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Abstract :  Advanced Driver Assistance System (ADAS) is the most researched area in the automobile industry since the last decade. 

ADAS includes different features that help the driver for a safer and easier driving. In this work, we have designed an ADAS system 

that incorporates camera and ultrasonic sensors for object detection in real-time. The system has Raspberry Pi 3 model B+ for 

processing. Single Shot multibox Detector (SSD) algorithm is used for real-time object detection in the video. We have achieved 

an average precision of about 74.3% at an average of 35fps (frames per second). The ultrasonic sensor (HC-SR04) used at the rear 

of the vehicle has a precision of 0.1-0.5cm and range between 2cm to 400cm. 
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I.INTRODUCTION 

Each year more than 1,50,000 people are killed in road accidents in India alone[1]. That is about 400 deaths in a day. Accidents 
are happening due to variety of reasons: speeding two-wheelers, cars not equipped with airbags, breaking of traffic rules, poor 

maintenance of roads etc. This has been a major concern for the government. New rules and regulations have been introduced in 

this context and the automobile industries have been ordered to include certain safety features in their vehicles. This paved the way 

for Advanced Driver Assistance System (ADAS) [8] [9]. ADAS can be of any complexity. i.e, different features can be embedded 

in it. Some of the common features include parking assistance, navigation, vehicle detection in the same lane, assistance during lane 

changes, traffic sign detection and pedestrian detection. General features that can be included in an ADAS for a car is shown in Fig 

1. 

Advancements in Artificial Intelligence (AI) and new methodologies in deep learning is playing a major role in the design and 

development of ADAS. Majority of the methods that are currently available are unable to meet the requirements exhibited by the 

automobile industries today. These methods are limited by slow processing time. Hence, this raised a requirement for a method that 

has better performance time while maintaining the accuracy. Convolutional Neural Networks (CNN) were introduced in the recent 

years which transformed the way of processing real-time signals. Accuracy of CNN-based methods are much better compared to 

that pre-existing methods [2]. However, it is very complex and time-consuming. Hence, certain steps were needed to optimize these 

methods so that they can be used for real-time application. CNN-based detectors are usually divided into two categories; two-stage 

and single stage. RCNN family (RCNN, Fast RCNN, and Faster RCNN), which is a two-stage algorithm, have a much better 
accuracy than other detection methods [3]. However, these methods require more processing time as their computational cost is 

higher. You Only Look Once (YOLO) [4] and Single shot multi-box detector (SSD) are single-stage detectors. Single stage detectors 

are faster and have less computational cost than two stage detectors. This is because single stage detectors detect the object, localize 

it, determine its class label and confidence of detection in single forward pass on the input image. They are not as accurate as two 

stage detectors but are faster which is a trade-off. 

YOLO can detect objects faster than RCNN family. YOLO considers object detection as a single regression problem. It takes 

the input image, predicts multiple bounding boxes and their class probabilities. YOLO divides the input image into an SxS grid and 

bounding boxes, confidence for these boxes and class probabilities are predicted. But it fails when the object size is small or if 

multiple objects are grouped closely. This is because the YOLO algorithm a single object in each of the cells of SxS grid. If there 

are multiple objects or very small objects in the cell, they will be missed. 

Single Shot multibox Detectors (SSD) [5] have achieved a balance between faster processing and better detection than YOLO. 

In this paper, we have used SSD algorithm for object detection. In the coming sections we discuss about SSD and its basic 

architecture, methodology of proposed ADAS and the obtained results. 
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II. PROPOSED METHOD 

The block diagram of the proposed system is shown in Fig 2. Camera and ultrasonic sensors are used for taking raw data. Camera 

is placed on the car’s dashboard such that the front of the vehicle is captured. Detection of vehicles and pedestrians in front of the 

vehicle can be done using this. Raspberry Pi camera is used for this purpose in the proposed system. The camera is 5MP and can 

record video at different resolutions and speed such as 1080p @30fps, 720p @60fps and 640x480p @60/90fps. Video of any 

resolution can be processed by the system developed.  

Along with the camera, ultrasonic sensor is used to monitor any objects at the rear of the vehicle. The ultrasonic sensor used is 

HC-SR04. It has an accuracy of ~0.1cm and a range of 2cm to 400cm. It has 4 pins: i) VCC, ii) GND, iii) Trig and iv) Echo. The 

sensor is powered using the GPIO pins of the Raspberry Pi. 10 µs pulses are generated at the trigger pin and the echo pin is 

monitored. The distance is calculated using the speed of the sound in the air and the time taken by the signal to bounce back from 

the object and reach echo pin. The simplified equation is as shown in (1).  

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  𝑇𝑖𝑚𝑒 𝑥 17150                                   (1) 

 

Sensors are interfaced with Raspberry Pi 3 model B+. This has Broadcom BCM2837B0 quad-core A53 processor built on 

ARMv8 architecture, 64bit and has a clock speed of 1.4GHz. 1GB RAM and 40 GPIO pins are available on this model.  

 

2.1 Single Shot Multibox Detectors 
The basic architecture of Single Shot multibox Detectors (SSD) is shown in Fig 3[5]. The input image is of 300x300 resolution. 

VGG16 is the basic feature extraction network in SSD and it is followed by other convolutional layers that help in obtaining more 

feature maps. The image is passed through all these layers producing feature maps of different sizes which are then evaluated to 

generate bounding boxes. Detection of smaller objects are done in the early phase where the image resolution is high and detection 

of larger objects are done accurately in the later stages. Multiple bounding boxes will be generated for the detected objects. SSD 

uses priors for accurate bounding box generation. Priors are created such that their dimensions are close to ground truth boxes and 

then intersection over union (IoU) of generated boxes and priors is calculated to determine the suitable bounding box for the 

detection. IoU value of the bounding box should be more than a threshold, say 0.5. Only then that particular box of all the multiple 

boxes generated for locating the object is considered as bounding box. Higher the IoU better is the bounding box accuracy.  

Fig  SEQ Figure \* ARABIC 1: Example of an ADAS for a car 
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2.2 Real-time object detection 
Proposed object detection method is shown using the flowchart in Fig 4. Multiprocessing is used to improve the speed of 

detection. The main process, shown in Fig 5, initializes the camera and starts the fps counter. Also, the pretrained model is loaded. 

An input queue, to store the incoming video frames, and an output queue, to place the detection, are initialized. The frames recorded 

are sent to input queue and detection happens in the child process as shown in Fig 6. Frames in the input queue are preprocessed 

using the deep neural network function available in OpenCV library. The frame will be resized to 300x300 and scaled. Also, a mean 

value of 127.5 is used to neutralize illumination abnormalities. Once the preprocessing is done, a blob is created and it is sent to 

object detector. The object detector is trained using Microsoft’s COCO (common objects in context) data set [6]. Then it is fine-

tuned using MobileNets [7]. MobileNets helps in building light weight deep neural networks that uses Rectified Linear Unit (ReLU) 

as activation function. Using MobileNets helps in model size reduction and also increases processing speed. Once the detections 

are done, the results are put into the output queue. The child process then takes the next frame from the input queue and the steps 

are repeated. 

Fig  SEQ Figure \* ARABIC 3: Architecture of SSD 

Fig 4: Flowchart of the entire object detection 
process 

Fig  SEQ Figure \* ARABIC 2: Block diagram of the proposed system 
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In the main process, the output queue is checked for any detections. If there are some detections then their confidence is 

evaluated against the threshold value set at the beginning. If the confidence is less than the threshold then that detection is discarded. 

Otherwise the class label of the detection is obtained and the (x,y) coordinates are computed. Draw these predictions on the original 

frame and display the class label and confidence of detection along with the bounding box representing the object location. Then 

check if the detected object is too near to your vehicle by monitoring its x and y coordinates in the output frame. Set threshold 

values for x and y coordinates such that they define the size of nearby objects. If the x and y values are more than threshold then 

display a warning message on the screen to alert the driver. The entire loop in the program can be stopped at any point by pressing 

a key (here, we have taken ’q’). Once the loop is broken update the fps counter and display the elapsed time and fps value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6: Flowchart of child 
process 
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Fig 5: Flowchart of main process 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                             www.jetir.org (ISSN-2349-5162) 

JETIR1906581 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1042 
 

III. RESULTS 

Output is shown for different conditions: i) Detection of vehicles in front, on a highway. Warning is displayed when a vehicle 

is too close as in Fig7. ii) Detection of vehicles at an intersection, Fig8. iii) Detection of both vehicles and multiple pedestrians is 

displayed Fig 9. Even the smaller objects are detected successfully. 

 

3.1 Comparison 
The figures 11,12 below show the frame rate of both YOLO and SSD algorithms for the same video input. Also, Fig13 shows 

the output of the proposed system on the Raspberry Pi 3 Model B+, with both camera and ultrasonic sensor running simultaneously. 

As you can see, SSD is much faster than YOLO. SSD implemented in this paper has the input image of size 300x300 and that of 

YOLO is 416x416. Detailed comparison is discussed in table I. Faster R-CNN takes an input image of resolution 1000x600 [3]. All 

the methods have been trained on COCO dataset [6]. 

 

Algorithm Dataset Fps mAP Input  

Resolution 

(Faster)R-CNN 

[3] 

COCO 0.03 73.2 ~1000x60

0 

YOLO COCO 0.54 66.4 416x416 

SSD COCO+MobileNet

s 

35 74.3 300x300 

Table 3.1: Comparison of different algorithms. 

  

 

 

 

 

Fig 7: Detection of vehicles with warning for close-by object Fig 8: Detection of vehicles at intersection 

Fig 9: Detection of vehicle and pedestrians 
Fig 10: Performance comparison of different algorithms 
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CONCLUSION 

The proposed ADAS system can detect objects in real-time with a good mean average precision of about 74.3% at around 35fps. 
It even detects smaller objects better than YOLO and is faster as shown in results. Single Shot multibox Detectors (SSD) are trained 

on COCO dataset and then fine-tuned using MobileNet. The algorithm is tested on both computer and Raspberry Pi 3 model B+ 

and the above mentioned performance is obtained. The ultrasonic sensor at the rear of the vehicle also detects objects that are up to 

400cm away with high precision. Hence, the proposed system outperforms other deep learning algorithms in terms of processing 

speed in real-time. 
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Fig 11: Frame rate in YOLO algorithm Fig 12: Frame rate in SSD algorithm 

Fig 13: Output on Raspberry Pi 3 Model B+ 
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