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ABSTRACT: With the widely uses of smart phones, the number of malware has been increasing exponentially. Among android devices, 

smart devices are the most targeted devices by malware because of their growing popularity. In this paper proposes a novel framework for 

Android malware detection. The framework utilities various kinds of features to reflect the properties of Android applications from various 

aspects, and the features are refined using the similarity-based feature extraction or  existence based method for effective feature indication 

on malware detection. Besides, a multimodal learning method is proposed to be used as a malware detection model.  
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I. INTRODUCTION 

With the popularly growing of mobile devices such as tablets or smart phones, attacks on the mobile devices have been increasing. 

Mobile malware is one of the most dangerous and damaging threats which cause various security incidents also financial damages. In 

2017according to the G DATA report [1], security experts are discovered almost 750,000 new Android malware during the first quarter of 
2017. It is expected that a large number of mobile malware will keep spread to commit various cybercrimes on mobile system or  devices. 

And android is a mobile operating system that is most targeted by mobile malware or virus because of the popularly growing of Android 

devices. In the addition to the number of Android devices, there is one more reason that leads malware authors to develop Android malware. 

 So far to mitigate the attacks by Android malware, various research approaches have been proposed. The malware identification 
approaches can be classified in two categories;1: static analysis based detection [2-19],2: dynamic analysis based detection [20-24]. The 

static analysis based methods are used syntactic features that can be extracted without executing an application, and the dynamic analysis 

based methods use semantic features and that can be monitored when an application is executed in a controlled environment. Static analysis 

has a uses that it is unnecessary to set the execution environments, and then the computational overheads for static analysis are relatively 

less. Dynamic analysis has a uses that it is possible to handle the malicious applications which use some obfuscation techniques such as code 

packing or encryption.  

Because the reason is that the Android operating system allows users can install applications and downloaded from third-party 

markets and attackers can seduce or mislead Android users to  suspicious applications from attackers’ servers or download  malicious. 

II. PROPOSED FRAMEWORK 

 

       Figure 1 :  The overall architecture of the proposed framework 

Fig.1 shows overall architecture of the framework, and the framework uses seven kinds of the feature; Method opcode feature, 

string feature, method permission feature, shared library function opcode feature, API feature, environmental feature, and component feature. 

Using these features, three  corresponding feature vectors are generated first then, among them, permission/component/predefined setting 
feature vectors are merged in one feature vector. Finally, five feature vectors are fed into classification model for malware detection. The 
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framework conducts four major processes for detection; the raw data extraction process, feature extraction process, feature vector generation 

process, and detection process. These processes are explained as follows, 

A. Raw Data Extraction Process. 

 

 This process is performed to make Android APK (Android Package Kit) files interpretable. To extract the raw data, an 

APK file is unzipped, and manifest file, a dex file, and shared library files are extracted first.  Manifest file and dex file are decoded 

or disassembled by APK tool [32], and then shared library files (i.e. .so files) in the package can be disassembled by IDA Pro [33]. 

 

B. Feature Extraction Process. 
  

This process is conducted to obtain the essential feature data from the raw data. The method opcode features and method 

API features are extracted from smali files which are  disassembled results of a dex file. The smali file is separated into  method 

blocks, and by scanning Dalvik  bytecodes, Dalvik opcode frequency of each method is calculated. In addition, during the byte code 

scanning, it is checked whether the invocation of  dangerous APIs exists in the method, and then dangerous API invocation 

frequency of each method is calculated. In case of string features, strings are simply collected from whole smali file without 

considering the method separation. Shared library function opcode features are extracted from  instruction sequences of the 

disassembled code of .so files. And instruction sequence of each function is scanned to extract  information of the assembly opcode 
frequency. The permission features, component features, and the environmental features are extracted from manifest XML file. 

While visiting  XML tree nodes, each nodes are checked to confirm whether node contains information about permissions, 

application components, and so on. 

 

C. Feature Vector Generation Process. 

 

The extracted features in  previous process are used to compose the feature vectors. Seven kinds of the feature vector are 

produce from extracted features. The seven feature vectors are divided in two types according to their feature representations: 
1:existence-based feature vectors and 2:similarity-based feature vectors. The existence-based feature vector is feature vector whose 

elements only represent the existence of features in malicious feature database, and examples strings, permission, component ,and 

environmental feature vectors. And the similarity-based feature vector is the feature vectors whose elements are similar to the 

malware representatives in the malicious feature database, and the method opcode, the method API and the  shared library function 

feature vectors are the similarity-based feature vectors. The malicious feature database here is repository that contains features and 

malware representatives of known malicious applications. To improve the performance of the framework, we clarified the feature 

vector with the predefined threshold value. The similarity values are exceeding the predefined similarity threshold value become 

one. Otherwise, it will set to zero. This refinement removes the features that are not similar to the certain malware representative but 

have small similarity values, and it is simplifies the computation in the learning process. 

 

D. Detection Process  

 
After that all the seven feature vectors are generated in previous process and detection process is conducted to determine 

whether the given application is malicious or not. Before testing the feature vectors with the detection model, the permission feature 

vector, the component feature vector, and the environmental feature vector are mixed into a single feature vector. Therefore, this 

model gets the five feature vectors and the performs mathematical operations in each layer. Then if all the operations are conducted 

completely, then the model produces the estimated label for the given input application. 

 

III. THE DEFINITION OF FEATURES 

  Diverse features could be useful to reflect the characteristics of an application. And some features like environmental information 

are indirectly related to malicious activities, those features may contribute to defining the application characteristics. Our proposed 

framework uses the following features: String feature ,Method opcode feature , Method API feature. In this framework, the learning 

algorithm is utilized to classify the unknown samples into the malware class or the benign class. The learning algorithm creates a neural 

network model that can be derive the better classification accuracy by updating the weight of each neuron input. The degree of influence of 

the characteristic on classification is find according to the weight of the neurons affected by the feature. If  there is an insignificant feature in 

the  classification, the weight of the relevant neurons is reduced. Therefore, each feature can be used differently by their contributions. The 

next sections explain each and every feature type that is used in this framework. It is denoted that the characteristics are converted into the 

feature vectors to apply them to the neural network. 

 

A. String Feature 

In this feature extracted from a set of string values in smali files. The feature extraction module collects all of the operand 

values with types of const-string and const-string/jumbo. And there are also the Dalvik opcodes that move a reference to the string 

into a specific register. The number of strings in this application spans a wide range. And then if the number of applications 

increases, then the number of strings from those applications also increase explosively. So that, strings are hashed, and then hashed 

values of strings are applied to this modular operation. And the hash function applied  in the framework as the  hash function. 
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B. Method opcode and API Feature 

    In Dalvik  opcode frequency and API invocation frequency of methods may also imply application behaviors and coding 

habits of the developer. Due to this reason, Dalvik  opcode frequency and API invocation frequency of methods are utilized to 

define the method features. The method opcode frequency can be calculated by scanning the byte code in each and every 

method. In case of the API invocation frequency and the byte codes for API invocation are checked to count the API 

invocations in each and every method. To capture malicious behaviors, invocations of only the selected APIs are counted. And 

the APIs that might be utilized in malicious activities are investigated manually using the Android Developer reference pages 

[50]. And additionally, the APIs that were introduced in [35] are also included to the selected API list. According to [35], these 

selected APIs are useful to distinguish malware and benign applications. 

 

C. Shared Library Function Opcode Feature 

Android provides the Java Native Interface (JNI) and then allows applications to incorporate native libraries. It is also 

known that native code defeats Android security mechanisms because the native code is not covered by using security model. For 

example, shared library files can be used to avoid countermeasure against attacks or to hide malicious behaviors. This is the reason 

why many malicious applications used in the native code to attack the Android system. To prevent these kind of malwares with 

native code from hiding its behaviors, this  framework defines and utilizes the shared library function features in the detection. In 

the same way to the method feature extraction ,The ARM opcode frequency and  the system call invocation frequency are extracted 

from native code. When it is scanning the disassembled code of each function, the opcodes and system call invocations in each and 

every function are counted. 

 

IV. MULTIMODAL NEURAL NETWORK 

  

Figure 2 :  Multimodal deep neural network 

 

 Fig. 2 indicates the architecture of the multimodal deep neural network for malware detection in this framework. This project 

proposed neural network model utilizes five feature vectors, and each and every vector is inputted separately to the initial networks which 

consist of five DNNs (Deep Neural Network). The initial networks are not connected to one another, and then the last layers of the initial 

networks are connected to the merging layer that is the first layer of the last network. The last network is a DNN, and it produces the 

classification outputs. And each DNN of the initial networks includes of an input layer and two hidden layers, and all layer only receives 

connections from the previous layer. All layers are fully-connected, and then the activation functions used in this DNNs and they are the 

rectified linear units (ReLU) activation function. The ReLU activation functions are utilized to prevent the vanishing gradient problem in 

training, and it also makes our model computationally efficient. 
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In the final network is a same shape of the DNNs to the initial network except for the first and the last layers. The merging layer, is 

connected with the last layers of the DNNs of the initial networks. The last layer of the final network, that is output layer, produces the 

classification output. In the output layer, there is only one neuron that uses the sigmoid function to label the input application as benign or a 

malware application. 

 

V. BLOCK DIAGRAM 

                       

Figure 3 : Block diagram of proposed framework. 

The above figure  shows the block diagram of the framework, and the framework uses five kinds of the stages; Raw data extraction, 

feature extraction, feature vector generation , feature representatives and multimodal neural network. Raw data extraction process will be  

performed to make the  Android APK  files to  interpretable. Then the  feature extraction process will be  conducted to obtain  essential 

feature data from the given  raw data. Then the  extracted features are  in the previous process will be  use  to compose the  feature vectors. 

After all of those  feature vectors are generated in  previous process, then  the detection process will be  conducted to determine whether that 
the  given application is malicious or not. Then  before examining that of  the feature vectors with  detection model, permission feature 

vector,  component feature vector, and  environmental feature vector are merged into the  single feature vector. Therefore,   model gets the 

five feature vectors to prevent  detected malicious. 

 

VI. FLOW CHART 

 

Figure 4 : Flow chart of the proposed framework. 

 The above shown figure is the flow chart of the proposed framework that includes the working flow of the proposed algorithm. At 

first we need to collect the data set which includes the benign and the malware data set and then we need to prepared the train and test 
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algorithm. After that the collected data will be splitted according to the test and train purpose. The data which is considered for the training 

purpose is fed to the algorithm and it will be trained after that the data which is splitted for the testing purpose that will be taken and fed for 

the testing purpose. After testing the data the proposed feature vector generation method will be make out the difference between the 

malware and the benign applications and it will describe that how many malware and how many benign data are present. So on the basis of 

the predicted value and the actual value got the accuracy of the model will be concluded. 

 

VII. RESULTS 

  The multimodal deep neural network is used for the android malware detection which is helpful for the more accuracy as it 

includes the more number of iterations so it is possible to get the more accurate results. The feature vector generation method which is 

proposed here is very much helpful for the detection of the features of the malware and the benign applications because as compare to their 

characteristics the malware and the benign applications are having the more number of common properties so as considering the each bit of 

the collected data sample it is possible to get the proper result. Here the result will be analyzed in the form of confusion matrix , bar graph 

,pie chart , precision and recall , by evaluating  all these features it is possible to get the 100% accurate algorithm.   

 

             

    Figure 5 : Storing CSV file into variable called data 

 

 

 

  Fig 6: Accuracy in bar graph  for  equal amount of benign and malware samples.   

 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                              www.jetir.org (ISSN-2349-5162) 

JETIR1906463 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 199 
 

      

 Fig 7: Accuracy in pie chart  for  equal amount of benign and malware samples.   

 

 

 Fig 8: Accuracy in bar graph  for  unequal amount of benign and malware samples.   

 

                     Fig 9  : List of actual value and predicted value 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                              www.jetir.org (ISSN-2349-5162) 

JETIR1906463 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 200 
 

 

Fig 10  :    Accuracy of equal amount of benign and malware samples in the form of confusion matrix precision and recall.   

 

          

VIII. CONCLUSION 

 

   In this paper, the project proposes a novel Android malware detection framework and that utilizes  somany static features to 

reflect the properties of applications in the various aspects. Total three  kinds of feature are extracted by comparing files such as a manifest 

file, a dex file, and a .so file from  APK file, and those features enrich the extracted information to the express applications’ characteristics. 

In all addition, this project suggested the effective feature vector generation form which is appropriate to detect malware that is similar to 

benign applications. Through this project proposed feature representation, it is possible to prevent feature vector of malware from including 

the common properties that appear in the benign applications. Finally, in this project uses the multimodal learning method, which are 

designed to deal with various kinds of feature type. Different types of the feature are mainly used to train the initial networks, and the results 

of the initial networks are subsequently used to train the last network. This architecture of the model is suitable for the framework to improve 

the malware detection exact accuracy. 
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