SEMI*δ- LOCALLY CLOSED AND CONTINUOUS FUNCTIONS

¹Reena C, ²Vijayalakshmi P

 ¹ Assistant Professor, PG and Research Department of Mathematics, St.Mary's College, Tuticorin. Affliated to Manonmaniam Sundaranar University, Tirunelveli, India
² M.Phil Scholar, PG and Research Department of Mathematics, St.Mary's College, Tuticorin. Affliated to Manonmaniam Sundaranar University, Tirunelveli, India

Abstract: The purpose of this paper to introduce a new class of set namely Semi* δ -locally closed and new class of function namely Semi* δ -locally closed continuous and study their properties.

Keywords: semi* δ -locally closed set and semi* δ -locally closed continuous function.

1.INTRODUCTION :

Bourbaki [3] defined a subset of a topological space as locally closed if it is the intersection of an open set and a closed set. Stone [10] used the term FG for locally closed subset. Ganster and Reilly [6] used locally closed sets to define LC-continuity and LC-irresoluteness.

The concept of semi* δ -open sets [4], have been initiated by Pious Missier .S and Reena .C. The purpose this paper is introduced to new class of set called semi* δ - locally closed set and new class of function called semi* δ - locally closed continuous functions in topological spaces.

2. PRELIMINARIES

Definition 2.1: A subset A of a topological space (X, τ) is called a semi* δ -open [7] if there exists a δ -open set U in X such that $U \subseteq A \subseteq Cl^*(U)$.

Definition 2.2: The complement of semi* δ -open set is semi* δ -closed [6] It is denoted by S* $\delta C(X,\tau)$.

Definition 2.3: The δ -interior of a subset A of X is union of all regular open set contained in A. The subset A is called δ -open[4] if A= δ int(A). The complement of δ -open is δ -closed.

Definition 2.4: If A is a subset of a topological space X, the **semi*\delta-closure[6]** of A is defined as the intersection of all semi* δ -closed sets in X containing A. It is denoted by $s^*\delta$ Cl(A).

Definition 2.5: A subset A of topological space (X, τ) is called **locally closed[1]** if A=U \cap F where U is open and F is closed in (X, τ) .

Definition 2.6: A subset of A of topological space (X, τ) is called **\delta-locally closed[4]** if A=U \cap F where U is δ -open and F is δ -closed in (X, τ) .

Definition 2.7: A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is said to be semi* δ -irresolute [5] if $f^{-1}(V)$ is semi* δ -open in (X, τ) for every semi* δ -open set V in (Y, σ) .

Definition 2.8: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be semi* δ -continuous [5] if $f^{-1}(V)$ is semi* δ -open in (X, τ) for every open set V in (Y, σ) .

Definition 2.9: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be **\delta-continuous** [4] if (V) is δ -open in (X, τ) for every open set V in (Y, σ) .

Definition 2.10: A subset of A (X, τ) is called **\delta-dense[4]** if δ cl(A)=X.

Theorem 2.11: [7] Every δ -open set is semi* δ -open.

Theorem 2.12: [7] Every δ -closed set is semi* δ -closed.

3.SEMI*δ- LOCALLY CLOSED

Definition 3.1 A subset A of a topological space (X, τ) is called a **semi*ô-locally closed** if $A = S \cap F$ where S is semi*ô-open and F is semi*ô-closed. The class of all semi*ô-locally closed is denoted by $S*\delta$ - LC(X, τ).

Example 3.2: Let X={a, b, c}, τ ={ ϕ , {a}, {b}, {a, b}, {a, c}, X}, S* δ -(X, τ)={ ϕ , {b}, {a, c}, X} and S* δ C(X, τ)= { ϕ , {b}, {a, c}, X}. Then S* δ -LC(X, τ)={ ϕ , {b}, {a, c}, X}.

Definition 3.3: A subset A of a topological space (X, τ) is called a **semi*\delta-locally closed*** if A=S \cap F where s is semi* δ -open and F is δ -closed. The class of all semi* δ -locally closed* is denoted by S* δ -LC* (X, τ) .

Example 3.4: Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}, S*\delta-O(X, \tau) = \{\phi, \{a\}, \{b, c\}, X\} and \delta C(X, \tau) = \{\phi, \{a\}, \{b, c\}, X\}.$

Definition 3.5: A subset A of a topological space (X, τ) is called **semi*\delta-locally closed****, if A=S \cap F where S is δ -open and F is semi* δ -closed. The class of all semi* δ -locally closed** is denoted by S* δ -LC**(X, τ).

Example 3.6: Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}, S^* \delta C(X, \tau) = \{\phi, \{a, c\}, X\}$ and $\delta O(X, \tau) = \{\phi, \{b\}, \{a, c\}, X\}$. Then $S^*\delta$ -LC**(X, $\tau) = \{\phi, \{b\}, \{a, c\}, X\}$

Theorem 3.7: If a subset A of (X, τ) is δ -locally closed then it is semi* δ -locally closed, semi* δ -locally closed* and semi* δ -locally closed**.

Proof: Let $A=P\cap Q$ where P is δ -open and Q is δ -closed in (X, τ) . Since every δ -open set semi* δ -open and every δ -closed set is semi* δ -closed, A is semi* δ -locally closed, semi* δ -locally closed* and semi* δ -locally closed**.

Remark 3.8: The converse of the above theorem need not be true as shown in the following example.

Example 3.9: Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}, S*\delta O(X, \tau) = \{\phi, \{a\}, \{c\}, \{a, b\}, \{b, c\}, \{c, a\}, X\}, S*\delta C(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, X\}$ and $\delta O(X, \tau) = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}, \delta C(X, \tau) = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\}$. Then $S*\delta$ -LC(X, τ) = $\{\phi, \{a\}, \{c\}, \{a, b\}, \{b, c\}, X\}$ and $\delta LC(X, \tau) = \{\phi, X\}$. Here $\{a\}, \{c\}, \{a, b\}, \{b, c\}$ is semi* δ -locally closed set, but not δ -locally closed .

Example 3.10: Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ S* δ -O(X, τ)= $\{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{c, a\}, X\}$, S* δ -C(X, τ)= $\{\phi, \{a\}, \{b\}, \{c\}, \{c\}, \{a, c\}, X\}$ and δ O(X, τ)= $\{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ δ C(X, τ)= $\{\phi, \{c\}, \{b, c\}, \{c, a\}, X\}$. Then S* δ -LC*(X, τ) = $\{\phi, \{b, c\}, \{a, c\}, X\}$ and δ -LC(X, τ) = $\{\phi, X\}$. Here $\{a, c\}, \{b, c\}$ is semi* δ -locally closed*, but not δ - locally closed .

Example 3.11: Let $X=\{a, b, c, d\}$, $\tau=\{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}$, $S^*\delta O(X, \tau)=\{\phi, \{a\}, \{b, c\}, \{a, d\}, \{a, b, c\}, \{b, c\}, \{c, d\}, X\}$, $S^*\delta C(X, \tau)=\{\phi, \{a\}, \{d\}, \{b, c\}, \{a, d\}, \{b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, b, c\}, \{b, c\}, \{a, b, c\}, \{a, b,$

Theorem 3.12: If a subset A of (X, τ) is semi* δ -locally closed* then it is semi* δ -locally closed. **Proof:** Let A be a semi* δ -locally closed*set. Let U be a semi* δ -open set in (X, τ) and V be a δ -closed set in (X, τ) . By definition of semi* δ -locally closed*, A=U \cap V. Since every δ -closed is semi* δ -local. Then A is Semi* δ -locally closed set.

Remark 3.13: The converse of the theorem need not be true as shown in the following example.

Example 3.14: Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}, S^*\delta LC(X, \tau) = \{\phi, \{a\}, \{b\}, \{b, c\}, \{a, c\}, X\}$ and $S^*\delta LC^*(X, \tau) = \{\phi, \{b, c\}, \{a, c\}, X\}$. Here $\{a\}$ and $\{b\}$ is semi* δ -locally closed, but not semi* δ - locally closed*.

Theorem 3.15: If a subset A of (X, τ) is semi* δ - locally closed**, then it is semi* δ -locally closed. **Proof:** Let A be semi* δ -locally closed** set. Let U be a δ -open set in (X, τ) and V be a semi* δ -closed set in (X, τ) . By definition of semi* δ - locally closed**, A=U \cap V. Since every δ -open set is semi* δ -open. Then A is semi* δ -locally closed set

Remark 3.16: The converse of the theorem need not be true as shown in the following example.

Example 3.17: Let X={a, b, c, d}, $\tau=\{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}, S*\delta LC(X, \tau)=\{\phi, \{a\}, \{b, c\}, \{a, d\}, \{b, c, d\}, X\}, S*\delta LC^{**}(X, \tau)=\{\phi, \{a\}, \{b, c\}, X\}.$ Here {b, c}, {a, d} is semi* δ locally closed, but not semi* δ locally closed**.

Remark 3.18: Every semi* δ locally closed* and semi* δ locally closed** are independent as shown in the following example.

Example 3.19: Let X={ a, b, c, d}, $\tau = \{\phi, \{a\}, \{c\}, \{a, d\}, \{a, c\}, \{a, c, d\}, X\}$, S* δ O(X, τ)={ ϕ , {c}, {b, c}, {a, d}, {a, b, d}, {a, b, d}, {a, c, d}, X}, δ O(X, τ)={ ϕ , {c}, {b, c}, {a, d}, {a, b, d}, {x} and S* δ C(X, τ)={ ϕ , {b, c}, {a, d}, {a, b, d}, X}, δ O(X, τ)={ ϕ , {c}, {a, d}, {x}, \delta O(X, τ)={ ϕ , {c}, {a, d}, {x}, \delta C(X, τ)={ ϕ , {b, c}, {a, b, d}, X}. Then S* δ LC*(X, τ) ={ ϕ , {b, c}, {a, b, d}, X} and S* δ LC**(X, τ)= { ϕ , {c}, {a, d}, X}. Therefore both are independent.

Remark 3.20: Every locally closed and semi* δ - locally closed are independent.

Example 3.21: Let $X = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{a, b\}, X\}$ and $\tau^c = \{\phi, \{b, c, d\}, \{c, d\}, X\}$, $S^*\delta O(X, \tau) = \{\phi, \{d\}, \{a, c\}, \{b, d\}, \{a, b, c\}, \{a, c, d\}, X\}$ and $S^*\delta C(X, \tau) = \{\phi, \{b\}, \{d\}, \{a, c\}, \{b, d\}, \{a, b, c\}, X\}$. Here $S^*\delta LC(X, \tau) = \{\phi, \{d\}, \{a, c\}, \{b, d\}, \{a, b, c\}, X\}$ and $LC(X, \tau) = \{\phi, X\}$. Therefore both are independent.

have, $A = U \cap S^*\delta$

Remark 3.22: We have the following diagram.

Remark 3.23: The Union of two semi* δ - locally closed (respectively semi* δ -locally closed*, semi* δ -locally closed**) sets need not be semi* δ - locally closed(respectively semi* δ -locally closed*, semi* δ - locally closed**) as seen from the following example.

Example 3.24: Let $X = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{a, b\}, X\}$, $S^* \delta LC(X, \tau) = \{\phi, \{d\}, \{a, c\}, \{b, d\}, \{a, b, c\}, X\}$. Here $\{d\}$ and $\{a, c\}$ are semi* δ - locally closed, But their union $\{a, c, d\}$ is not semi* δ - locally closed.

Definition 3.25: A topological space (X, τ) is said to be a semi* δ -door space if each subset of (X, τ) is either semi* δ -open or semi* δ -closed in (X, τ) .

Example 3.26: Let X= {a, b, c, d}, $\tau = \{\phi, \{a\}, \{b, c, d\}, X\}$ and S* $\delta O(X, \tau) = \{\phi, \{a\}, \{b, c, d\}, X\}$. Then (X, τ) is a semi* δ -door space.

Proposition 3.27: For a subset A of a space (X, τ) the following statement are equivalent

(i) $A \in S^* \delta LC(X, \tau)$

(ii) $A = U \cap S^* \delta Cl(X, \tau)$ for some semi^{*} δ - open set U in (X, τ)

Proof:

 $(i) \Rightarrow (ii)$

Let $A \in S^*\delta LC(X, \tau)$. Then there exist a semi* δ open set U and semi* δ closed V of (X, τ) , such that $A = U \cap V$. Since we have $A \subseteq U$ and $A \subseteq S^*\delta Cl(A)$ which implies $A \subseteq U \cap S^*\delta Cl(A)$. On other hand definition of semi* δ closure, $S^*\delta Cl(A) \subseteq V$. Hence

U∩ S*δ Cl(A) ⊆ U∩V = A. Therefore we have A = U∩S*δ Cl(A).

 $(ii) \Rightarrow (i)$

Assume $A=U \cap S^*\delta Cl(A)$ for some semi* δ open set in (X, τ) . Since semi* $\delta Cl(A)$ is semi* δ -closed, $A=U \cap S^*\delta Cl(A) \in S^*\delta LC(X, \tau)$.

Theorem 3.28: For a subset of (X, τ) the following statement are equivalent.

(i) $A \in S^*\delta LC(X, \tau)$

(ii) $A = U \cap S^* \delta Cl(A)$ for some $S^* \delta$ -open set U in (X, τ) .

- (iii) $S^*\delta Cl(A) A \text{ is } S^*\delta \text{-closed.}$
- (iv) $A \cup (X S^*\delta Cl(A))$ is semi* δ -open.

Proof: (i) \Leftrightarrow (ii): It follows from the above proposition.

(iii) \Rightarrow (ii): Let U = X - (S* δ Cl(A)-A), By (iii) U is semi*-open set in (X, τ). Then we Cl(A).

(ii) \Rightarrow (iii): Let A= U \cap S*\delta Cl(A) for some semi*\delta -open set U in (X, \tau).

 $S^*\delta \operatorname{Cl}(A) - A = S^*\delta \operatorname{Cl}(A) \cap A^c$

$$= S^* \delta \operatorname{Cl}(A) \cap (U \cap S^* \delta \operatorname{Cl}(A))^c$$

 $= S^* \delta \operatorname{Cl}(A) \cap (U^c \cup (S^* \delta \operatorname{Cl}(A)^c))$

 $= (\mathbf{S}^* \,\delta \operatorname{Cl}(\mathbf{A}) \cap U^c) \cup (\mathbf{S}^* \,\delta \operatorname{Cl}(\mathbf{A}) \cap (\mathbf{S}^* \delta \operatorname{Cl}(\mathbf{A}))^c)$

 $= S^* \delta Cl(A) \cap U^c$

Since U is semi* δ -open, Then U^c is Semi* δ -closed and S* δ Cl(A) is semi* δ closed. Therefore, intersection of semi* δ -closed set is semi* δ -closed. Hence S* δ Cl(A)–A is semi* δ -closed.

(iii) \Rightarrow (iv): Let V=S* δ Cl(A)-A. Then X-V=AU(X-S* δ Cl(A)) holds. Also X-V is semi* δ -open, since V is semi* δ -closed by (iii). Hence AU(X-S* δ Cl(A)) is semi* δ -open.

 $(iv) \Rightarrow (iii)$: Let U= AU(X-S* δ Cl(A)). Then X-U= S* δ Cl(A)-A, which is semi* δ -closed, since U is semi* δ -open by (iv). Hence S* δ Cl(A)-A is semi* δ -closed.

Proposition 3.29: For a subset A of (X, τ) , A \in S* δ -LC** (X, τ) , if and only if A=U \cap S* δ Cl(A) for some δ -open set U in (X, τ) . **Proof:**

Necessity:

Let $A \in S^*\delta LC^{**}(X, \tau)$. Then by definition, $A=U\cap V$, where U is δ -open set and V is a semi* δ -closed set containing A. Since V is semi* δ -closed set, we have $S^*\delta Cl(A)\subseteq V$, which implies that $U\cap S^*\delta Cl(A)\subseteq U\cap V=A$. Since $A\subseteq U$ and $A\subseteq S^*\delta Cl(A)$. We have $A\subseteq U\cap S^*\delta Cl(A)$. Therefore, $A=U\cap S^*\delta Cl(A)$, where U is δ -open. Sufficiency:

Assume that $A= U \cap S^*\delta$ Cl(A) for some δ -open set U in (X, τ). Since $S^*\delta$ Cl(A) is semi* δ -closed, we have $A \in S^*\delta$ LC**(X, τ).

Definition 3.30: A subset A of (X, τ) is called **semi*\delta-dense** if S* δ Cl(A)=X.

Example 3.31: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Here $S \in Cl(\{a, b\}) = X$ Hence $\{a, b\}$ is the semi* δ -dense set.

Proposition 3.32: In a topological space (X, τ) , every semi* δ -dense set is δ -dense but not conversely. **Proof:**

Let A be a semi* δ -dense set in (X, τ). Then S* δ Cl(A)=X. Since S* δ Cl(A) $\subseteq \delta$ Cl(A), and δ cl(A) \subseteq X. Therefore, we have δ Cl(A)=X. Hence A is δ -dense set.

Definition 3.34: A topological space (X, τ) is called **semi* \delta-submaximal** if every semi* δ -dense subset is semi* δ -open in (X, τ) .

Example 3.35: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$. $S^*\delta O(X, \tau) = \{\phi, \{a\}, \{c\}, \{a, b\}, \{b, c\}, \{c, a\}, X\}$, $S^*\delta C(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{b, c\}, \{a, b\}, X\}$. Here also semi* δ -dense subset. Hence it is semi* δ -submaximal.

SEMI*& LOCALLY CLOSED CONTINUOUS FUNCTION

Definition 4.1: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be **semi*** δ **-Locally closed continuous** if $f^{-1}(V)$ is semi* δ -locally closed in (X, τ) for every open set V in (Y, σ) .

Example 4.2: Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{c\}, \{a, c\}, Y\}$, $S^*\delta LC(X, \tau) = \{\phi, \{a\}, \{b\}, \{b, c\}, \{a, c\}, X\}$, $S^*\delta LC(Y, \sigma) = \{\phi, \{a\}, \{c\}, \{b, c\}, \{a, b\}, Y\}$. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be function defined by f(a)=a, f(b)=f(c)=c. Then the function is semi* δ - locally closed is continuous.

Definition 4.3: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be semi* δ -Locally closed* continuous if $f^{-1}(V)$ is semi* δ -locally closed* in (X, τ) for every open set V in (Y, σ) .

Example 4.4: Let $X = Y = \{a, b, c, d\}$, $\tau = \{\phi, \{b\}, \{c,\}, \{b, c\}, \{a, b, c\}, X\}$ and $\sigma = \{\phi, \{b\}, \{c\}, \{b, c\}, Y\}$, $S^*\delta LC^*(X, \tau) = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$, $S^*\delta LC^*(Y, \sigma) = \{\phi, \{b\}, \{c\}, \{b, c\}, Y\}$. Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be function defined by f(a)=a, f(b)=b, f(c)=c, f(d)=d. Then f is semi* δ -locally closed* continuous.

Definition 4.5: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be semi* δ -Locally closed** continuous if $f^{-1}(V)$ is semi* δ -locally closed** in (X, τ) for every open set V in (Y, σ) .

Example 4.6: Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{b\}, \{c, d\}, \{a, d\}, \{b, c, d\}, \{a, c, d\}, X\}$ and $\sigma = \{\phi, \{b\}, \{c\}, \{b, c\}, Y\}, S^*\delta LC^{**}(X, \tau) = \{\phi, \{a\}, \{b\}, \{c, d\}, \{a, b\}, \{b, c, d\}, \{a, c, d\}, X\}, S^*\delta LC^{**}(Y, \sigma) = \{\phi, \{b\}, \{c\}, \{b, c\}, Y\}$. Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be function defined by f(a)=c, f(b)=b, f(c)=a, f(d)=d. Then f is semi* δ -locally closed** continuous.

Theorem 4.7:

Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be function. Then

i) If f is δ - locally closed continuous, then f is semi* δ - locally closed continuous, semi* δ - locally closed* continuous, semi* δ - locally closed** continuous.

ii) If f is semi* δ -locally closed* continuous (or) semi* δ -locally closed** continuous, then f is semi* δ - locally closed continuous.

Proof:

i) Suppose f is δ -locally closed continuous. Let V be an δ -open set of (Y, σ) . Then $f^{-1}(V)$ is δ - locally closed in (X, τ) . Since by theorem 3.7, every δ - locally closed set is semi* δ - locally closed set, semi* δ -locally closed* set, semi* δ -locally closed* set, semi* δ -locally closed* set, semi* δ -locally closed* continuous, semi* δ - locally closed** continuous.

ii) Let f be semi* δ - locally closed*continuous (or) semi* δ - locally closed** continuous function. Since every semi* δ - locally closed*and semi* δ -locally closed** set is semi* δ - locally closed set the proof follows.

Remark 4.8: Every Semi* δ - locally closed continuous is not δ - locally closed continuous as seen in the example.

Example 4.9: Let $X=Y=\{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, Y\}$, $S^*\delta LC(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, c\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, X\}$, $\delta LC(X, \tau) = \{X, \phi\}$. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be the function defined by f(a) = a, f(b) = b, f(c) = d, f(d) = c. Therefore it is clearly semi* δ - locally closed continuous. But Here $\{a\}$ in (Y, σ) does not have pre image in δ - locally closed (X, τ) . Hence f is not δ - locally closed continuous.

Remark 4.10: Every Semi* δ -locally closed* continuous is not δ -locally closed continuous as seen in the example.

Example 4.11: Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{b\}, \{c\}, \{b, c\}, \{a, b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, Y\}$, $S^*\delta LC(X, \tau) = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}, \delta LC(X, \tau) = \{X, \phi\}$. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be the function defined by f(a) = c, f(b) = b, f(c) = a, f(d) = d. Therefore it is clearly semi* δ -locally closed*continuous. But Here $\{a\}$ in (Y, σ) does not have pre image in δ - locally closed(X, $\tau)$). Hence f is not δ -locally closed continuous.

Remark 4.12: Every Semi* δ -locally closed** continuous is not δ -locally closed continuous as seen in the example.

Example 4.13: Let $X=Y=\{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}$ and $\sigma = \{\phi, \{b\}, \{c\}, \{b, c\}, Y\}$, $S^*\delta LC^{**}(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$, $\delta LC(X, \tau) = \{X, \phi\}$. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be the function defined by f(a)=a, f(b)=b, f(c)=d, f(d)=c. Therefore it is clearly semi* δ -locally closed** continuous. But Here $\{b\}$ in (Y, σ) does not have pre image in δ -locally closed (X, τ) . Hence f is not δ -locally closed continuous.

Remark 4.14: Every Semi* δ -locally closed continuous is not semi* δ -locally closed* continuous as seen in the example.

Example 4.15: Let X=Y= {a, b, c, d}, $\tau = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, c\}, \{a, b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, X\}$, S* δ LC*(X, τ) = { ϕ , {b, d}, {a, d}, {c, d}, {b, c}, {a, d}, {a, c}, {a, d}, {b, d}, {a, c, d}, {b, c, d}, X, S* δ LC*(X, τ) = { ϕ , {b, d}, {a, d}, {c, d}, {a, c, d}, {a, d}, {a, c, d

Remark 4.16: Every Semi*δ-locally closed continuous is not semi*δ-locally closed** continuous as seen in the example.

Example 4.17: Let $X=Y=\{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}, X\}$ and $\sigma=\{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}$ and $\sigma=\{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, c\}, X\}$ and $\sigma=\{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, c\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{a, c, d\}, \{b, c, d\}, X\}$, $S^*\delta LC^*(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be the function defined by f(a)=a, f(b)=b, f(c)=d, f(d)=c. Therefore it is clearly semi*\delta-locally closed continuous. But Here $\{b, c\}$ in (Y, σ) does not have pre image in semi*\delta-locally closed**(X, \tau).

Definition 4.18: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be **semi*** δ -locally closed irresolute if $f^{-1}(V)$ is semi* δ -locally closed in (X, τ) for every semi* δ -locally closed set V in (Y, σ) .

Example 4.19: Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{b\}, \{b, c\}, Y\}$, S* δ LC(X, τ) = { ϕ , {a}, {c}, {b, c}, {a, b}, X} and S* δ LC(Y, σ) = { ϕ , {b}, {c}, {a, c}, {a, b}, Y}. Let f: (X, τ) \rightarrow (Y, σ) be a map defined by f(a) = b, f(b) = a, f(c)=c. Therefore it is semi* δ -locally closed irresolute.

Definition 4.20: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be **semi*\delta-locally closed* irresolute** if $f^{-1}(V)$ is semi* δ -locally closed* in (X, τ) for every semi* δ -locally closed* set V in (Y, σ) .

Example 4.21: Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{c\}, \{a, d\}, \{a, c\}, \{a, c, d\}, X\}$ and $\sigma = \{\phi, \{b\}, \{c\}, \{b, c\}, \{b, d\}, \{b, c\}, \{c, c\}, \{c$

Definition 4.22: A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is said to be **semi*\delta-locally closed** irresolute** if $f^{-1}(V)$ is semi* δ -locally closed** in (X, τ) for every semi* δ -locally closed** set V in (Y, σ) .

Example 4.23: Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, \{b\}, \{c\}, \{b, d\}, \{b, c\}, \{b, c, d\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{a, b, \}, \{a, d\}, \{a, b, d\}, Y\}$, $S^*\delta LC^{**}(X, \tau) = \{\phi, \{a, c\}, \{a, b, d\}, X\}$ and $S^*\delta LC^{**}(Y, \sigma) = \{\phi, \{b, c\}, \{a, c, d\}, Y\}$. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a map defined by f(a) = c, f(b) = a, f(c)=b, f(d)=d. Therefore it is semi* δ -locally closed**irresolute.

Proposition 4.24: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a semi* δ –irresolute if and only if it is semi* δ –locally closed irresolute. **Proof:**

Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a semi* δ - irresolute map. Let B \in S* δ LC(Y, σ). Then there exists a semi* δ - open set U and a semi* δ - closed set V such that B= U \cap V which implies that $f^{-1}(B) = f^{-1}(U) \cap f^{-1}(V)$. Since f is irresolute map. Then $f^{-1}(U)$ and $f^{-1}(V)$ is semi* δ -open and semi* δ -closed. Hence $f^{-1}(B) \in S*\delta$ LC(X, τ). Therefore, f is semi* δ - locally closed irresolute. Conversely, Let f:(X, τ) \rightarrow (Y, σ) be a semi* δ - locally closed irresolute. Let B \in S* δ O(Y, σ). Let O \in S* δ LC(Y, σ). By definition of semi* δ -locally closed, O=B \cap C. Since B is semi* δ -open in (Y, σ) and C is semi* δ - closed in (Y, σ) and also f is semi* δ -locally closed irresolute. Therefore $f^{-1}(O) = f^{-1}(B) \cap f^{-1}(C) \in S*\delta$ LC (X, τ). Clearly $f^{-1}(B)$ is semi* δ -open in (X, τ) and $f^{-1}(C)$ is semi* δ -closed in (X, τ). Hence $f^{-1}(B)\in S*\delta$ O(X, τ). Therefore, f is semi* δ - irresolute.

Proposition 4.25: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a semi* δ –irresolute if and only if it is semi* δ –locally closed* irresolute. **Proof:**

Let f: $(X, \tau) \to (Y, \sigma)$ be a semi* δ -irresolute map. Let $B \in S^* \delta LC^*(Y, \sigma)$. Then there exist a semi* δ -open set U and δ -closed set W such that $B=U\cap W$ which implies that $f^{-1}(B) = f^{-1}(U) \cap f^{-1}(W)$. Since f is irresolute map. Then $f^{-1}(U)$ and $f^{-1}(W)$ is semi* δ - open and δ -closed. Hence $f^{-1}(B) \in S^* \delta LC^*(X, \tau)$. Therefore f is semi* δ -locally closed* irresolute. Conversely, Let $f:(X, \tau) \to (Y, \sigma)$ be a semi* δ - locally closed* irresolute. Let $W \in S^* \delta O(Y, \sigma)$. Let $O \in S^* \delta LC^*(Y, \sigma)$. By definition of semi* δ -locally closed*, $O=W\cap U$. Since W is semi* δ -open in (Y, σ) and U is δ closed in (Y, σ) and also f is semi* δ -locally closed* irresolute. Therefore $f^{-1}(O) = f^{-1}(W) \cap f^{-1}(U) \in S^* \delta LC^*(X, \tau)$. Clearly $f^{-1}(W)$ is semi* δ -open in (X, τ) and $f^{-1}(U)$ is δ -closed in (X, τ) . Hence $f^{-1}(W) \in S^* \delta O(X, \tau)$. Therefore f is semi* δ -irresolute.

Proposition 4.26: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a semi* δ –irresolute if and only if it is semi* δ –locally closed** irresolute. **Proof:**

Let f: $(X, \tau) \to (Y, \sigma)$ be a semi* δ - irresolute map. Let $B \in S^*\delta LC^{**}(Y, \sigma)$. Then there exist a δ -open set O and semi* δ closed set V such that $B=O\cap V$, Which implies that $f^{-1}(B) = f^{-1}(O)\cap f^{-1}(V)$. Since f is irresolute map. Then $f^{-1}(O)$ and $f^{-1}(V)$ is δ -open and semi* δ - closed. Hence $f^{-1}(B) \in S^* \delta LC^{**}(X, \tau)$. Therefore f is semi* δ - locally closed** irresolute. Conversely, Let f: $(X, \tau) \to (Y, \sigma)$ be a semi* δ -locally closed** irresolute. Let $V \in S^*\delta O(Y, \sigma)$. Let $O \in S^*\delta LC^{**}(Y, \sigma)$. By definition of semi* δ -locally closed**, $O=V\cap U$. Since V is δ -open in (Y, σ) and U is semi* δ - closed in (Y, σ) . Since every δ -open is semi* δ - open. Therefore V is semi* δ -open in (Y, σ) and also f is semi* δ -locally closed** irresolute. Therefore $f^{-1}(O) = f^{-1}(V) \cap f^{-1}(U) \in S^*\delta LC^{**}(X, \tau)$. Clearly $f^{-1}(V)$ is δ -open in (X, τ) and $f^{-1}(U)$ is semi* δ -closed in (X, τ) . Since every δ -open is semi* δ -open, Hence $f^{-1}(V) \in S^*\delta O(X, \tau)$. Therefore f is semi* δ - irresolute.

Remark 4.27: Semi*δ-locally closed irresolute and semi*δ-locally closed continuous are independent as following example.

Example 4.28: Let $X = Y = \{a, b, c, d\}$. Let $\tau = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, d\}, \{b, d\}, \{a, c, d\}, \{b, c, d\}, \{a, b, d\}, \{X\}$ and $S^*\delta LC(Y, \sigma) = \{\phi, \{a\}, \{a, d\}, \{b, c\}, \{b, c, d\}, Y\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a map defined by f(a) = a, f(b) = b, f(c) = c, f(d) = d. Clearly it is semi* δ - locally closed irresolute. Here $\{a, b, c\}$ in $(Y, \sigma), f^{-1}(\{a, b, c\}) = \{a, b, c\}$ does not semi* δ - locally closed in (X, τ) . Therefore f is not semi* δ -locally closed continuous.

Example 4.29: Let $X = Y = \{a, b, c\}$. Let $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{c\}, \{a, c\}, Y\}$, $S^*\delta LC(X, \tau) = \{\phi, \{a\}, \{b\}, \{b, c\}, \{a, c\}, X\}$ and $S^*\delta LC(Y, \sigma) = \{\phi, \{a\}, \{c\}, \{b, c\}, \{a, b\}, Y\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a map defined by f(a) = a, f(b) = f(c) = c. Clearly it is semi* δ - locally closed continuous. Here $\{a, b\}$ in $S^*\delta LC(Y, \sigma)$ does not pre image in semi* δ - locally closed irresolute.

Proposition 4.30: For any two maps $f: (X, \tau) \rightarrow (Y, \sigma)$ and $g: (Y, \sigma) \rightarrow (Z, \omega)$ then

 $g \circ f: (X, \tau) \rightarrow (Z, \omega)$ is semi* δ -locally closed continuous if f is semi* δ -locally closed irresolute and g is δ -locally closed continuous(resp. semi* δ - locally closed* continuous, semi* δ - locally closed* continuous) **Proof:**

Let V be any open set in (Z, ω) . Since g is δ -locally closed continuous (resp. semi* δ -locally closed * continuous, semi* δ - locally closed ** continuous) $g^{-1}(V) \in \delta LC(Y, \sigma)$. Since by theorem 3.7, $g^{-1}(V) \in S^*\delta LC(Y, \sigma)$. Since f is semi* δ -locally closed irresolute. $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V) \in S^*\delta LC(X, \tau)$. Hence $g \circ f$ is semi* δ -locally closed continuous. (resp. semi* δ -locally closed* continuous, semi* δ - locally closed** continuous)

References:

[1] M. Ganster and I.L.Reilly, "locally closed set and locally closed continuous functions", Internat.J.Math and Math sci 12,1989,pp 417-424.

[2] M.Stone, "Application of the theory of Boolean rings to general topology", Trans. Amer. Math soc, 41,1937,pp374-481.

[3] N. Bourbaki, "General Topology", Addison - Wesley, Reeding Mass(1966).

[4] N.V.Velicko, H-closed topological spaces, Mat sb. 98-112; English transl.(2), in Amer.Math.Soc.Transl.,78(1968),102-118.

[5] Pious Missier.S and Reena.C, Continuous and Irresolute Functions Via Star Generalised Closed Sets, IJMER- 7(2), Feb 2017, 58-64.

[6] Pious Missier, S, Reena, C & Mahadevan, G, 2017, 'Contra Semi*δ-Continuous Functions in Topological Spaces', International Journal of Mathematics And its Applications, Vol. 5, no. 4-A, pp 19-30.

[7] Pious Missier.S and Reena.C, On Semi*δ-Open Sets in Topological Spaces, IOSR Journal.