Effect Of Capacitor Bank on Harmonics In Grid Connected PV System

Rachit Dua

Department of Electrical and Electronics Engineering Dr. C V Raman University Kota, Bilaspur (C.G.)

Mr. Amit Agrawal

Department of Electrical &Electronics Engineering(HOD) Dr. C V Raman University Kota, Bilaspur (C.G.

ABSTRACT

Photovoltaic systems are in high demand now a days due to its property of clean energy and it is pollution less. With increasing demand, grid connected photovoltaic system are also being used. Its impact on power quality of the system is major concern therefore Reducing harmonic content in the grid connected power system is very important. In this paper, effect of adding capacitor bank is analyzed. For simulation study PV connected system of Dr. C.V. Raman university, Kota is considered .For simulation study ETAP software is used. The system parameters are taken from actual site condition.

Keywords- PV Solar, Harmonic, power quality, LV distribution system, capacitor bank.

INTRODUCTION

The power quality of electrical power systems has a severe influence on control and utilization of power. Electrical power systems behave like nonlinear loads, creating a deformed waveform that is made up of voltage and current harmonics. Voltage and current harmonics created by these nonlinear loads cause problems such as increasing power losses, degrading the conductors, and as a result have negative effect on the distribution systems and other electrical segments. It is therefore essential to evaluate the complete effect of these harmonics. The sum total of the various harmonics present in a system is called Total Harmonic Distortion (THD). THD gives the opportunity to evaluate the extent of distortion in a system.

Total Harmonic Distortion (THD) is the common used index to indicate the level harmonic distortion the THD can be calculated using

$$THD = \frac{\sqrt{\sum_{i=1}^{\infty} F_i^2}}{F_i} \tag{1}$$

Where F_i is the amplitude of ith harmonic, and F1 is for fundamental component[3].

Individual frequency components are aggregated based on rms calculation as shown in below equation

$$F_{n,vs} = \sqrt[2]{\frac{1}{15} \sum_{i=1}^{15} F_{n,i}^2}$$

Where F represent voltage (V) and current (I) in rms value represent the harmonic order, I is a simple counter [4].

METHODOLOGY

Single line diagram of PV connected distribution system of Dr. C.V.Raman University is shown in figure 1. At present distribution system is supplied from 315kVA, 11000/415V Grid connected Transformer, 10kW solar panel is also grid connected through 415 V system at Bus 5. Simulation is done by using ETAP software.

Fig.1 Distribution system single line diagram of Dr.C.V.Raman University

Total Harmonic Distortion analysis is performed for the single line diagram as shown in figure.1 and it is found that the THD at bus3 and bus5 is 4.02%, and 3.50% respectively. To reduce this harmonic content in the system capacitor bank connection is considered.

Fig.2 THD analysis of 10kW Grid connected PV solar system

The objective of this research is to analyze the effect of capacitance bank on the harmonics for PV Integrated system in order to avoid exceeding harmonic limits therefore the future problem that will arise due to the large integration of grid connected PV solar system can be avoid during initial planning. [6,9]. In order to reduce the harmonic content, different values of capacitor bank is considered and simulated. capacitor bank is connected at bus 3 via a circuit breaker. Simulation results for different ratings of capacitor bank are mentioned below:

Fig. 4 THD Analysis for 3KVAr capacitor bank

Fig. 6 THD Analysis for 10 KVAr capacitor bank

RESULT

From above analysis ,THD at different capacitor bank rating are considered and values that are obtained are as follows:-

CAPACITOR	THD	THD
RATING	AT BUS 3	AT BUS 5
210.44		2.04
3KVAr	4.42	3.84
5KVAr	4.16	3.68
10KVAr	3.68	3.34

For small value of KVAr rating of capacitance bank, harmonics gets increased. For higher value of capacitance bank harmonics decreases very sharply.

CONCLUSION

THD analysis of LV grid connected PV System is done for different value of capacitor bank. Harmonics decreases with increasing KVAr rating of capacitor bank. As harmonics decreases, power quality of the system improves. Thus proper utilization of capacitor bank is essential for efficient working of grid connected PV distributed system. Therefore it is required to have a proper study of PV Grid connected power system. The analysis from such studies will help to manage harmonic of the PV connected power system, further we can employ harmonic filters to reduce harmonics.

ACKNOWLEDGEMENT

It is a matter of great pleasure for me to submit this project work report on "EFFECT OF CAPACITOR BANK IN HARMONICS IN GRID CONNECTED PV SYSTEM, as a part of curriculum for award of "Master of Technology (Power System)" of Dr. C.V. Raman University, Kota, Bilaspur (C.G.).

My sincere appreciation & gratitude goes to my respected Supervisor "Mr. Amit Agrawal, Department of 'Electrical and Electronics Engineering, of Dr. C. V. Raman Institute of Science & Technology, Kargi Road Kota, Bilaspur (C. G.) Who has always inspired me and for his/her advice, assistance and valuable guidance in the preparation of this project.

I would like to thank my respected Co-Supervisor 'Mr. Vishwanath Prasad Kurmi'of the Department of 'Electrical and Electronics Engineering' for his constructive comments and excellent advice during the preparation of this project. Also thanks to all the staff member of Department of Electrical & Electronics Engineering and Department of Electrical engineering.

I would like to express my gratitude for God for granting me with wisdom & opportunity of an education. I would like to thank my family members and friends, who have been constant source of inspiration & support throughout my life and academic career.

REFERENCES

- [1]"IEEE Standards 519-2014, IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems.
- [2] G M Shafiullah, A manullah, Analysis of harmonics with renewable energy integration in to the distribution network IEEE Conference on Thailand Nov. 2015, ISSN 2378-8452.
- [3] Jayasekara, N. and Wolfs, P. Analysis of Power Quality Impact of High Penetration PV in Residential Feeders. 20*th Australasian Universities Power Engineering Conference (AUPEC)*, Christchurch 2010.
- [4] Yong, J., Chen, L. and Chen, S. Modeling of Home Appliances for Power Distribution System Harmonic Analysis. *IEEE Transactions on Power Delivery*, 2010, 3147-3155.
- [5] Y. Zoka, H. Sasaki, N. Yorino, K. Kawahara, and C.C Liu. An interaction problem of distributed generators installed in a microgrid. In Proceedings of IEEE on Electric Utility Deregulation, Restructuring and Power Technologies Conference, volume 2, pages 795 – 799, Hong Kong, April 2004.
- [6] T. Ackermann and V. Knyazkin. Interaction between distributed generation tribution network: operation aspects. In Transmission and Distribution Conference 2002: Asia Pacific. IEEE/PES, volume 2, pages 1357–1362, Oct 2002.
- [7] C. E T Foote, Graeme M Burt, I.M "Developing distributed generation penetration scenarios", *International Conference on Future Power Systems*, 2005, pp. 6
- [8] R.A Walling, R Saint, R.C Dugan, J Burke and Ljubomir A Kojovic, "Summary of Distributed Resources Impact on Power Delivery Systems", *IEEE Transactions on Power Delivery*, vol. 23, pp. 1636-1644, 2008.
- [9]"IEEE Recommended Practice for Interconnecting Distributed Resources

with Electric Power Systems Distribution Secondary Networks," *IEEE Std 1547.6-2011*, pp. 1-38, 2011.

[10]"IEEE Recommended Practice for Utility Interface of Photovoltaic (PV) Systems," IEEE Std 929-2000, p. i, 2000