
© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906974 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 332

A Review on Concurrency Control In Mobile

Computing Framework

Arti Nag, Sambhav Agrawal

Computer Science and Engineering,

Bansal Institute of Engineering and Technology, Lucknow, India

Abstract: In modern time the mobile computing based

applications needs advanced data synchronization. They

works on a complete set of data management services that

uses very accurate data modeling , mobile and server-side

support systems that can handle deployment and

versioning, rules-based data distribution, bi-directional

data transfers in a very fast and secure environment. The

mobile device-based database services and tight

transaction-level integration with multiple enterprise

information sources are in great demand. Due to these

reasons the mobile computing environment is developed

as a distributed computing.

Keywords: Mobile Computing, MDRTDBS, Optimistic

Concurrency Control , WSN.

1. Introduction:

Recent advances in wireless communication networks and

portable computers have led to the emergence of a new

research area called mobile computing systems. An important

part of the research conducted in mobile computing systems

has been done on mobile data management. What make the

mobile data management different from the conventional data

management are the mobility of the users or the computers
connected to the system, and the resource constraints such as

wireless bandwidth and battery life. As a result of such

distinctive features of mobile systems, the data management

techniques developed for conventional distributed database

systems may not work well in a mobile environment. Research

contributions are required in a variety of areas, such as

distribution of data on mobile and/or non-mobile computers,

processing of queries and transactions submitted by mobile

users, maintaining the consistency of data cached on mobile

computers, and so on. Another important issue that needs to be

considered in mobile data management is the requirement of
processing queries and transactions within certain time limits

in order to maintain the temporal validity of the data accessed

by those queries and transactions. Our basic objective in this

project is a thorough investigation of the issues to develop

various types of methods for mobile data management in

response to the requirements mentioned.

Many current researchers in the mobile computing arena share

the same vision: ubiquitous access to information, data, and

applications. Ubiquitous access refers to the ability of users to

access these computing resources from almost any terminal.

The idea behind the research is to provide dissemination of

larges amount of useful and needful information to different
mobile user by designing the efficient data management

policies. Recent developments relating to the Internet are

establishing solid foundations for wide-area ubiquitous

computing systems. [1, 2] Universal access and management

of information has been one of the driving forces in the

evolution of computer technology. Central computing gave the

ability to perform large and complex computations and

advanced information manipulation. Advances in networking
connected computers together and led to distributed

computing. Web technology and the Internet went even further

to provide hyper-linked information access and global

computing. However, restricting access stations to physical

locations limits the boundary of the vision. The real global

network can be achieved only via the ability to compute and

access information from anywhere and anytime. This is the

fundamental wish that motivates mobile computing. This

evolution is the cumulative result of both hardware and

software advances at various levels motivated by tangible

application needs.[3]

2. Related Work:

Kam-Yiu Lam et. al. (2000) [1] they proposed a distributed

real-time locking protocol, called Distributed High Priority

Two Phase Locking (DHP-2PL), for MDRTDBS. With the

rapid advances in mobile computing technology, there is an

increasing demand for processing real-time transactions in a

mobile environment. Based on the High Priority Two Phase

Locking (HP-2PL) scheme. In the protocol, the characteristics

of a mobile computing system are considered in resolving lock

conflicts. Two strategies are proposed to further improve the

system performance and to reduce the impact of mobile
network on the performance of the DHP-2PL: (1) A

transaction shipping approach is proposed to process

transactions in a mobile environment by exploring the well-

defined behavior of real-time transactions. (2) We explore the

application semantics of real-time database applications by

adopting the notion of similarity in concurrency control to

further reduce the number of transaction restarts due to

priority inversion, which could be very costly in a mobile

network. A detailed simulation model of a MDRTDBS has

been developed, and a series of simulation experiments have

been conducted to evaluate the performance of the proposed
approaches and the effectiveness of using similarity for

concurrency control in MDRTDBS.

The design of mobile distributed real-time database systems

(MDRTDBS) is receiving growing interests in recent years.

Due to the poor quality of services provided by a mobile

network, it is not easy to meet the deadlines of the transactions

in a MDRTDBS. In this paper, we define a detailed model for

MDRTDBS, in which the mobility of the mobile clients and

characteristics of the mobile network, e.g., disconnection and

low bandwidth, are modeled explicitly. We have designed a

distributed real-time locking protocol, called Distributed High

Priority Two Phase Locking (DHP-2PL), where the
characteristics of the mobile network are considered in

resolving the conflicts in data accesses. Then, we propose two

strategies to improve the system performance and to reduce

the impact of mobile network on the performance of the

adopted concurrency control protocol. We first propose the

concept of transaction shipping to reduce the dependency of a

concurrency control protocol on the performance of the

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906974 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 333

underlying network. With the transaction shipping approach,

the communication overheads for processing a transaction can
be much reduced. A data pre-fetching mechanism is included

in the transaction shipping approach to deal with the dynamic

properties of transactions and inaccuracy of prediction in the

pre analysis. We then adopt the notion of similarity to resolve

conflicts among data access that can be very costly over a

mobile network. Different issues in the design of similarity-

based real-time locking protocol are discussed. In the design

of similarity-based locking protocol, special attention should

be paid in resolving a lock conflict in which some of the lock

holders are similar to the lock requester while some of them

are not. Two methods, the aggressive and conservative
approaches, are suggested to resolve the conflicts. Simulation

experiments have been conducted to investigate the

performance of the DHP-2PL protocol, the effectiveness of the

transaction shipping approach and the similarity-based

protocols. With the transaction shipping approach, the number

of deadline violations is greatly reduced as the contention for

channels, the time spent on communication, the probability of

lock conflict, and the amount of resources wasted on restarted

transactions are much reduced. The transaction shipping

approach can also help balance the workload in the system

(between the channels and the base stations). The use of

similarity-based algorithm further improves the system
performance by reducing the number of lock conflicts.

However, the experimental results show that the effectiveness

of similarity depends very much on the values of the similarity

bounds.

The distributed transaction commit problem requires reaching

agreement on whether a transaction is committed or aborted.

The classic Two-Phase Commit protocol blocks if the

coordinator fails. Fault-tolerant consensus algorithms also

reach agreement, but do not block whenever any majority of

the processes are working. The Paxos Commit algorithm runs
a Paxos consensus algorithm on the commit/abort decision of

each participant to obtain a transaction commit protocol that

uses 2F + 1 coordinators and makes progress if at least F+1 of

them are working properly. Paxos Commit has the same

stable-storage write delay, and can be implemented to have the

same message delay in the fault-free case, as Two-Phase

Commit, but it uses more messages. The classic Two-Phase

Commit algorithm is obtained as the special F = 0 case of the

Paxos Commit algorithm proposed by Jim Gray et al. (2004)

[2].

Two-Phase Commit is the classical transaction commit
protocol. Indeed, it is sometimes thought to be synonymous

with transaction commit [2]. Two-Phase Commit is not fault

tolerant because it uses a single coordinator whose failure can

cause the protocol to block. We have introduced Paxos

Commit, a new transaction commit protocol that uses multiple

coordinators and makes progress if a majority of them are

working. Hence, 2F + 1 coordinators can make progress even

if F of them are faulty. Two-Phase Commit is isomorphic to

Paxos Commit with a single coordinator. In the normal,

failure-free case, Paxos Commit requires one more message

delay than Two-Phase Commit. This extra message delay is

eliminated by Faster Paxos Commit, which has the
theoretically minimal message delay for a non-blocking

protocol. Non-blocking transaction commit protocols were

first proposed in the early 1980s [3, 4]. The initial algorithms

had two message delays more than Two-Phase Commit in the

failure-free case; later algorithms reduced this to one extra

message delay [3]. All of these algorithms used a coordinator

process and assumed that two different processes could never
both believe they were the coordinator an assumption that

cannot be implemented in a purely asynchronous system.

Transient network failures could cause them to violate the

consistency requirement of transaction commit. It is easy to

implement non-blocking commit using a consensus algorithm

an observation also made in the 1980s. However, the obvious

way of doing this leads to one message delay more than that of

Paxos Commit. The only algorithm that achieved the low

message delay of Faster Paxos Commit is that of Guerraoui,

Larrea, and Schiper [11]. It is essentially the same as Faster

Paxos Commit in the absence of failures. (It can be modified
with an optimization analogous to the sending of phase 2a

messages only to a majority of acceptors to give it the same

message complexity as Faster Paxos Commit.) This similarity

to Paxos Commit is not surprising, since most asynchronous

consensus algorithms (and most incomplete attempts at

algorithms) are the same as Paxos in the failure-free case.

However, their algorithm is more complicated than Paxos

Commit. It uses a special procedure for the failure-free case

and calls upon a modified version of an ordinary consensus

algorithm, which adds an extra message delay in the event of

failure. With 2F + 1 coordinators and N resource managers,

Paxos Commit requires about 2FN more messages than Two-
Phase Commit in the normal case. Both algorithms incur the

same delay for writing to stable storage. In modern local area

networks, messages are cheap, and the cost of writing to stable

storage can be much larger than the cost of sending messages.

So in many systems, the benefit of a non-blocking protocol

should outweigh the additional cost of Paxos Commit. Paxos

Commit implements transaction commit with the Paxos

consensus algorithm. Some readers may find this paradoxical,

since there are results in the distributed systems theory

literature showing that transaction commit is a strictly harder

problem than consensus [10]. However, those results are based
on a stronger definition of transaction commit in which the

transaction is required to commit if all RMs are nonfaulty and

choose to prepare even in the face of unpredictable

communication delays. In contrast, our Non-Triviality

condition requires the transaction to commit only under the

additional assumption that the entire network is non faulty

meaning that all messages sent between the nodes are

delivered within some known time limit. (Guerraoui, Larrea,

and Schiper stated this condition more abstractly in terms of

failure detectors.) The stronger definition of transaction

commit is not implementable in typical transaction systems,
where occasional long communication delays must be

tolerated.

Salman Abdul Moiz et al. (2010), [3] they worked for any

database environment either wired or wireless, if multiple host

access similar data items it may lead to concurrent access

anomalies. As disconnections and mobility are the common

characteristics in mobile environment, preserving consistency

in presence of concurrent access is a challenging issue. Most

of the approaches use locking mechanisms to achieve

concurrency control. This leads to increase in blocking and

abort rate in mobile environments. However the dynamic
timer adjustment strategies may use locking mechanism to

efficiently implement concurrency control. To reduce

deadlocks and blocking of resources an enhanced optimistic

approach for concurrency control is proposed by Salman

Abdul Moiz et al. (2010) [3]. To show the effectiveness of the

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906974 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 334

commit protocols in mobile environments, a simulator is

designed and implemented to demonstrate how the
transactions are committed and how the data consistency is

maintained when the transactions are executed concurrently.

The simulator was tested for both pessimistic and optimistic

approaches.

As long as the mobile clients are not involved in the

concurrent access of data items, the database consistency can

be preserved. When multiple mobile hosts initiate the

transactions requesting for the same data item, it can be locked

by only one of the transaction. After the execution of the

transaction, the data items are unlocked and the same are

acquired by the waiting transaction. When one transaction is
being executed, the other transaction that needs the same data

items, locked by the former has to wait for invariant time. The

delay in acquiring the data items may further increase due to

disconnections of mobile hosts for longer time. To solve these

problems, following concurrency control techniques are

proposed. The basic idea is that a transaction has to be

executed within certain time period (Execution time). This

information is maintained by fixed host. To achieve

concurrency control, two phase locking protocol was used in

the traditional environment. However this protocol requires

clients to communicate continuously with the server to obtain

locks and detect the conflicts. Hence it is not suitable for
mobile environments. In [3], A Timeout based Mobile

Transaction Commitment Protocol uses timeouts to provide

non-blocking protocol with restrained communication. It faces

the problem of the time lag between local and global commit.

In [4] the proposed Mobile 2PC protocol preserves the 2PC

principle and minimizes the impact of unreliable wireless

communication. This protocol assumes that all communicating

partners are stationary hosts, equipped with sufficient

computing resources and power supply with permanently

available bandwidth.

In the pessimistic approaches, the items may be blocked for
certain period of time. To avoid the blocking of data items and

allowing multiple users to access the shared data items

requires strong conflict resolution strategies. For this reason,

an optimistic concurrency control technique is frequently used

in wireless environments [13, 14, 15].

An optimistic concurrency control technique detects and

resolves data conflicts in the phase of transaction validation.

In a mobile environment the transaction validation is done on

the server, it may lead to delayed response causing overhead at

the server. An Optimistic Concurrency Control with Dynamic

Time stamp Adjustment Protocol requires client side write
operations. However because of the delay in execution of a

transaction, it may never be executed [2]. In [2], the

conventional optimistic concurrency control algorithm is

enhanced with an early termination mechanism on conflicting

transactions. However because of early termination a

transaction need to be initiated again and again.

Optimistic concurrency control protocols (OCC) [4, 5, 7] are

non-blocking and deadlock free, which make them efficient to

use in mobile computing and have been adopted in the

Disconnected Operation [6] and Kangaroo Transaction model.

However, without locks to data items, transactions might

access conflicting data items under an optimistic concurrency
control protocol (OCC). Two concurrent transactions conflict

if one of them performs a write on similar data items.

Therefore, approaches to terminate conflicting transactions are

proposed [2,3]. In these approaches if the conflict rate

increases, more and more transactions get aborted. Pessimistic

commit protocols suitable for mobile environments are

presented from [5] to [8]. Further a Real Time optimistic
Commit protocols with a conflict resolution strategy is

presented in [9]. The Design & Implementation of Pessimistic

Commit protocols is described in [10]. The design and

implementation of the optimistic commit protocol is presented

in this chapter. The Optimistic Concurrency Control Strategy

doesn’t use any locking which doesn’t block the shared

resources. Further concurrency can be guaranteed by first

executing transactions locally and later on propagating the

results. In this scheme whenever a fixed host detects a

concurrency violation, it propagates the updated shared data

item to the mobile host using the same data item without
aborting it. The mobile host which successfully completes the

transaction locally will be committed irrespective of its arrival

time. In this scheme there could be a possibility that the

transaction which arrived quiet early might not get executed

because the other mobile hosts are executing faster. The future

work may introduce a priority field to give chance to the

transaction which requested first or a hybrid approach for

concurrency control that enters into pessimistic approach by

partially locking data items to complete its execution is

needed.

Managing the transactions in real time distributed computing
system is not easy, as it has heterogeneously networked

computers to solve a single problem. If a transaction runs

across some different sites, it may commit at some sites and

may failure at another site, leading to an inconsistent

transaction. The complexity is increase in real time

applications by placing deadlines on the response time of the

database system and transactions processing. Such a system

needs to process Transactions before these deadlines expired.

A series of simulation study have been performed to analyze

the performance under different transaction management

under conditions such as different workloads, distribution
methods, execution mode-distribution and parallel etc. The

scheduling of data accesses are done in order to meet their

deadlines and to minimize the number of transactions that

missed deadlines. A new concept is introduced to manage the

transactions in dynamic ways rather than setting computing

parameters in static ways. With this approach, the system

gives a significant improvement in performance this approach

is proposed by Y. Jayanta Singh et.al. (2010) [8].

A series of simulation study have been performed to analyze

the performance under different transaction management
situation such as different workloads, distribution methods,

execution mode-Distribution and Parallel, impact of dynamic

slack factors to throughput. The scheduling of data accesses

are done in order to meet their deadlines and to minimize the

number of transactions that missed deadlines. Parallel

execution of the cohorts reduces the transaction response time

than that of serial or distributed execution. The time required

for the commit processing is partially reduced, because the

queuing time is shorted in parallel and so there are much fewer

chances of a cohort aborting during waiting phase. The

throughput initially increases with increase in slack factor. But

it drops rapidly at very high workloads. The slack factors can
be providing by static or dynamics ways. The new approach

dynamic management either dynamic intelligent agent or

dynamic slack management gives a significant improvement

to the performance of the system. Dynamic intelligent agent

keeps tracks of timing of the transactions to help them from

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906974 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 335

aborts. This agent gives advance information about the

remaining execution time of the transactions. This helps the
system to inject extra time to such transactions. In all the

conditions the arrival rate of transaction plays a major role in

reducing number of miss percentage and improved

performance.

Recent advances in wireless communication networks and

portable computers have led to the emergence of a new

research area called mobile computing systems proposed by

Vishnu Swaroop et. al. (2011) [9]. An important part of the

research conducted in mobile computing systems has been

done on mobile data management. What make the mobile data

management different from the conventional data management
are the mobility of the users or the computers connected to the

system, and the resource constraints such as wireless

bandwidth and battery life. As a result of such distinctive

features of mobile systems, the data management techniques

developed for conventional distributed database systems may

not work well in a mobile environment. Research

contributions are required in a variety of areas, such as

distribution of data on mobile and/or non-mobile computers,

processing of queries and transactions submitted by mobile

users, maintaining the consistency of data cached on mobile

computers, and so on. Another important issue that needs to be

considered in mobile data management is the requirement of
processing queries and transactions within certain time limits

in order to maintain the temporal validity of the data accessed

by those queries and transactions. Our basic objective in this

project is a thorough investigation of the issues to develop

various types of methods for mobile data management in

response to the requirements mentioned.

To deal with the characteristics of mobile computing,

especially with wireless connectivity and small devices,

various extensions of the client/server model have been

proposed. Such extensions advocate the use of proxies or

middleware components. Proxies of the mobile host residing
at the fixed network, called server-side proxies, perform

various optimizations to alleviate the effects of wireless

connectivity such as message compression and re-ordering.

Server-side proxies may also perform computations in lieu of

their mobile client. Proxies at the mobile client undertake the

part of the client protocol that relates to mobile computing

thus providing transparent adaptation to mobility. They also

support client caching and communication optimizations for

the messages sent from the client to the fixed server. Finally,

mobile agents have been used with client/server models and

their extensions. Such agents are initiated at the mobile host,
launched at the fixed network to perform a specified task, and

return to the mobile host with the results. Another concern in

terms of software architectures is adaptability. The mobile

environment is a dynamically changing one. Connectivity

conditions vary from total disconnections to full connectivity.

The resources available to mobile computers are not static

either, for instance a “docked” mobile computer may have

access to a larger display or memory. Furthermore, the

location of mobile elements changes and so does the network

configuration and the center of computational activity. Thus, a

mobile system is presented with resources of varying number

and quality. Consequently, a desired property of software
systems for mobile computing is their ability to adapt to the

constantly changing environmental conditions. Despite the

complete challenges and stress that mobile and wireless

computing places on organizations are quickly developing

strategies for their mobile workforces. Location dependent

information services have great promise for mobile and

pervasive computing environments. They can provide local
and non local news, weather, and traffic reports as well as

directory services. Before they can be implemented on a large

scale, however, several research issues must be addressed. The

scope of this paper is to raise the data management in terms of

operation and management of application software and

management services within the mobile distributed systems

and the impact of advanced computing and networking

technologies on management [9].

Ashish Srivastava et. al. (2012), [10] they worked on a

homogenous distributed real time replicated database system
that is a network of two or more DBMS that reside on one or

more machines. A distributed system that connects two or

more databases are Homogenous Distributed Database

Systems (HDDBS) create different problems when accessing

distributed and replicated databases. Particularly, access

control and transaction management in HDDBS require

different mechanism to monitor data retrieval and update to

databases. Current trends in multi-tier client/server networks

make DDBS an appropriated solution to provide access to and

control over localized databases. This paper highlights the

basic concepts underlying distributed database system

including transaction management in in HDRTDBS.
Distributed database systems (DDBS) create different

problems when accessing distributed and replicated databases.

Particularly, access control and transaction management in

DDBS require different mechanism to monitor data. Retrieval

and update to databases and reduces the communication traffic

and also achieves a good transaction response time. An

example is given to demonstrate the step involved in executing

the two-phase commit.

Scheduled the present time Transaction management is an

fully grown thought in distributed data base management

systems (DDBMS) for research area. Our Homogenous
Distributed Database Systems based replication proposal is

able to inherit and reduces the communication traffic the best

characteristics of the Database Systems. However, Oracle was

the first commercial DBMS to implement a method of

transaction management: the two-phase commit. Though it

was very difficult to obtain in order on homogenous DBMS

implementation of this method were able to pull together

sufficient in sequence to put in writing homogenous

transaction for the database system. Many associations do not

implement distributed databases because of its difficulty. They

simply resort to centralized databases. However, with global
organizations and multi-tier network architectures, distributed

implementation becomes a necessity. It is hoped that this

paper to will assist organization in the implementation of

distributed databases when installing homogenous DBMS, or

give confidence organizations to journey from centralized to

distributed DBMS. Organisations could also contribute to this

process by having graduates with the knowledge of

homogeneous DBMS capability. With DBMS making so

much effort on incorporating this and other advanced features

in its database software, academicians should also play a

major role in exposing beneficiary to these superior element

transaction management.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906974 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 336

3. Conclusion:

In this paper we have worked on the review of complete
database distributed among wireless components as in mobile

switching stations. We found that the entire database is being

distributed in wireless components of the computer systems.

Some of the parameters that influence and complicate

database management will design of database and replication

of database. We will developed a mobile environment protocol

that can handle the distributed database of several clients using

priority based concurrency control mechanism with

considerations of Hand Off situation.

References:
[1] kam-yiu lam et. al., "Concurrency Control In Mobile

Distributed Real-Time Database Systems", Information

Systems Vol. 25 No. 4, pp. 261–286, 2000.

[2] Jim Gray and Leslie Lamport, "Consensus on Transaction

Commit" 1 January 2004 revised 19 April 2004, 8 September

2005.

[3] Salman Abdul Moiz et. al., "Commit Protocols in Mobile

Environments: Design & Implementation" International

Journal of Database Management Systems (IJDMS) Vol.2,

No.3, August 2010.

[4] Bernstein, P.A, Hadzilacos, V. and Goodman, N,

"Concurrency Control and Recovery in database System",
Addison-Wesley 1987

[5] H. T. Kung and J. T. Robinson, "On Optimistic Methods

for Concurrency Control," ACM TODS, 6(2), June 1981.

[6] J. Kisler, and M. Satyanarayanan, Disconnected Operation

in the Coda File System, ACM Transactions on Computer

Systems, 10(1), 1992.

[7] T. Härder. “Observations on optimistic concurrency

control schemes”. Information Systems, 9(2):111–120, 1984.

[8] Y. Jayanta Singh et. al., "Dynamic management of

transactions in distributed real-time processing system"

10.5121/ijdms.2010.2210.
[9] Vishnu Swaroop, and Udai Shanker, "Data management in

Mobile Distributed Real Time Database Systems: Reviews

and Issues" (IJCSIT) International Journal of Computer

Science and Information Technologies, Vol. 2 (4) , 2011,

1517-1522.

[10] Ashish Srivastava, et. al., "International Journal of

Advanced Research in Computer Science and Software

Engineering" IJARCSSE, Volume 2, Issue 6, June 2012.

http://www.jetir.org/

