A STUDY ON TRANSLATION OF Q-FUZZY SUBSEMIRING OF A SEMIRING

^{1,2} V.Saravanan

¹ Mathematics Section, FEAT, Annamalai University, Annamalai Nagar. ² Deputation: Dept. of Mathematics, Alagappa Govt. Polytechnic College, Karaikudi.

Abstract : In this paper, we made an attempt to study the algebraic nature on translation of Q-fuzzy subsemiring of a semiring and we introduce the some theorems in translation of Q-fuzzy subsemiring of a semiring 2000 AMS Subject classification: 03F55, 06D72, 08A72.

KEY WORDS: fuzzy subset, Q- fuzzy subset, Q-fuzzy subsemiring, Q-fuzzy translation.

INTRODUCTION: There are many concepts of universal algebras generalizing an associative ring (R; + ; .). Some of them in particular, nearrings and several kinds of semirings have been proven very useful. An algebra (R; +, .) is said to be a semiring if (R; +) and (R; .) are semigroups satisfying a. (b+c) = a. b+a. c and (b+c) .a = b. a+c. a for all a, b and c in R. A semiring R is said to be additively commutative if a+b = b+a for all a, b in R. A semiring R may have an identity 1, defined by 1. a = a = a. 1 and a zero 0, defined by 0+a = a = a+0 and a.0 = 0 = 0.a for all a in R. After the introduction of fuzzy sets by L.A.Zadeh[6], several researchers explored on the generalization of the concept of fuzzy sets. The notion of fuzzy subnearrings and ideals was introduced by S.Abou Zaid[13]. A.Solairaju and R.Nagarajan [3] have introduced and defined a new algebraic structure called Q-fuzzy subgroups. We introduce the concept of Q-fuzzy translation of Q-fuzzy subsemiring of a semiring and established some results. **1. PRELIMINARIES:**

1.1 Definition: Let X be a non–empty set. A **fuzzy subset A** of X is a function $A: X \rightarrow [0, 1]$.

1.2 Definition: Let X be a non-empty set and Q be a non-empty set. A Q-fuzzy subset A of X is a function A: $X \times Q \rightarrow [0,1]$.

1.3 Definition: Let $(R, +, \cdot)$ be a semiring and Q be a non empty set. A Q-fuzzy subset A of R is said to be a Q-fuzzy subsemiring (QFSSR) of R if the following conditions are satisfied:

(i) $\mu_A(x + y, q) \ge \min{\{\mu_A(x, q), \mu_A(y, q)\}},$

(ii) $\mu_A(x,q) \ge \min\{ \mu_A(x,q), \mu_A(y,q) \}$, for all x and y in R and q in Q.

1.4 Definition: Let A be a Q-fuzzy subset of X and $\alpha \in [0,1-Sup\{A(x,q): x \in X, 0 \le A(x,q) \le 1\}]$. Then T

 $=T_{\alpha}^{A}$ is called a Q-fuzzy translation of A if T(x,q)=A(x,q)+\alpha, for all x in X and q in Q.

1.1.1 Example: Consider the set X={0,1,2,3,4,5} and Q={p}. Let A = {((0,p),0.6), ((1,p),0.43), ((2,p),0.28), ((3,p),0.35), ((4,p),0.15), ((5,p),0.51)} be a Q-fuzzy subset of X and $\alpha = 0.15$. The Q-fuzzy translation of A is T = $T_{0.15}^A$ = {((0,p),0.75), ((1,p),0.58), ((2,p),0.43), ((3,p),0.50), ((4,p),0.30), ((5,p),0.66)}.

1.5 Definition: Let $(R,+,\cdot)$ and $(R^{\dagger},+,\cdot)$ be any two semirings Q be a non empty set. Let $f:R \rightarrow R^{\dagger}$ be any function and A be a Q-

fuzzy translations of Q-fuzzy subsemiring in R, V be a Q-fuzzy subsemiring in $f(R) = R^1$, defined by $\mu_V(y,q) = \sup_{x \in f^{-1}(y)} \mu_A$

 $(x,q)+\alpha$, for all x in R and y in R¹ and q in Q. Then A is called a pre-image of V under f and is denoted by f⁻¹(V). **1.6 Definition:** Let (R, +, .) and (R¹, +, .) be any two semirings. Then the function $f: R \to R^1$ is called a **semiring** homomorphism if it satisfies the following axioms:

(i) f(x+y) = f(x) + f(y),

(ii) f(xy) = f(x) f(y), for all x and y in R.

1.7 Definition: Let (R, +, .) and $(R^{l}, +, .)$ be any two semirings. Then the function $f: R \to R^{l}$ is called a **semiring anti-homomorphism** if, it satisfies the following axioms:

(i) f(x + y) = f(y) + f(x),

(ii) f(xy) = f(y) f(x), for all x and y in R.

2. PROPERTIES ON Q-FUZZY TRANSLATION OF Q-FUZZY SUBSEMIRING OF A SEMIRING

2.1 Theorem: If E and H are two Q-fuzzy translations of Q-fuzzy subsemiring A of a semiring $(R, +, \cdot)$, then their intersection $E \cap H$ is a Q-fuzzy subsemiring of R.

Proof: Let x and y belong to R and q in Q. Let $E=T_{\alpha}^{A}=\{<(x,q),\mu_{A}(x,q)+\alpha>/x \text{ in R and q in Q}\}$ and $H=T_{\beta}^{A}=\{<(x,q),\mu_{A}(x,q)+\beta>/x \text{ in R and q in Q}\}$ be two Q-fuzzy translations of Q-fuzzy subsemiring. Let $C=E\cap H$ and $C=\{<(x,q), \mu_{C}(x,q)>/x \text{ in R and q in Q}\}$, where $\mu_{C}(x,q)=\min\{\mu_{A}(x,q)+\alpha,\mu_{A}(x,q)+\beta\}$. Case (i): $\alpha\leq\beta$. Now

 $\mu_{C}(x+y,q)=\min\{\mu_{E}(x+y,q),\mu_{H}(x+y,q)=\min\{\mu_{A}(x+y,q)+\alpha,\mu_{A}(x+y,q)+\beta\}=\mu_{A}(x+y,q)+\alpha=\mu_{E}(x+y,q), \text{ for all } x \text{ and } y \text{ in } R \text{ and } q \text{ in } Q.$ And $\mu_{C}(xy,q)=\min\{\mu_{E}(xy,q),\mu_{H}(xy,q)=\min\{\mu_{A}(xy,q)+\alpha,\mu_{A}(xy,q)+\beta\}=\mu_{A}(xy,q)+\alpha=\mu_{E}(xy,q), \text{ for all } x \text{ and } y \text{ in } R \text{ and } q \text{ in } Q.$ $C=T_{\alpha}^{A}=\{<(x,q),\mu_{A}(x,q)+\alpha>/x \text{ in } R \text{ and } q \text{ in } Q\} \text{ is a } Q-\text{fuzzy translation of } Q-\text{fuzzy subsemiring } a \text{ of the semiring } (R,+,\cdot).$ Case (ii): $\alpha\geq\beta$. Now $\mu_{C}(x+y,q)=\min\{\mu_{E}(x+y,q),\mu_{H}(x+y,q)=\min\{\mu_{A}(x+y,q)+\alpha,\mu_{A}(x+y,q)+\beta\}=\mu_{A}(x+y,q)+\beta}=\mu_{H}(x+y,q),$ for all x and y in R and q in Q. And $\mu_C(xy,q) = \min \{ \mu_E(xy,q), \mu_H(xy,q) =$

 $\min\{\mu_A(xy,q)+\alpha,\mu_A(xy,q)+\beta\}=\mu_A(xy,q)+\beta=\mu_H(xy,q), \text{ for all } x \text{ and } y \text{ in } R \text{ and } q \text{ in } Q. C = H = T_\beta^A = \{<(x,q), \mu_A(x,q)+\beta > /x \text{ in } R \text{ and } q \text{ in } Q. C = H = T_\beta^A = \{<(x,q), \mu_A(x,q)+\beta > /x \text{ in } R \text{ and } q \text{ in } Q. C = H = T_\beta^A = \{<(x,q), \mu_A(x,q)+\beta > /x \text{ in } R \text{ and } q \text{ in } Q. C = H = T_\beta^A = \{<(x,q), \mu_A(x,q)+\beta > /x \text{ in } R \text{ and } q \text{ in } Q. C = H = T_\beta^A = \{<(x,q), \mu_A(x,q)+\beta > /x \text{ in } R \text{ and } q \text{ in } Q. C = H = T_\beta^A = \{<(x,q), \mu_A(x,q)+\beta > /x \text{ in } R \text{ and } q \text{ in } Q. C = H = T_\beta^A = \{<(x,q), \mu_A(x,q)+\beta > /x \text{ in } R \text{ and } q \text{ in } Q. C = H = T_\beta^A = \{<(x,q), \mu_A(x,q)+\beta > /x \text{ in } R \text{ and } q \text{ in } Q. C = H = T_\beta^A = \{<(x,q), \mu_A(x,q)+\beta > /x \text{ in } R \text{ and } q \text{ in } Q. C = H = T_\beta^A = \{<(x,q), \mu_A(x,q)+\beta > /x \text{ in } R \text{ and } q \text{ in } Q. C = H = T_\beta^A = \{<(x,q), \mu_A(x,q)+\beta > /x \text{ in } R \text{ in } Q \text{ in$ and q in Q } is a Q-fuzzy translation of Q-fuzzy subsemiring a of the semiring (R, $+, \cdot$). Hence all cases, intersection of any two Q-fuzzy translations of Q-fuzzy subsemiring A of a semiring (R, +, \cdot) is a Q-fuzzy translation of A.

2.2 Theorem: The intersection of a family of Q-fuzzy translations of Q-fuzzy subsemiring A of a semiring $(R, +, \cdot)$ is a Q-fuzzy translation of A.

Proof: Let x and y belong to R and q in Q. Let $A_i = T_{\alpha}^A = \{<(x, q), \mu_A(x, q) + \alpha_i > /x \text{ in R and q in Q}\}$ be a family of Q-fuzzy translations of Q-fuzzy subsemiring A of the semiring (R, +, ·). Let $C = \bigcap_{i \in I} A_i$ and $C = \{<(x, q), \mu_A(x, q) > /x \text{ in R and q in Q}\}$ Where $A(x, q) = \inf_{i \in I} A(x,q) + \alpha_i = A(x,q) + \inf_{i \in I} \alpha_i$. Clearly C is also a Q-fuzzy translation of a Q-fuzzy subsemiring A of R.

2.3 Theorem: If E and H are two Q-fuzzy translations of Q-fuzzy subsemiring A of a semiring (R, +, ·), then their union $E \cup$ 'H is a Q-fuzzy subsemiring of R.

Proof: Let x and y belong to R and q in Q. Let $E = T_{\alpha}^{A} = \{\langle (x, q), \mu_{A}(x, q) + \alpha \rangle / x \text{ in } R \text{ and } q \text{ in } Q\}$ and $H = T_{\beta}^{A} = \{\langle (x, q), \mu_{A}(x, q) + \alpha \rangle / x \text{ in } R \text{ and } q \text{ in } Q\}$ q)+ β >/x in R and q in Q } be two Q-fuzzy translations of Q-fuzzy subsemiring. Let C= $\Xi \cup H$ and C={< (x, q), $\mu_C(x, q)$ >/x in R and q in Q}, where $\mu_C(x,q) = \max\{\mu_A(x,q) + \alpha, \mu_A(x,q) + \beta\}$. Case (i): $\alpha \leq \beta$. Now $\mu_C(x+y,q) = \max\{\mu_E(x+y,q), \mu_H(x+y,q) = \alpha \leq \beta\}$. $\max\{\mu_A(x+y,q)+\alpha,\mu_A(x+y,q)+\beta\} = \mu_A(x+y,q)+\beta=\mu_H(x+y,q), \text{ for all } x \text{ and } y \text{ in } R \text{ and } q \text{ in } Q. \text{ And } \mu_C(xy,q) = \mu_A(x+y,q)+\beta=\mu_H(x+y,q), \text{ for all } x \text{ and } y \text{ in } R \text{ and } q \text{ in } Q. \text{ And } \mu_C(xy,q)=\mu_A(x+y,q)+\beta=\mu_H(x+y,q), \text{ for all } x \text{ and } y \text{ in } R \text{ and } q \text{ in } Q. \text{ And } \mu_C(xy,q)=\mu_A(x+y,q)+\beta=\mu_H(x+y,q), \text{ for all } x \text{ and } y \text{ in } R \text{ and } q \text{ in } Q. \text{ and } \mu_C(xy,q)=\mu_A(x+y,q)+\beta=\mu_H(x+y,q), \text{ for all } x \text{ and } y \text{ in } R \text{ and } q \text{ in } Q. \text{ and } \mu_C(xy,q)=\mu_A(x+y,q)+\beta=\mu_H(x+y,q)+\beta=\mu_H(x+y,q), \text{ for all } x \text{ and } y \text{ in } R \text{ and } q \text{ in } Q. \text{ and } \mu_C(xy,q)=\mu_A(x+y,q)+\beta=\mu_H(x+y,q), \text{ for all } x \text{ and } y \text{ in } R \text{ and } q \text{ in } Q. \text{ and } \mu_C(xy,q)=\mu_A(x+y,q)+\beta=\mu_H(x+y,q), \text{ for all } x \text{ and } y \text{ in } R \text{ and } q \text{ in } Q. \text{ and } \mu_C(xy,q)=\mu_A(x+y,q)+\beta$ $\max\{\mu_E(xy,q),\mu_H(xy,q)=\max\{\mu_A(xy,q)+\alpha,\mu_A(xy,q)+\beta\}=\mu_A(xy,q)+\beta=\mu_H(xy,q), \text{ for all } x \text{ and } y \text{ in } R \text{ and } q \text{ in } Q.$ Therefore $C = T_{\beta}^{A} = \{\langle (x,q), \mu_{A}(x,q) + \beta \rangle / x \text{ in } R \text{ and } q \text{ in } Q \}$ is a Q-fuzzy translation of Q-fuzzy subsemiring a of the semiring (R,+,·). Case (ii): $\alpha \geq \beta. \text{ Now } \mu_C(x+y,q) = \max\{\mu_E(x+y,q), \mu_H(x+y,q)\} = \max\{\mu_A(x+y,q) + \alpha, \mu_A(x+y,q) + \beta\} = \mu_A(x+y,q) + \alpha = \mu_E(x+y,q), \text{ for all } x \text{ and } y \text{ in } x \geq \beta. \text{ Now } \mu_C(x+y,q) = \max\{\mu_B(x+y,q), \mu_B(x+y,q)\} = \max\{\mu_B(x+y,q) + \alpha, \mu_B(x+y,q) + \beta\} = \mu_B(x+y,q) + \alpha = \mu_B(x+y,q)$ R and q in Q. And $\mu_C(xy,q) = \min\{\mu_E(xy,q), \mu_H(xy,q) = \min\{\mu_A(xy,q) + \alpha, \mu_A(xy,q) + \beta\} = \mu_A(xy,q) + \alpha = \mu_E(xy,q)$, for all x and y in R and q in Q. Therefore C=H = T_{α}^{A} ={<(x, q), μ_{A} (x, q)+ α >/x in R and q in Q } is a Q-fuzzy translation of Q-fuzzy subsemiring A of the semiring (R, +, ·). Hence all cases, union of any two Q-fuzzy translations of Q-fuzzy subsemiring A of a semiring (R, +, ·) is a Q-fuzzy translation of A.

2.4 Theorem: The union of a family of Q-fuzzy translations of Q-fuzzy subsemiring A of a semiring $(R, +, \cdot)$ is a Q-fuzzy translation of A.

Proof: Let x and y belong to R and q in Q. Let $A_i = T_{\alpha}^A = \{\langle (x, q), \mu_A(x, q) + \alpha_i \rangle / x \text{ in } R \text{ and } q \text{ in } Q\}$ be a family of Q-fuzzy

translations of Q-fuzzy subsemiring A of the semiring (R, +, ·). Let C= $\bigcup_{i \in I} A_i$ and C={<(x, q), $\mu_A(x, q)>/x$ in R and q in Q}, where $A(x, q) = Sup \{A(x,q)+\alpha_i\}=A(x,q)+Sup \alpha_i$. Clearly C is also a Q-fuzzy translation of a Q-fuzzy subsemiring A of R.

2.5 Theorem: If T is a Q-fuzzy translation of a Q-fuzzy subsemiring A of a semiring R, then T is a Q-fuzzy subsemiring of R. Proof: Assume that T is a Q-fuzzy translation of a Q-fuzzy subsemiring A of a semiring R. Let x and y in R and q in Q. We have $\min\{A(x,q),A(y,q)\}+\alpha=\min\{A(x,q)+\alpha,A(y,q)+\alpha\}=\min\{T(x,q),T(y,q)\}\text{ which implies that}$ $T(x+y,q)=A(x+y,q)+\alpha \geq$ $T(x+y,q) \ge \min \{T(x,q),T(y,q)\}$, for all x, y in R and q in Q. Again, T(xy,q)

T(y,q) } which $A(xy,q)+\alpha \geq \min \{A(x,q),A(y,q)\}+\alpha = \min \{A(x,q)+\alpha,A(y,q)+\alpha\}=\min \{T(x,q),A(y,q)+\alpha\}=\min \{T(x,q),A(y,q)+\alpha\}=\max \{T(x,q),A(y,q)+\alpha\}=\max \{T(x,q),A(y,q)+\alpha\}=\max \{T(x,q),A(y,q)+\alpha\}=\max \{T(x,q),A(y,q),A(y,q)+\alpha\}=\max \{T(x,q),A(y,q$ implies that T(xy,q $\geq \min \{T(x,q),T(y,q)\}$, for all x, y in R and q in Q. Hence T is A Q-fuzzy Subsemiring of R.

2.6 Theorem: Let (R, +, .) and (R', +, .) be any two semirings Q be a non-empty set. The homomorphic image of a Q-fuzzy translation of a Q-fuzzy subsemiring A of R is a Q-fuzzy of subsemiring of R¹.

Proof: Let (R, +, ...) and $(R^{l}, +, ...)$ be any two semirings Q be a non-empty set. Let $f: R \to R^{l}$ be a homomorphism. Then, f(x+y)=f(x)+f(y) and f(xy)=f(x)f(y), for all x and y in R. Let T_{α}^{A} be a Q-fuzzy translation of a Q-fuzzy subsemiring A of R. Let V be the homomorphic image of T_{α}^{A} under f. We have to prove that V is a Q-fuzzy of subsemiring of R¹. Now, for f(x), f(y) in R¹ and q in Q, we have $V(f(x)+f(y),q) = V(f(x+y),q) \ge T_{\alpha}^{A}(x+y,q) = A(x+y,q) + \alpha \ge \min\{A(x,q),A(y,q)\} + \alpha = \min\{A(x,q)+\alpha, A(y,q)+\alpha\} = A(x+y,q) + \alpha \ge \max\{A(x,q),A(y,q)\} + \alpha = \min\{A(x,q)+\alpha, A(y,q)+\alpha\} = A(x+y,q) + \alpha \ge \max\{A(x,q),A(y,q)\} + \alpha \ge \max\{A(x,q),$ min { $T^{\alpha}_{\alpha}(x,q), T^{\alpha}_{\alpha}(y,q)$ } which implies that $V(f(x)+f(y),q) \ge \min \{V(f(x),q), V(f(y),q)\}$ for f(x), f(y) in \mathbb{R}^{1} and q in \mathbb{Q} . Again, V(f(x)f(y),q)

 $V(f(xy),q) \ge T_{\alpha}^{A}(xy,q) = A(xy,q) + \alpha \ge \min\{A(x,q),A(y,q)\} + \alpha = \min\{A(x,q) + \alpha,A(y,q) + \alpha\} = \min\{T_{\alpha}^{A}(x,q),T_{\alpha}^{A}(y,q)\} \text{ which implies that } T_{\alpha}^{A}(x,q),T_{\alpha}^{A}(y,q)\} + \alpha \ge \min\{A(x,q),A(y,q)\} + \alpha \ge \max\{A(x,q),A(y,q)\} + \alpha \ge \max\{A(x,q),A(y,q)$ $V(f(x)f(y),q) \ge \min\{V(f(x),q), V(f(y),q)\}.$

Hence V is a Q-fuzzy of subsemiring of R¹.

2.7 Theorem: Let (R, +, .) and $(R^{I}, +, .)$ be any two semirings and Q be a non-empty set. The homomorphic pre-image of a Qfuzzy translation of a Q-fuzzy subsemiring of R¹ is a Q-fuzzy of subsemiring of R.

Proof: Let (R, +, .) and $(R^{I}, +, .)$ be any two semirings Q be a non-empty set.

Let $f: R \to R'$ be a homomorphism. Then, f(x+y) = f(x) + f(y) and f(xy) = f(x) f(y), for all x and y in R. Let T^{ν}_{α} be a Q-fuzzy translation of a Q-fuzzy subsemiring V of R¹. Let A be the homomorphic pre-image of T^{ν}_{α} under f. We have to prove that A is a Q- fuzzy of subsemiring of R. Let x and y in R and q in Q. Then, $A(x+y,q) = T(f(x+y),q) = T(f(x)+f(y),q) = V(f(x)+f(y),q) + \alpha \ge 1$ $\min \{ V(f(x),q), V(f(y),q) \} + \alpha \ge \min \{ V(f(x),q) + \alpha, V(f(y),q) + \alpha \} = \min \{ T(f(x),q), T(f(y),q) \} = \min \{ A(x,q), A(y,q) \} \text{ which implies}$ Again, $A(x+y,q) \ge \min\{A(x,q),A(y,q)\}$ for and Х in R and in Q. У q $A(xy,q) = T(f(xy),q) = T(f(x)f(y),q) = V(f(x)f(y),q) + \alpha \geq \min \{V(f(x),q) + \alpha, V(f(y),q) + \alpha \} = \min \{T(f(x),q), T(f(y),q) \} = \min \{T(f(x),q), T(f(y),q) + \alpha \geq \min \{V(f(x),q) + \alpha \geq \min \{V(f(x),q) + \alpha \geq \min \{V(f(x),q) + \alpha \geq \max \{V(f(x),$ $\min\{A(x,q),A(y,q)\}\$ which implies that $A(xy,q) \ge \min\{A(x,q),A(y,q)\}\$ for x and y in R and q in Q. Hence A is a Q-fuzzy of subsemiring of R.

2.8 Theorem: Let (R, +, .) and $(R^{\downarrow}, +, .)$ be any two semirings and Q be a non-empty set. The anti-homomorphic image of a Qfuzzy translation of a Q-fuzzy subsemiring A of R is a Q-fuzzy subsemiring of R¹.

Proof: Let (R, +, .) and $(R^{\dagger}, +, .)$ be any two semirings Q be a non-empty set.

Let $f : \mathbb{R} \to \mathbb{R}^{|}$ be an anti-homomorphism. Then, f(x+y) = f(y) + f(x) and f(xy) = f(y) f(x), for all $x, y \in \mathbb{R}$. Let T_{α}^{A} be a Q-fuzzy translation of a Q-fuzzy subsemiring A of R. Let V be the anti-homomorphic image of T_{α}^{A} under f. We have to prove that V is a Q-fuzzy subsemiring Now, R V(f(x)+f(y),q) =of R¹. for f(x), in and in f(y)q Q,

 $V(f(y+x),q) \ge T_{\alpha}^{A}(y+x,q) = A(y+x,q) + \alpha \ge \min \{A(x,q),A(y,q)\} + \alpha = \min \{A(x,q)+\alpha,A(y,q) + \alpha\} = \min \{T_{\alpha}^{A}(x,q),T_{\alpha}^{A}(y,q)\} \text{ which implies that } V(f(x)+f(y),q) \ge \min \{V(f(x),q), V(f(y),q)\} \text{ for } f(x), f(y) \text{ in } \mathbb{R}^{I} \text{ and } q \text{ in } Q. \text{ Again, } V(f(x)f(y),q) = V(f(y),q) \ge T_{\alpha}^{A}(yx,q) = A(yx,q) + \alpha \ge \min \{A(x,q),A(y,q)\} + \alpha = \min \{A(x,q)+\alpha, A(y,q) + \alpha\} = \min \{T_{\alpha}^{A}(x,q),T_{\alpha}^{A}(y,q)\} \text{ which implies that } V(f(x)f(y),q) \ge \min \{V(f(x),q),V(f(y),q)\}.$

Hence V is a Q-fuzzy of subsemiring of R¹.

2.9 Theorem: Let (R, +, .) and $(R^{l}, +, .)$ be any two semirings and Q be a non-empty set. The anti-homomorphic pre-image of a Q-fuzzy translation of a Q-fuzzy subsemiring of R^l is an Q-fuzzy subsemiring of R.

Proof: Let (R, +, .) and $(R^{I}, +, .)$ be any two semirings Q be a non-empty set.

Let $f: R \to R^{\dagger}$ be a homomorphism. Then, f(x+y) = f(y) + f(x) and f(xy) = f(y) f(x), for all x and y in R. Let T^{ν}_{α} be a Q-fuzzy translation of a Q-fuzzy subsemiring V of R¹. Let A be the homomorphic pre-image of T^{ν}_{α} under f. We have to prove that A is a Q- fuzzy of subsemiring of R. Let x and y in R and q in Q. Then, $A(x+y,q) = T(f(x+y),q) = T(f(y)+f(x),q) = V(f(y)+f(x),q) + \alpha \ge 1$ $\min \{ V(f(x),q), V(f(y),q) \} + \alpha \geq \min \{ V(f(x),q) + \alpha, V(f(y),q) + \alpha \} = \min \{ T(f(x),q), T(f(y),q) \} = \min \{ A(x,q), A(y,q) \} \text{ which implies}$ $A(x+y,q) \ge \min\{A(x,q),A(y,q)\}$ for and R and Again, that х V in a in О. $A(xy,q) = T(f(xy),q) = T(f(y)f(x),q) = V(f(y)f(x),q) + \alpha \geq \min \{V(f(x),q) + \alpha, V(f(y),q) + \alpha \} = \min \{T(f(x),q), T(f(y),q) \} = 0$ $\min\{A(x,q),A(y,q)\}\$ which implies that $A(x,q) \ge \min\{A(x,q),A(y,q)\}\$ for x and y in R and q in Q. Hence A is a Q-fuzzy of subsemiring of R.

REFERENCES

1 .Asok Kumer Ray, On product of fuzzy subgroups, fuzzy sets and systems, 105(1999), 181-183.

2. Azriel Rosenfeld, Fuzzy Groups, Journal of mathematical analysis and applications, 35 (1971), 512-517.

3. A.Solairaju and R.Nagarajan, A New Structure and Construction of Q-Fuzzy Groups, Advances in fuzzy mathematics, Volume

4, Number 1 (2009), 23-29.

4. Solairaju.A and Nagarajan.R, Q-fuzzy left R-subgroups of near rings w.r.t T-norms, Antarctica journal of mathematics, Volume 5 (2008),1-2.

5. B.Davvaz and Wieslaw.A.Dudek, Fuzzy n-ary groups as a generalization of rosenfeld fuzzy groups, ARXIV-0710.3884VI (MATH.RA) 20 OCT 2007, 1-16.

6. L.A.Zadeh, Fuzzy sets, Information and control, Vol. 8 (1965), 338-353.

7. M.Akram and K.H.Dar, On fuzzy d-algebras, Punjab university journal of mathematics, 37(2005), 61-76.

8. M.Akram and K.H. Dar, Fuzzy left h-ideals in hemirings with respect to a s-norm, International Journal of Computational and Applied Mathematics, Volume 2 Number 1 (2007), 7–14.

9. Mustafa Akgul, Some properties of fuzzy groups, Journal of mathematical analysis and applications, 133 (1988), 93-100.

10 .N.Palaniappan & K. Arjunan, Operation on fuzzy and anti fuzzy ideals, Antartica J. Math., 4(1) (2007), 59-64.

11. Rajesh Kumar, Fuzzy Algebra, Volume 1, University of Delhi Publication Division, July -1993.

12. R.Biswas, Fuzzy subgroups and Anti-fuzzy subgroups, Fuzzy sets and systems, 35(1990), 121-124.

13. S.Abou Zaid, On fuzzy subnear rings and ideals, fuzzy sets and systems, 44(1991), 139-146.

14. V.Saravanan and D.Sivakumar "A study on Anti-Fuzzy subsemiring of a semiring", International journal of computer application (0975-8887), Vol.35, No.5, (2011), pp 44-47.

15 .Sivaramakrishna das.P, Fuzzy groups and level subgroups, Journal of mathematical analysis and applications, 84 (1981), 264-269.

16. V.N.Dixit, Rajesh Kumar, Naseem Ajmal., Level subgroups and union of fuzzy subgroups, Fuzzy sets and systems, 37 (1990), 359-371.