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Abstract:   

We aim here at analyzing self-adjoint boundary value problems on finite networks associated with positive semi-definite 

Schrodinger operators. Also, we study the existence and uniqueness of solutions and its variation formulation. And, we aim at 

analyzing different types of boundary value problem associated with the Schrodinger operator with ground state q. 

 

 

IndexTerms - The First Green Identity, The Second Green Identity, Self-adjoint boundary value problems, Euler identity. 

I. INTRODUCTION 

In this paper, we analyze self-adjoint boundary value problems on finite networks associated with positive semi-definite 

Schrodinger operators. Among others, we treat general mixed boundary value problems that include the well-known Dirichlet and 

Neumann problems and also the Poisson equation.  

 

The first of those papers are concerned with the general analysis of self-adjoint boundary value problems associated with non-

negative variations of the combinatorial Laplacian and its associated Green functions from a point of Potential Theory. A 

Schrodinger operator on a finite network is a linear operator of the form 𝐿𝑞 = 𝐿 + q, where 𝐿 is the combinatorial Laplacian of the 

network and q is a function on the vertex set.  

 

  So, a Schrodinger operator may be seen as a variation of the combinatorial Laplacian. Some of the authors obtained a 

generalization of this result when the ground state takes negative values, which was applied to the study of Dirichlet problems and 

Poisson equations. Here we extend the above results to the energy associated with general self-adjoint Boundary value problem. 

In particular, we show that any Boundary value problem has a unique solution provided that its associated energy is positive 

definite and we characterize when this happens in terms of the ground state.  

 

Preliminaries 

 

Along with the paper, Γ = (V, E) denotes a simple, finite and connected graph without loops, with vertex set V and edge 

set E. Two different vertices, x, y ∈ V, are called adjacent, which will be represented by x ∼ y, if {x, y} ∈ E.  

 

Given x, y ∈V, if d(x, y) is the length of the shortest path joining x and y it is well-known that d defines a distance on the 

graph. Given a vertex subset G⊂ V, we denote by 𝑮𝒄 its complementary in V and we call boundary and closure of G,                            

the sets δ (G) = {x ∈ V: d(x, G) = 1} and 𝐺̅= G ∪ δ (G), respectively. Clearly, 𝐺̅={x ∈ V: d(x, G) ≤ 1}.  

 

Support of u:  

The sets of functions and non-negative functions on V are denoted by C(V) and 𝐶+(V) respectively. If u ∈ C (V), its 

support is given by sup(u) = {x ∈ V : u(x) ≠ 0}.  
 

Moreover, if G is a non-empty subset of V, its characteristic function is denoted by 𝜒𝐺  and we can consider the sets 

C(G)= {u ∈ C(V ) : supp(u) ⊂ G} and 𝐶+(G) = C(G) ∩ 𝐶+(V ). For any u ∈C(G),  

 

We denote by ∫ u(x)dx 
𝐺

    the value ∑ u(x).𝑥∈𝐺  We call weight on G any function σ ∈ 𝐶+(G) such that supp(σ) = G.   

The set of weights on G is denoted by  𝐶∗(G)  

 

 

 

Conductance:  
 

The conductance on Γ is a function c: V × V ⟶  ℝ+ such that c(x, y) > 0 if and only if x ∼ y. We call network any pair 

(Γ, c), where c is a conductance onΓ. The network (Γ, c) is simply referred by Γ.  
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Combinatorial Laplacian: 

 

The combinatorial Laplacian or only the Laplacian of the system Γ is the linear operator  𝐿:C(V )⟶C(V ) that assigns to each      

u ∈ C(V ) the function 

 

(A)                                                     𝐿(x) =∫  c(x, y) ((u(x) −  u(y))  dy
V

,  x ∈ V. 

Normal Derivative: 

 

If G is a proper subset of V, for each u ∈ C(𝐺̅),  we define the normal derivative of u as the function in  
C(δ(G)) given by  

(B)                                                     (
𝜕𝑢

𝜕𝑛𝐺
)(x)= ∫ c(x, y)(u(x)  −  u(y))  dy

𝐺
,  for any x ∈ δ(G).  

 

The relation between the values of the Laplacian on G and the values of the normal derivative at δ(G) is given by the First Green 

Identity  

∫ v 𝐿(u) dx 
𝐺

 = 
1

2 
∫  

𝐺̅
∫  c 

𝐺̅
(x, y) (u(x) − u(y))(v(x) − v(y)) dxdy − ∫ v

𝜕𝑢

𝜕𝑛𝐺
 

δ(G)

dx, 

Where u, v ∈ C (𝐺̅) and 𝑐𝐺= c. 𝜒(G ×G )\(δ(G )×δ(G )). 

 

4A direct consequence of the above identity is the so-called The Second Green Identity  

 

∫ (v𝐿(u) − u𝐿(v))dx  
𝐺

 =∫ (u
𝜕𝑣

𝜕𝑛𝐺
 − v

𝜕𝑢

𝜕𝑛𝐺
 )

δ(G)

dx, for all u, v ∈ C (𝐺̅). 

 

When G = V the above identity tells us that the combinatorial Laplacian is a self-adjoint operator and that ∫ 𝐿(u) dx 
V

= 0 

for any u ∈ C(V ). Moreover, since Γ is connected 𝐿(u) = 0 if and only if u is a constant function.  

 

Schrodinger Operator: 

 

Given q ∈ C (V) the Schrodinger operator on Γ with ground state q is the linear operator  𝐿𝑞: C (V) → C (V) that assigns 

to each  u ∈ C (V) the function  𝐿𝑞 (u) = 𝐿(u)+qu. 

 

 

SELF ADJOINT BOUNDARY VALUE PROBLEM 

 

Here we study a different type of boundary value problems associated with the Schrodinger Operator with ground state 

q. Given a non-empty subset G ⊂ V , δ(G) = 𝐻1∪ 𝐻2, where 𝐻1 ∩ 𝐻2 = ∅ and functions g ∈ C(G), 𝑔2 ∈ C(𝐻2), 𝑔1 ∈ C(𝐻1), a 

boundary value problem on G consists on finding u ∈ C(𝐺̅) such that 

 

(*)           𝐿𝑞 (u) = g on G,   
𝜕𝑢

𝜕𝑛𝐺
+ qu = 𝑔1on 𝐻1,    and u = 𝑔2 on 𝐻2, 

In addition, the associated homogeneous boundary value problem consists on finding u ∈ C(𝐺̅) such that  𝐿𝑞 (u) = 0 on 

F, 
𝜕𝑢

𝜕𝑛𝐺
+ qu=0 on 𝐻1    and     u = 0 on 𝐻2.  

 

The Green Identity implies that the boundary value problem (*) is self-adjoint in the sense that                         

∫ 𝑣 𝐿𝑞 (u)dx 
𝐺

  = ∫ 𝑢 𝐿𝑞  (v)dx 
𝐺

 dx for all u, v ∈ C(G ∪ 𝐻1) verifying that 
𝜕𝑢

𝜕𝑛𝐺
+ qu = 

𝜕𝑣

𝜕𝑛𝐺
 + qv = 0 on 𝐻1. 

 

Problem (*) is generally called as a mixed Dirichlet-Robin problem and summarizes the different boundary value problems that 
appear in the literature with the following proper names: 

 

 (i) Dirichlet problem: ∅ ≠ 𝐻2 ≠  δ(G) and hence 𝐻1 = ∅. 

 

 (ii) Robin problem: ∅ ≠ 𝐻1= δ(G) and q ≠ 0 on 𝐻1. 

  

(iii) Neumann problem: ∅ ≠  𝐻1 = δ(G) and q = 0 on 𝐻1. 
 

(iv) Mixed Dirichlet-Neumann problem: 𝐻1, 𝐻2 ≠  ∅ and q = 0 on 𝐻1. 
 

 (v) Poisson equation on V: G = V.  

 

In this paper, we extend the above results for the self-adjoint boundary value problem (*).  
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Proposition 1.1 (Fredholm Alternative) given g ∈ C (G), g1 ∈ C (𝐻1), g2 ∈ C (𝐻2), the boundary value problem   

𝐿𝑞 (u) = g on G, 
𝜕𝑢

𝜕𝑛𝐺
+ qu = 𝑔1 on 𝐻1 & u = 𝑔2  on 𝐻2 has a solution if and only if for any v ∈ C(𝐺̅)The solution of the 

homogeneous problem it is verified ∫ 𝑔𝑣𝑑𝑥  
𝐺

+∫  𝑔1𝐻1
vdx = ∫  𝑔2

𝜕𝑣

𝜕𝑛𝐺
 

𝐻1

dx. 

 

In addition, when the above condition holds, then there exists a unique u ∈ C(𝐺̅) The solution of the boundary value problem such 

that ∫  
𝐺̅

𝑢𝑣 𝑑𝑥 = 0, for any v ∈ C(𝐺̅) The solution of the homogeneous problem.  

 

Proof 

   

 Observe that problem (*) is equivalent to the boundary value problem 𝐿𝑞 (u) = g − 𝐿𝑞(𝑔2) on G, 
𝜕𝑢

𝜕𝑛𝐺
+ qu = 𝑔1 on 𝐻1 and  

u = 0 on 𝐻2 in the sense that u is a solution of this problem if and only if u + 𝑔2  is a solution of (*).  

   

 Consider now the linear operator ℱ: C(G ∪ 𝐻1) → C(G ∪ 𝐻1) defined as ℱ (u) =  𝐿𝑞 (u) on G and ℱ(u) = 
𝜕𝑢

𝜕𝑛𝐺
+ qu on 𝐻1.            

If 𝛾 denotes the space of solutions of the homogeneous problem, then ker ℱ = 𝛾.          

  

  Moreover, from the Second Green Identity, we get that ∫  
G ∪ 𝐻1

v ℱ(u) dx = ∫ u
G ∪ 𝐻1

ℱ(v) dx;  

 

i.e.,  ℱ is self-adjoint and hence Img ℱ = 𝛾⊥, using the classical Fredholm Alternative. 

 

 Consequently problem (*) has a solution if and only if the function 𝑔∈ C (G ∪ 𝐻1) given by 𝑔 = g −  𝐿𝑞 (𝑔2) on G and 𝑔 = 𝑔1  on 

𝐻1verifies that 

0 = ∫  
G ∪ 𝐻1

𝑔v dx= ∫ gvdx  
𝐺

+ ∫ 𝑔1vdx  
𝐻1

dx − ∫ v 
𝐺

𝐿𝑞 (𝑔2)dx  

        = ∫ gvdx  
𝐺

+ ∫ 𝑔1vdx  
𝐻1

dx − ∫  𝑔2
𝜕𝑣

𝜕𝑛𝐺
 

𝐻2

dx, for any v ∈𝛾.  

Finally, the Fredholm Alternative also establishes that when the necessary and sufficient condition is attained there exists a unique 

w ∈ 𝛾⊥, such that ℱ(w) = 𝑔. Therefore, u = w + 𝑔2 is the unique solution of problem (*) such that for any v ∈ 𝛾  

 

∫  
𝐺̅

uv dν = ∫  
G ∪ 𝐻1

uv dν = ∫  
G ∪ 𝐻1

wv dν = 0, 

 since v = 0 on 𝐻2 and 𝑔2 = 0 on G ∪ 𝐻1. 

 

 Fredholm Alternative establishes that the existence of solution of problem (*) for any data g, 𝑔1 and𝑔2 is equivalent to the 

uniqueness of the solution and hence it is equivalent to the fact that the homogeneous problem has v = 0 as its unique solution. 

 

 So, applying the First Green Identity, if v ∈ 𝛾  

 

0 = ∫ v 𝐿𝑞 (v) dx 
𝐺

 = 
1

2 
∫  

𝐺̅
∫  

𝐺̅
𝑐𝐺(x, y)(v(x) −  v(y))2 dxdy + ∫  

𝐺̅
qv2dx 

and hence uniqueness is equivalent to be v = 0 the unique solution of the above equality.  

 

The above equality leads to define the energy associated with the Problem (*) as the symmetric auxiliary form  ξ𝑞
𝐺 : C(𝐺̅) × C(𝐺̅) 

→ ℝ given for any u, v ∈ C(𝐺̅) by  
 

(**)                       ξ𝑞
𝐺  (u,v) = 

1

2 
∫  

𝐺̅
∫  

𝐺̅
𝑐𝐺(x, y) (u(x) −  u(y))((v(x) −  v(y)) dxdy + ∫  

𝐺̅
quvdx. 

 

 A sufficient condition so that the homogeneous problem associated with (*) have v = 0 as its unique solution is that the energy is  

positive definite. Next, we characterize when this property is achieved. 
 

 To do this, it will be useful to introduce for any weight σ on 𝐺̅, the so-called ground state associated with σ as 𝑞𝜎= −
1

𝜎
L(σ) on G, 

𝑞𝜎= −
1

𝜎
 

𝜕𝜎

𝜕𝑛𝐺
 δ(G) and 𝑞𝜎 = q otherwise.  

 

Clearly, if σ ∈ 𝐶∗(𝐺̅) then for any a > 0, µ = aσ ∈ 𝐶∗(𝐺̅) and moreover 𝑞µ = 𝑞𝜎 . Observe that 𝑞𝜎= 0 iff σ = a𝜒𝐺̅   , with a > 0.  

 

More generally, if σ ∈ 𝐶∗(G), then taking v =𝜒𝐺̅   in the Second Green, an identity we obtain that ∫ σ𝑞𝜎  
𝐺̅

= 0, which implies that 𝑞𝜎 

must take positive and negative values, except when σ = a𝜒𝐺̅, a > 0. Moreover, 

 

 it was proved that − ∫  
𝐺̅

𝑐𝐺(x, y)  dy < σ𝑞𝜎 (x) for any x ∈𝐺̅ and also that when 𝐻2 ≠  ∅, then it is possible to choose σ ∈ 𝐶∗(G), 

such that 𝑞𝜎 (x) < 0 for any x ∈ F ∪ 𝐻1.  

 

Proposition1.2. The Energy 𝜉𝑞
𝐺 is positive semi-definite if and only if there exists σ ∈ 𝐶∗(G), such that       q ≥𝑞𝜎. Moreover, it is 

not strictly definite if and only if q =𝑞𝜎, in which case 𝜉𝑞
𝐺(v, v) = 0 if and only if         v = a σ, a ∈ ℝ.  
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Proof.    
 

Consider the network Γ𝐺 = (𝐺̅, 𝐸̅, C𝐺), where E = {(x, y) ∈ E : C𝐺 (x, y) > 0} and let L its combinatorial Laplacian. Then, 

for any u ∈ C(𝐺̅), 𝐿(u) = 𝐿̅(u) on G and 𝐿(u) = 
𝜕𝑢

𝜕𝑛𝐺
 on δ(G).Moreover,    ξ𝑞

𝐺(u, u) = ∫  
𝐺̅

u𝐿̅(u) dx + ∫  
𝐺̅

q𝑢2dx and hence the results 

follow by applying Proposition 1.3. 

 

The next result establishes the fundamental result about the existence and uniqueness of solution for Problem (*) and about its 

variation formulation. 

 

 Proposition 1.3 (Dirichlet principle) Suppose that there exists σ ∈ 𝐶∗(G) such that q ≥ 𝑞𝜎. Given g ∈ C(G), 𝑔1  ∈ C(𝐻1), 𝑔2  ∈ 

C(𝐻2), consider the convex set 𝐶𝑔2  = {v ∈ C(F) : v =𝑔2  on 𝐻2} and the quadratic functional 𝒥𝑞  : C(𝐺̅) → ℝ determined by the 

expression 𝒥𝑞 (u)= 
1

2 
∫  

𝐺̅
∫  

𝐺̅
𝑐𝐺(x, y)(𝑢(𝑥) −  𝑢(𝑦))2 dxdy + ∫  

𝐺̅
𝑞𝑢2dx -2 ∫  

𝐺
𝑔𝑢 dx -∫  

𝐻1
𝑔1udx. Then u ∈ C(𝐺̅)  is a solution of 

(*) if and only if u minimizes 𝒥𝑞 on 𝐶𝑔2 . Moreover, if it is not simultaneously true that 𝐻2 =∅ and q =𝑞𝜎, then 𝒥𝑞  has a unique 

minimum on 𝐶𝑔2 . Otherwise, 𝒥𝑞  has a minimum if and only if ∫ 𝑔𝜎𝑑𝑥  
𝐺

+ ∫ 𝑔1𝜎
𝛿(𝐺)

dx = 0. In this case, there exists a unique 

minimum u ∈ C(𝐺̅) such that ∫  
𝐺̅

𝑢𝜎dx = 0.  

 

Proof.    

Observe that C𝑔2  = 𝑔2 + C(G∪𝐻1) and that for all v ∈ C(G∪𝐻1), we get,𝒥𝑞 (v)= ξ𝑞
𝐺(v, v) - 2 ∫  

G
gv dx -∫  

𝐻1
𝑔1vdx. 

Keeping in mind, that q ≥ 𝑞𝜎, we get that 𝒥𝑞  is a convex functional on C(G∪𝐻1) and hence on C𝑔2
.  

Moreover, it is an strictly convex functional if and only if it is not simultaneously true that 𝐻2 =∅ and     q = 𝑞𝜎  and then 𝒥𝑞  has a 

unique minimum on C𝑔2
.  

On the other hand, when 𝐻2 =∅ and q = 𝑞𝜎, simultaneously the minima of 𝒥𝑞  are characterized by the Euler identity: 

 

 ξ𝑞
𝐺(u, v) = ∫  

G
gv dx +∫  

𝐻1
𝑔1v dx, for all v ∈ C(𝐺̅) Since in this case ξ𝑞

𝐺(u, 𝜎) = 0,    for all u ∈ C(𝐺̅) necessarily g and 𝑔1 must 

satisfy that ∫  
G

gσ dx +∫  
𝐻1

𝑔1𝜎 dx = 0.  

 

Moreover, if this condition holds and V denotes the vector subspace generated by σ, then u ∈ 𝑉⊥ minimizes  𝒥𝑞  on 𝑉⊥ if and only 

if u minimizes 𝒥𝑞  on C(𝐺̅) and the existence of minimum follows since 𝒥𝑞   is strictly convex on 𝑉⊥.  

 
In any case, the equations described in (*) are the Euler-Lagrange identities for the corresponding minimization problem. The 

following result is an extension of the monotonicity property of the Schrodinger operator in the case q ≥ 𝑞𝜎. 

 

Proposition1.4. Suppose that q ≥ 𝑞𝜎,  and that it is not simultaneously true that 𝐻2 =∅ and q = 𝑞𝜎. If u ∈ C(𝐺̅) verifies that  𝐿𝑞 

(u) ≥ 0 on G, 
𝜕𝑢

𝜕𝑛𝐺
+ qu ≥ 0 on 𝐻1 and u ≥ 0 on 𝐻2, then u ∈ 𝐶+(𝐺̅) 

 

Proof.   

Consider again the network Γ𝐺 = (𝐺̅,𝐸̅,C𝐺), where 𝐸̅ = {(x, y) ∈E: CG  (x, y) > 0} and let 𝐿̅ its combinatorial Laplacian. 

Then, if u ∈ C(𝐺̅) verifies the hypotheses, 𝐿̅ (u) ≥ 0 on G∪𝐻1 and the conclusion follows by applying Proposition 4.1 in [3].  
 

Suppose that there exists σ ∈ 𝐶∗(G), such that q ≥ 𝑞𝜎,  and it is not simultaneously true that 𝐻2 = ∅ and  q = 𝑞𝜎. The Green 

operator associated with Problem (*) is the linear operator 𝒢𝑞
𝐹: C(G) → C(𝐺̅)that assigns to any g ∈ C(G) the unique solution of 

the boundary value problem  𝐿𝑞(u) = g on G, 
𝜕𝑢

𝜕𝑛𝐺
+ qu = 0 on 𝐻1 and u = 0 on 𝐻2. 

 

 Moreover, we define the Green function associated to Problem (*) as the function    𝐺𝑞
𝐹 : 𝐺̅×G → ℝ that assigns to any y ∈ G and 

any x ∈ 𝐺̅ the value  𝐺𝑞
𝐹 (x, y) = 𝒢𝑞

𝐹 (ε𝑦)(x), where ε𝑦 stands for the Dirac function at y.  

 

So, for any g ∈ C(G) it is verified that 𝒢𝑞
𝐹(g)(x) =  𝐺𝑞

𝐹(x, y) g(y) dy. Finally, let us remark that from the above proposition 𝐺𝑞
𝐹 ≥ 0 

and moreover 𝐺𝑞
𝐹(x, y) = 𝐺𝑞

𝐹(y, x) for any x, y ∈ G, since the boundary value problem (*) is self-ad joint. 

 

 

 

Conclusion: 
 

In this paper, we analyzed the self-adjoint boundary value problems on finite networks associated with positive semi-

definite Schrodinger operators. Among others, we treated general mixed boundary value problems that include the well-known 

Dirichlet and Neumann problems and also the Poisson equation.  Some of the authors obtained a generalization of this result when 

the ground state takes negative values, which was applied to the study of Dirichlet problems and Poisson equations. Here we 

extended the above results to the energy associated with general self-adjoint Boundary value problem. In particular, we showed 

that any Boundary value problem has a unique solution provided that its associated energy is positive definite and we characterize 

when this happens in terms of the ground state. 
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