discrete events. Over successive iterations of variation and selection, 

an evolutionary algorithm can drive a population toward particular optima on a response surface that 

represents the measurable worth of each possible individual that might reside in a population. Evolutionary 

computation is the field that studies the properties of these algorithms and similar procedures for simulating 

evolution on a computer. it can be seen that evolutionary algorithms differ substantially from more 

traditional search and optimization methods. The most significant differences are:  

 

 Evolutionary algorithms search a population of points in parallel, not just a single point.  

 Evolutionary algorithms do not require derivative information or other auxiliary knowledge; only 

the objective function and corresponding fitness levels influence the directions of search.  

 Evolutionary algorithms use probabilistic transition rules, not deterministic ones.  

 Evolutionary algorithms are generally more straightforward to apply, because no restrictions for 

the definition of the objective function exist.  

 

Evolutionary algorithms can provide a number of potential solutions to a given problem. EP is often used as 

an optimizer.                 

                   After initialization, all N individuals are selected to be parents, and then are mutated, producing 

N children. These children are evaluated and N survivors are chosen from the 2N individuals, using a 

probabilistic function based on fitness. In other words, individuals with a greater fitness have a higher 

chance of survival. The form of mutation is based on the representation used, and is often adaptive.  For 

example, when using a real-valued vector, each variable within an individual may have an adaptive mutation 

rate that is normally distributed with a zero expectation. Recombination is not generally performed since the 

forms of mutation used are quite flexible and can produce perturbations similar to recombination, if desired. 

One of the interesting and open issues is the extent to which an EA is affected by its choice of the operators 

used to produce variability and novelty in evolving populations. The function form of EP has shown in 

Figure 3.  
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                                      Figure 3.  The functional form of evolutionary programming algorithm. 

 

7. PROPOSED SOLUTION  

The flow chart for RBFNN learning algorithm is shown in Figure 4. The major objective of this research 

work is to find the optimum values of geometrical parameters namely, length of permanent magnet bm and 

slot opening of rotor bo simultaneously to maximize the linkage flux and mutual flux components and 

minimize the leakage flux component of permanent magnet synchronous generator (PMSG) used for Wind 

Energy Conversion Systems (WECS). 

The novel hybrid intelligent algorithms method based on combination of RBF neural network and dynamic 

PSO (DYPSO-RBFNN), RBF neural network and Gaussian Mutation Strategy based self-adaptive 

Evolutionary programming (GMEP-RBFNN) are adapted separately to optimize bm and bo of PMSG 

simultaneously. For different values of bm/bo through finite element method, the different magnetic fluxes 

(linkage flux, mutual flux and leakage flux) have been estimated and stored as a data set in [8]. This data set 

has been taken to train three radial basis function neural networks (RBFNN). Linkage flux is estimated by 

first RBFNN, the second RBFNN is used to estimate Mutual flux and the third one is used to estimate the 

leakage flux instantaneously for any value of bm/bo as an input.  

Gaussian Mutation strategy based self –Adaptive Evolutionary Programming and dynamic PSO have been 

applied separately and independently to find the optimal value of bm/bo simultaneously by estimating the 

fitness of the solution with help of obtained corresponding magnetic fluxes from RBFNN. The GMEP and 

DYPSO algorithms are utilized to perform a 2-D search in the solution space to determine optimal value of 

bm and bo is simultaneously.  

 

                             procedure EP; { 

                             t = 0; 

                             initialize population P(t); 

                             evaluate P(t); 

                              until (done) { 

                  t = t + 1; 

                                       parent_selection P(t); 

                            mutate P(t); 

                              evaluate P(t); 

                             survive P(t); 

              }    } 
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Figure 4.  Flow chart of RBFF learning algorithm  

 

Algorithmic steps in Gaussian Mutation strategy based self –Adaptive Evolutionary 

Programming in flux maximization: 

 

1. A population of N trail solution initialized. Each solution taken as a pair of two real valued vector (xi, 

σi), for all i Є {1, 2,…….N}. 

The initial components of each xi, for all i Є {1, 2,……N} were selected in accordance with a 

uniform distribution ranging over a presumed solution space. 

The values of σi, for all i Є {1 . . . . N}, the so called strategy parameters were initially set to some 

value. 

2. The fitness score of each solution xi evaluated in light of an objective function Φ (xi). 

 

    𝛷 (𝑥𝑖) =
 (𝑇𝑀𝐹𝑏𝑚+ 𝑇𝑀𝐹𝑏𝑜)

2
          ;       (6) 

 

Where 𝑇𝑀𝐹𝑏𝑚  and 𝑇𝑀𝐹𝑏𝑜 are the total magnetic flux achieved with the corresponding 𝑏𝑚 and 

𝑏𝑜 values. 

 𝑇𝑀𝐹 = 𝑙𝑖𝑛𝑘𝑎𝑔𝑒 𝑓𝑙𝑢𝑥 + 𝑚𝑢𝑡𝑢𝑎𝑙 𝑓𝑙𝑢𝑥 − 𝑙𝑒𝑎𝑘𝑎𝑔𝑒 𝑓𝑙𝑢𝑥                       (7)   
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3. One offspring (x’
i, σ’i) generated from each parent (xi, σi) by  self adaptive Gaussian mutation 

strategy. 

 

                                     𝑥’𝑖 (𝑗)  =   𝑥𝑖 (𝑗)   +   𝜎𝑖 (𝑗). 𝑁(0,1)     (8) 

 

                                    𝜎′𝑖  (𝑗)  =  𝜎𝑖  (𝑗) 𝑒𝑥𝑝(𝜏’ 𝑁(0,1)  +  𝜏 𝑁𝑗(0,1))   (9) 

     

 

                                   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 Є {1, . . . . 𝑛} 

 

          where  

     𝑥𝑖 (𝑗), 𝑥’𝑖 (𝑗), 𝜎𝑖  (𝑗), 𝜎𝑖  (𝑗) denote the jth component of the vectors   𝑥𝑖 , 𝑥’𝑖 , 𝜎𝑖 , 𝜎′𝑖  

respectively.   

𝑁(0,1)    a realization of standard Gaussian random variable. 

                    𝑁𝑗(0,1)   a random variable is sampled a new for each value of the j. 

𝜏  and 𝜏′ are the constant and dimensional dependent as given below 

                                                                        𝜏 = [√2√𝑛]
−1

       (10) 

     𝜏′ = [√2𝑛]
−1

                                (11)   

      

Where n is the dimension of problem and here it is equal to 2. 

4. The fitness score of each offspring Φ (xi) is determined. 

5. Pair wise comparisons over all the 2N solution, xi  and  x’i  conducted. For each solution, 10% of 2N 

opponents were chosen from among all parents and offspring with equal probability. In each 

comparison if the conditioned solution offers at least as good performance as the randomly selected 

opponent, it receives a ‘win’ tag. 

6. The N best solutions out of 2N based on the number of wins received were selected to be the parents 

for the subsequent generation.  

7. The algorithm proceeded to step 3 unless available execution time exhausted or accepted solution has 

been discovered.  

 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                         www.jetir.org (ISSN-2349-5162) 

JETIR1906238 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 646 
 

 

                                 Figure 5.  GMEP in PMSG parameter optimization 

Gaussian mutation strategy based evolutionary programming has been applied to optimize the both 

parameter magnetic length and slot opening simultaneously with help of trained RBF .Two parameters bm 

and bo have explored by GMEP have passed to trained RBF to obtained the corresponding magnetic flux 

TMF .The mean value corresponding to TMFbm and TMFbo has considered as objective function which has 

to maximize as shown in Figure 5.   

         Both parameters were optimized using dynamic PSO (DYPSO) and Gaussian mutation strategy based 

EP (GMEP). The initialization of population have defined under U[0.2  1].The population size for both 

algorithms have been considered as 10 and allowed number of generations as 100. To understand the 

temporal characteristics of both algorithms 10 independent trails have been applied. In GMEP the initial 

value of standard deviation for Gaussian mutation has been considered as 0.01. The obtained performances 

for both alorithms under 10 independent trials have shown in Figure.6 and Figure.7. It is clear that in 

DYPSO there is slower convergence as well as issue of consistency. Performance of GMEP is not only 

better than DYPSO but also there is high level of consistency which is very important for practical point of 

view. The mean convergence characteristics for the comparison purpose have been shown in Figure.8. The 

obtained optimal parameters along with the corresponding magnetic fluxes have been shown in Table 6 and 

Table 7. It can be observed that the linkage and mutual flux components are more and value of leakage flux 

component is less with the parameters which have been delivered by GMEP. 
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                           Figure 6.   Convergence characteristics of DYPSO under 10 independent trials 

                                

                             Figure 7.  Convergence characteristics of GMEP under 10 independent trials 
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  Figure 8.  Mean Convergence characteristics of DYPSO & GMEP under 10 independent trials 

 

 

                     Table.6. Performance comparison of DYPSO and GMEP for magnet length 

 

Table.7. Performance comparison of DYPSO and GMEP for slot opening 
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DYPSO

GMEP

permanent magnetic 

length 

DYPSO GMEP 

Optimal   bm 2.820364949491218e+001 2.855246674196535e+001 

Obj.Fun val 2.685017041708837e-003 2.685029401977366e-003 

Linkage flux 1.457314115417364e-003 1.457821033036996e-003 

Mutual  flux 1.329035602284756e-003 1.329079156946245e-003 

Leakage flux 1.277134898846693e-004 1.282392415154010e-004 

Rotoric Slot pening   DYPSO GMEP 

Optimal   bo 1.858762165937329e+001 1.858774460009358e+001 

Obj.Fun. val 2.685017041708837e-003 2.685029401977366e-003 

Linkage flux  1.447741741996738e-003 1.447741636135700e-003   

Mutual  flux 1.355684990771695e-003 1.355684990930294e-003 

Leakage flux 9.202887716820817e-005 9.202877157911007e-005 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                         www.jetir.org (ISSN-2349-5162) 

JETIR1906238 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 649 
 

CONCLUSION  

Simulation results show the efficiency of the proposed method of self-adapting the mutation strategy in the 

evolutionary programming. Gaussian Mutation Strategy based self-adaptive Evolutionary programming is 

more efficient in maximizing the linkage flux and mutual flux components and minimizing the leakage flux 

component compared to DYPSO. Performance of GMEP is not only better than DYPSO but also there is 

high level of consistency exist which is very important for practical point of view. Hence GMEP can be used 

as an effective and efficient evolutionary algorithm for design optimization of wind turbine PMSG.  
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