ON THE EXISTENCE OF AFFINE MOTION IN TACHIBANA RECURRENT SPACES

A.A SAMYAL
Department of Mathematics, H.N.B. Garhwal University, Campus Badshahithaul, Tehri Garhwal-249199, Uttranchal, India

ABSTRACT

In the present paper, we study the affine motions in Tachibana recurrent spaces by taking an infinitesimal transformation and derive some important theorems.

2000 Mathematics Subject Classification: 53A 45

Keywords and phrases: Affine motion, Tachibana, Recurrent spaces, Riemannian space, Riemannian curvature tensor field, Lie derivative.
1.Introduction. $\mathrm{A}_{\mathrm{n}} \mathrm{n}(=2 \mathrm{~m})$ dimensional Tachibana space $T_{n}{ }^{c}$ is a Riemannian space, which admits a tensor field F_{i}^{h} satisfying

$$
\begin{align*}
& \mathrm{F}_{j}{ }^{h} \mathrm{~F}_{h}{ }^{i}=-\delta_{j,}^{i} \tag{1.1}\\
& \mathrm{~F}_{i, j}=-\mathrm{F}_{j i},\left(\mathrm{~F}_{j i}=\mathrm{F}^{\alpha}{ }_{i} \mathrm{~g}_{a j}\right) \tag{1.2}
\end{align*}
$$

And

$$
\begin{equation*}
\mathrm{F}_{j, k}^{h}=0, \tag{1....}
\end{equation*}
$$

Where the comma (,) followed by an index denotes the operation of covariant differentiation with respect to the metric tensor $\mathrm{g}_{i j}$ of the Riemannian space.

The Riemanian curvature tensor field $\mathrm{R}^{i}{ }_{j k l}$ is defined by

$$
\begin{equation*}
\mathrm{R}_{j k l=}^{i_{j k}} \partial \Gamma^{i}{ }_{k l=} \partial \Gamma^{i}{ }_{j l+} \Gamma^{i}{ }_{j a} \Gamma^{a}{ }_{k p}=\Gamma^{i}{ }_{k a} \mathbf{r}^{a}{ }_{j i} \tag{1....}
\end{equation*}
$$

If the space $\mathrm{T}_{\mathrm{n}}^{\mathrm{c}}$ satisfies conditions

$$
\begin{equation*}
\mathrm{R}_{j k l, \mathrm{a}=\boldsymbol{\lambda}_{\mathrm{a}}}^{\mathrm{R}^{\mathrm{i}}{ }_{j k l} \boldsymbol{\lambda}_{\mathrm{a} \neq 0 .} .} \tag{1.5}
\end{equation*}
$$

 * $\mathrm{T}^{\mathrm{c}} \mathrm{n}$, we can find the formula

Where $£_{\mathrm{v}}$ denotes the Lie-derivative with respect to the infinitesimal transformation
$x^{-1}=x^{i}+\mathrm{v}^{i}(x) \delta \mathrm{t}$,
where δt is an infinitesimal constant. The above infinitesimal transformation, considered at each point of $T^{c}{ }_{n}$, is called an affine motion, when and only when
$£_{v} \Gamma^{i}{ }_{j k}=0$.
According to Knebleman ([1], 1929, [2], 1945) and Slebedzinski ([3], 1932), for an affine motion, the two operators $£_{\nu}$ covariant operator (,) are commutative with each other.

Making use of $£_{v} \Gamma_{j k}^{i} \neq 0$, we have
$£_{v} R_{j k l}^{i}=0$.
Applying $£_{v}$ on the both sides of (1.5) and using (1.6) and (1.7), we get

$$
\begin{equation*}
\left(£_{\nu \lambda n}\right) \mathrm{R}_{j k l}^{i}=0, \tag{1.8}
\end{equation*}
$$

i.e., the Recurrence vector λa of the space must be a Lie-invariant one. The space $* \mathrm{~T}^{\mathrm{c}}$, admitting an infinitesimal transformation $x^{-1}=x^{i}+\mathrm{v}^{i}(x) \delta \mathrm{t}$, which satisfies (1.8) will be called a restricted space, or briefly an S- * $\mathrm{T}_{\mathrm{n}}^{\mathrm{c}}$ space.

We, now prove the following Lemma. In an $S-* T^{c}{ }_{n}$ space, if the recurrence vector λn is gradient ne, then
$\lambda n v^{a}=$ constant.

Proof. Let us put $\alpha=\lambda a v^{a}$, then, from the basic condition
$£_{\nu} \lambda a=\mathrm{v}^{\mathrm{a}} \lambda a, b+\lambda b \mathrm{v}^{\mathrm{b}}{ }_{\mathrm{a}}$,

And the assumption $\lambda a, b=\lambda b, a$, we see that $\alpha_{\mathrm{b}}=0$.
This completes the proof
In an $S-* T^{c}{ }_{n}$ space, in view of (1.5) and the definition of Lie-derivative, we get
$£_{v} \mathrm{R}_{j k l}^{i}=\alpha \mathrm{R}_{j k l}^{i}-\mathrm{R}^{r}{ }_{j k l}{ }^{\mathrm{i}}{ }^{\mathrm{i}}, \mathrm{r}+\mathrm{R}^{r}{ }_{j k l \mid}{ }^{\mathrm{r}}, \mathrm{k}+\mathrm{R}^{i}{ }_{j k r} \mathrm{~V}^{r}, l$
Calculating ($\mathrm{R}_{j k l, b a}^{i}-\mathrm{R}^{i}{ }_{j k l, a b}$), we have the following Ricci-identity:
$\mathbf{R}_{j k l, b a}^{i}-\mathbf{R}_{j k l, a b}^{i}-\mathbf{R}^{r}{ }_{j k l} \mathbf{R}_{r a b}^{i}+\mathbf{R}_{r k l}^{i} \mathbf{R}_{j a b}^{r}+\mathbf{R}_{j r l}^{i} \mathbf{R}_{k a b}+\mathrm{R}_{j k r} \mathbf{R}^{r}{ }_{l a b}=0$
Next, let us assume that α is not a constant, then from then from the above Lemma, we see that

$$
\lambda \mathrm{ab}=\lambda \mathrm{a}, \mathrm{~b}-\lambda \mathrm{b}, \mathrm{a} \neq 0 .
$$

Let us take $\mathrm{v}^{\mathrm{i}}{ }_{\mathrm{j}}=\mathrm{R}^{i}{ }_{j k l} f^{k l}$ for a suitable non-symmetric tensor $f^{k l}$
Multiplying (1.10) by $f^{a b}$ side by side and summing over a and b , we have
$F^{a b} \mathrm{~A}_{\mathrm{ab}} \mathbf{R}_{j k l}^{i}=\mathbf{R}^{r}{ }_{j k l}{ }^{i}{ }^{i}, r-\mathbf{R}_{r k l}^{i} v^{r}{ }_{, j}-\mathbf{R}_{j r l}^{i} v^{r}, k-\mathbf{R}_{j k r}^{i} v^{r}, l$.
Comparing equations (1.9) and (1.11), we get
$\mathfrak{£}_{v} \mathrm{R}_{j k l}^{i}=\left(\alpha-\mathrm{A}_{\mathrm{ab}} f^{a b}\right) \mathrm{R}_{j k l}^{i}$,
Which vanishes, if and only if, the curvature tensor has the following resolved from:
$\alpha \mathrm{R}^{i}{ }_{j k l}=\mathrm{A}_{\mathrm{kl}} \mathrm{V}^{i}{ }_{j}$.
we have the following

Definition (1.1). An S-* $\mathrm{T}_{\mathrm{n}}^{\mathrm{c}}$ space satisfying $c V^{a} \neq$ constant is called a special Tachibaba space of the second kind.

Definition (1.2). An S- $* \mathrm{~T}_{\mathrm{n}}^{\mathrm{c}}$ space satisfying $\lambda a V^{a}=$ constant, is called a special Tachibana space of the second kind.

In order that we have (1.12), the condition
$\mathrm{R}^{i}{ }_{j k l} \mathrm{v}^{l}+\alpha_{k} v^{i}{ }_{j}=0$,
Where $\alpha_{k}=\alpha_{k} / \alpha$ is necessary and sufficient (Takano [4], 1966)
In fact $\alpha_{k} \neq 0$, there exist a suitable vector η^{k}, such that $\alpha_{k} \eta^{\mathrm{k}}=1$, then by transvection of η^{k}, from the condition (1.13), we have $\mathrm{V}^{\mathrm{i}}{ }_{\mathrm{j}}=\mathrm{R}^{i}{ }_{j k l}{ }^{K} \eta^{l}$.

So, we can take concretely $f^{k l}=\mathrm{v}^{\mathrm{k}} \eta^{l}$.Hence, to have the concrete from $f^{k l}$, (1.13) should be taken as a basic condition. If this is done, we shall have (1.12) always. So, $£_{v} \mathbf{R}_{j k l}=0$ holds good. Thus we have the following Theorem. If we introduce $v^{i}{ }_{j}$ by (1.13) then $£_{v} \mathrm{R}_{j k l}^{i}=0$ is identically satisfied
2. Affine Motion in Tachibana Recurrent Spaces. Firstly, we shall show the existence of affine motion in a special S-* $\mathrm{T}^{\mathrm{c}}{ }_{\mathrm{n}}$ space of the first kind.

Differentiating (1.12) covariently with respect to x^{a} and using (1.5) and $A_{k l, \mathrm{a}}=\lambda a A_{k l}$ we have
$\mathrm{R}_{j k l}^{i} \alpha_{, \mathrm{a}}=\mathrm{A}_{k l}{ }^{i}{ }^{i}{ }_{j}{ }^{i}$
Multiplying the above equations by summing over l, we obtain
$\mathrm{R}_{j k l}^{i} v^{l} \alpha_{, \mathrm{a}}=-\alpha_{, k .} v^{i}{ }_{, j a}$
Where we have used
$\mathrm{A}_{\mathrm{ab}} \mathrm{v}^{\mathrm{b}}+\alpha_{, \mathrm{a}}=0$.
By virtue of (1.13), we obtain

$$
\begin{equation*}
\mathrm{R}_{j k l}^{i} \mathrm{v}^{l}=-\alpha_{, k} . v_{, j}^{i} \tag{2.3}
\end{equation*}
$$

Making use of (2.3) and (2.2), we have

$$
\begin{equation*}
\alpha_{\mathrm{a}} \alpha_{, k} v_{, j}^{i}=\alpha_{k} v^{i}{ }_{, j a} \tag{2.4}
\end{equation*}
$$

since $\alpha \neq$ constant, we get

$$
\begin{equation*}
\alpha_{a} \cdot v_{, j}^{i}=v^{i}, j a . \tag{2.5}
\end{equation*}
$$

Hence (2.3) and (2.5) yield
$\mathrm{V}^{\mathrm{i}}{ }_{\mathrm{jk}}+\mathrm{R}^{i}{ }_{j k l} \mathrm{v}^{l}=\alpha_{k} v^{i}{ }_{j}-\alpha_{, k} . v^{i}{ }_{, j}=0$,
Thus, we have $£_{v} \Gamma_{j k}^{i}=0$.

Theorem 1. An $* \mathrm{~T}^{\mathrm{c}}{ }_{\mathrm{n}}$ space, satisfying $£_{\nu} \lambda_{\mathrm{a}}=0, \lambda_{\mathrm{a}} \mathrm{v}^{\mathrm{a}} \neq 0$ constant and having resolved curvature tensor $\mathrm{R}^{i}{ }_{j k l}$ of the form (1.13), admits naturally an affine motion.

Proof. Consider space of the second kind satisfying

$$
\alpha=\lambda_{a} v^{a}=0 .
$$

From second Bianchi identity, we have
$\lambda_{\mathrm{k}} \mathrm{R}_{j l a}^{i} \mathrm{v}^{\mathrm{a}}=\lambda_{l} \mathrm{R}_{j k a}^{i} \mathrm{v}^{\mathrm{a}}$,
From where, taking care of $\lambda_{l} \neq 0$, we can put
$\mathrm{R}_{j k l}^{i}{ }^{l}=\mathrm{A}_{j}^{i} \lambda_{k}$
Since $\lambda_{l} \neq 0$, there exist suitable vector η^{l}, such that

$$
\lambda_{a} \eta^{a}=\Gamma^{l}
$$

multiplying (2.7) by η^{k}, we obtain
$\mathrm{R}_{j k l}^{i} \eta^{k} \mathrm{v}^{l}=\mathrm{A}_{j}^{i}$
Now, introducing a non-symmetric tensor . $f^{x l}$, which has been considered earlier in (2.8), we get
$-\mathrm{R}_{j k l}^{i}{ }^{k l}=-\mathrm{A}_{j}^{i}$
i.e., we can put
$\mathrm{v}^{i}{ }_{j}=-\mathrm{A}^{i}{ }_{j}$
consequently, (2.7) may be written as
$\mathrm{R}_{j k l}{ }{ }^{i}{ }^{i}=-\lambda_{k} \mathrm{v}^{i}{ }_{j}$
Here, we see that
$£_{v} \Gamma^{i}{ }_{j k}=\mathrm{v}^{i}{ }_{j k}-\lambda_{k} \mathrm{v}^{i}{ }_{, j}$
Therefore,

$$
\mathfrak{£}_{v} \Gamma_{j k}^{i}=0,
$$

If and only if $\mathrm{v}^{i}{ }_{j k}$ denote a recurrence tensor with respect to the gradient recurrence vector.
Thus by the above reason, we establish
Theorem 2. An $* T^{c}{ }_{n}$ space defined by a gradient recurrence vector λ_{a} and gradient characterized by $£_{v} \lambda_{a}=0$ and $\lambda_{a} v^{a}=0$ admits an affine motion, if and only if, the space has recurrence tensor $\mathrm{v}^{i}{ }_{j, j}$ with respect of λ_{k}.

REFFERENCES

[1] M.S. Knebelman, Collineations and motions in generalized spaces, Amer. Jour. Math., 51(1929), 527-564.
[2] M.S. Knebelman, On the equations of motions in Riemannian space, Bull. Amer. Math. Soc., 52
[3] W.Slebadzinski, Sur les transformations isomerphiques d' une variete connexion affine, Proc. Mat. Fiz. 39 (1932) 55-62.
[4] K. takano, On the existence of affine motion in space with recurrent curvature, Tensor, 17 (1) (1966), 68-73.
[5] K. Yano, Differential Geometry on Complex and Almost Complex Spaces, Pergamon Press, London (1965).
[6] K.Yano, The Theory of Lie-derivatives and its Applications, P. Noordhoff, Groningen (1957).

