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1. Introduction  

 The results in this chapter turn out to be a particular case of what was discussed in chapter. Nevertheless 

the sharper assumption of zero lead time has produced several stronger results in this section. One consequence 

is the explicit expression for the stability of the system and the closed form expression for the system state 

distribution. Further our investigation of the optimal reorder level (s) and the maximum number(S) of items 

that could be stored in the inventory could be made analytical. 

 The section introduces the concept of interruption to an inventory system where the processing of 

inventory requires a random time, which leads to a queue of customers waiting for inventory. The arrival 

process is assumed to be Poisson and service time follows an exponential distribution. During the processing 

of inventory, the service may be interrupted due to breakdown of the server. The failure time of a busy server 

is assumed as exponentially distributed and the failed server is taken for repair immediately, where the repair 

time also follows an exponential distribution. Inventory is managed according to an (𝑠, 𝑆) policy with zero 

lead time. As in the assumption of instantaneous replenishment leads to an explicit steady state analysis under 

the stability condition. The optimal values for reorder level 𝑠 and maximum inventory level 𝑆 is also analyzed 

based on a cost function. This chapter is arranged as follows. In section, we do the mathematical modeling of 

the above system; in section we obtain the stability condition and the explicit steady state probability vector 

under stability. Explicit expressions for several important performance measures are obtained in section and 

their behavior, as different parameters vary, is discussed in section. A cost function is also constructed in that 

section and its nature studied numerically. 

 

2. MATHEMATICAL MODEL 

 The system is described as under. Customer arrive to a single server counter according to a Poisson 

process of rate 𝜆 where inventory is served. Duration of service are iid exponential random variables with 

parameter 𝜇. Inventory is replenished according to (𝑠, 𝑆) policy, the replenishment being instantaneous. 

Further no shortage is permitted. While the server serves a customer, the service can be interrupted, the inter 
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occurrence time of interruption being exponentially distributed with parameter 𝛿1. Following a service 

interruption the service restarts according to an exponentially distributed time with parameter 𝛿2.  For the 

model under discussion, we make the following assumptions: 

1. No inventory is lost due to service interruption. 

2. The customer being served when interruption occurs, waits there until his service is completed. 

At time 𝑡 let 𝑁(𝑡) be the number of the customers in the system including the one being served, 𝐿(𝑡) be the 

inventory level and set  

𝑆(𝑡) = {
0 if the server is idle
1 if the server is busy

2 if the server is on interruption
 

Then 𝛺{𝑋(𝑡), 𝑡 ≥ 0} = {(𝑁(𝑡), 𝑆(𝑡), 𝐿(𝑡)), 𝑡 ≥ 0} will be a Markov chain with state space 𝐸 =
{(0,0, 𝑘)|𝑠 ≤ 𝑘 ≤ 𝑆 − 1} ∪ {(𝑖, 𝑗, 𝑘)|𝑖 ≥ 1, 𝑗 = 1,2, 𝑠 + 1 ≤ 𝑘 ≤ 𝑆}. The state space of the Markov chain is 

partitioned into levels 𝑖̃ defined as 0̃ = {(0,0, 𝑠),…… , (0,0, 𝑆 − 1)}, and 𝑖̃ = {(𝑖, 1, 𝑠 +
1),…… , (𝑖, 1, 𝑆), (𝑖, 2, 𝑠 + 1),…… , (𝑖, 2, 𝑆)}, for 𝑖 ≥ 1. This makes the Markov chain under consideration, a 

level independent Quasi Birth Death (QBD) process. In the following sequel, 𝑄 stands for 𝑆 − 𝑠, 𝐼𝑛 denotes 

an identity matrix of order 𝑛 and 𝑒 denotes a column matrix of 1’s of appropriate order. Now the infinitesimal 

generator matrix of the process is 

𝑇 =

[
 
 
 
 
 
𝐵0 𝐵1 0  0  0  0  0
𝐵2 𝐴1 𝐴0  0  0  0  0 

0
0 
 
 

𝐴2
0 
 
 

𝐴1
𝐴2 
 
 

𝐴0
𝐴1 
 
 

0
𝐴0 
  
 

0
0 
  
 

0
0 
 
 ]
 
 
 
 
 

  

Where𝐵0 = 𝜆𝐼𝑄;  𝐵1 = [𝐷1 0]𝑄×2𝑄;   𝐷1 = 

[
 
 
 
 
0 0   𝜆
𝜆 0 .  0
0
.
0

𝜆
.
0

0
 
 

 
.
𝜆

.

.
0]
 
 
 
 

𝑄×𝑄

;    𝐵2 = [
𝜇𝐼
0
]
𝑄×2𝑄

         𝐴1 =

[
−(𝜆 + 𝜇 + 𝛿1)𝐼 𝛿1𝐼

𝛿2𝐼 −(𝜆 + 𝛿2)𝐼
]
2𝑄×2𝑄

, where each block is a 𝑄 × 𝑄 matrix   𝐴0 = 𝜆𝐼2𝑄 and 𝐴2 = [
 𝐷2 0
0 0

]
2𝑄×2𝑄

, 

where each block is a 𝑄 × 𝑄 matrix. 

3. ANALYSIS OF THE MODEL 

3.1 Stability Condition 

 Define 𝐴 = 𝐴2 + 𝐴1 + 𝐴0 and 𝜋 = (𝜋(1, 𝑠 + 1), … . , 𝜋(1, 𝑠), 𝜋(2, 𝑠 + 1),… . 𝜋(2, 𝑠)) be the steady 

state vector of the generator matrix 𝐴. The relations 𝜋𝐴 = 0 and 𝜋𝑒 = 1 when solved result in the values of 

various components of 𝜋 as  

𝜋(1, 𝑠 + 1) =  …… = 𝜋(1, 𝑠) =
𝛿2

𝑄(𝛿1 + 𝛿2)
 𝑎𝑛𝑑 𝜋(2, 𝑠 + 1) =  …… = 𝜋(2, 𝑠) =

𝛿2
𝑄(𝛿1 + 𝛿2)

 

The QBD process with generator 𝑇 is stable if and only if the rate of drift to the left is larger than the rate of 

drift of the level to the right: that is 𝜋𝐴0𝑒 < 𝜋𝐴2𝑒. That is if and only if  

𝜆 <
𝛿2𝜇

(𝛿1 + 𝛿2)
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Thus  we have the following theorem for stability of the system under study. 

Theorem: 3.1 

The Markov chain 𝛺 is stable if and only if 
𝜆

𝜇

(𝛿1+𝛿2)

𝛿2
< 1 

Note: since the lead-time is assumed as zero, the absence of the inventory parameters 𝑠 and 𝑆 is expected. The 
(𝛿1+𝛿2)

𝜇𝛿2
 is actually the expected duration of an effective service, which is subject to interruptions at a rate 𝛿1 

and to rate 𝛿2. Therefore, 
𝜆

𝜇

(𝛿1+𝛿2)

𝛿2
 is the number of arrivals during a service, which should be less than 1 for 

stability of the system under study. 

3.2 Computation of steady state vector 

We find the steady state vector of 𝛺 explicitly. Let 𝜋 = (𝜋0, 𝜋1, 𝜋2, … ), be the steady state vector, 

where 𝜋0 is partitioned as 𝜋0 = (𝜋0(0, 𝑠 + 1),… , 𝜋0(0, 𝑆)) and 𝜋𝑖’s are partitioned as 𝜋𝑖 = (𝜋𝑖(1, 𝑠 +
1),… , 𝜋𝑖(1, 𝑆), 𝜋𝑖(2, 𝑠), 𝜋𝑖(2, 𝑠 + 1),… . , 𝜋𝑖(1, 𝑆))  

Then from 𝜋𝑇 = 0 and 𝜋𝑒 = 1 we get 

−𝜆𝜋0(0, 𝑗) + 𝜇𝜋1(1, 𝑗 + 1) = 0, 𝑠 ≤ 𝑗 ≤ 𝑆 − 1                                                (3.1) 

𝜆𝜋0(0, 𝑗) − (𝜆 + 𝜇 + 𝛿1)𝜋1(1, 𝑗) + 𝛿2𝜋1(2, 𝑗) + 𝜇𝜋2(1, 𝑗 + 1) = 0, 𝑠 + 1 ≤ 𝑗 ≤ 𝑆 − 1 

𝜆𝜋0(0, 𝑠) − (𝜆 + 𝜇 + 𝛿1)𝜋1(1𝑆),+𝛿2𝜋1(2, 𝑆) + 𝜇𝜋2(1, 𝑠 + 1) = 0                (3.2) 

𝜆𝜋1(1, 𝑗) − (𝜆 + 𝜇 + 𝛿1)𝜋𝑖+1(1, 𝑗) + 𝛿2𝜋𝑖+1(2, 𝑗) + 𝜇𝜋𝑖+2(1, 𝑗 + 1) = 0, 𝑠 + 1 ≤  𝑗 ≤ 𝑆 − 1 

 

𝜆𝜋1(1, 𝑆) − (𝜆 + 𝜇 + 𝛿1)𝜋𝑖+1(1, 𝑆) + 𝛿2𝜋𝑖+1(2, 𝑆) + 𝜇𝜋𝑖+2(1, 𝑠 + 1) = 0, 𝑖 ≥ 1 

(3.3) 

𝛿1𝜋1(1, 𝑗) − (𝜆 + 𝛿2)𝜋1(2, 𝑗) = 0, 𝑠 + 1 ≤ 𝑗 ≤ 𝑆 − 1                                      (3.4) 

𝜆𝜋𝑖(2, 𝑗) + 𝛿1𝜋𝑖+1(1, 𝑗) − (𝜆 + 𝛿2)𝜋𝑖+1(2, 𝑗) = 0, 𝑖 ≥ 1, 𝑠 + 1 ≤ 𝑗 ≤ 𝑆 − 1  (3.5) 

For solving the above system of equations, we first consider an 𝑀/𝑃𝐻/1 queue with arrival process Poisson 

with parameter 𝜆 and service time for each customer having PH distribution with representation (𝛼, 𝐾), where 

the initial probability vector is 𝛼 = (1,0) and the matrix  

𝐾 = [
−(𝜇 + 𝛿1) 𝛿1

𝛿2 −𝛿2
] 

Then the generator matrix of this system (namely, the M/PH/1 queue) has the form: 

𝑇̂ =

[
 
 
 
 
 
 
−𝜆 𝜆 α         0           0        0       . . .  

𝐾0 𝐾 − 𝜆 I     𝜆 I          0          0   . . .    
0
0 
  
 

𝐾0𝛼
0 
  
 

𝐾 − 𝜆 I
𝐾0𝛼 
  
 

𝜆 I
𝐾 − 𝜆 I 

  
 

0
𝜆 I.
. 
 

.
0
∙
..
 

.

..

..

.

.

..

..

. ]
 
 
 
 
 
 

  

Let 𝑥 = (𝑥(0), 𝑥(1), 𝑥(2),….) be the steady state vector of 𝑇̂. Partitioning 𝑥(𝑖)s’ as 𝑥(0) = 𝑥(0,0), 𝑥(𝑖) =
(𝑥(𝑖, 1), 𝑥(𝑖, 2)), 𝑖 ≥ 1, the steady state relation 𝑥𝑇̂ = 0, gives us the following equations. 
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−𝜆𝑥(0,0) + 𝜇𝑥(1,1) = 0                                                                                    3.2.a 

𝜆𝑥(0,0) − (𝜆 + 𝜇 + 𝛿1)𝑥(1,1) + 𝛿2𝑥(1,2) + 𝜇𝑥(2,1) = 0                               3.2.b 

𝛿1𝑥(1,1) − (𝜆 + 𝛿2)𝑥(1,2) = 0                                                                          3.2.c 

𝜆𝑥(𝑖, 1) − (𝜆 + 𝜇 + 𝛿1)𝑥(𝑖 + 1,1) + 𝛿2𝑥(𝑖 + 1,2) + 𝜇𝑥(𝑖 + 2,1) = 0, 𝑖 ≥ 1  3.2.d 

𝜆𝑥(𝑖, 2) + 𝛿1𝑥(𝑖 + 1,1) − (𝜆 + 𝛿2)𝑥(𝑖 + 1,2) = 0, 𝑖 ≥ 1                                  3.2.e 

If we assume that 

𝜋0(0, 𝑠) = 𝜋0(0, 𝑠 + 1) =  …… .… = 𝜋0(0, 𝑆 − 1)and                      

𝜋𝑖(𝑗, 𝑠 + 1) = 𝜋𝑖(𝑗, 𝑠 + 2) =  … = 𝜋𝑖(𝑗, 𝑠 + 1)(𝑗, 𝑆), 𝑖 ≥ 1, 𝑗 = 1,2
}             (3.2.I) 

then the 𝑆-s equations in 3.1 for each value of 𝐼 will be the same as the single equation 3.2.a and similarly 

equation 3.2 to 3.5 reduces to 3.2.b to 3.2.e respectively and therefore the probabilities 𝜋𝑖(𝑗, 𝑘) can be obtained 

from the corresponding 𝑥(𝑖, 𝑗) as  

𝜋0(0, 𝑘) =
1

𝑄
𝑥(0,0), 𝑠 ≤ 𝑘 ≤ 𝑆 − 1             

𝜋1(𝑗, 𝑘) =
1

𝑄
𝑥(𝑖, 𝑗), 𝑗 = 1,2, 𝑠 + 1 ≤ 𝑘 ≤ 𝑆,

}
 

 

                                                    (3.2. II) 

The intuition behind the assumption 3.2.I is that, since replenishment is instantaneous, in the steady state, there 

will be equal chance for each inventory level to be visited. It can be verified that the 𝜋𝑖(𝑗, 𝑘)‘s obtained from 

3.2.II, satisfies the steady state equations 3.2.1 to 3.2.5 and so are the unique steady state probabilities of the 

system under the stability condition.  Now for the steady state probabilities 𝑥(𝑖, 𝑗), we have results available 

for the standard M/PH/1 queue, which give  

𝑥(𝑖) = 𝑥(1)𝑅𝑖−𝑖 , 𝑖 ≥ 1, where 

𝑅 =

[
 
 
 
 
𝜆 

𝜇

𝜆𝛿1 

𝜇(𝜆 + 𝛿2)

𝜆 

𝜇

𝜆(𝜇 + 𝛿1) 

𝜇(𝜆 + 𝛿2)]
 
 
 
 

 and 

𝑥(1) = 𝑥(0) [
𝜆 

𝜇

𝜆𝛿1 

𝜇(𝜆 + 𝛿2)
] ; 𝑥(0) = 𝑥(0,0) −

𝜆(𝛿1 + 𝛿2) 

𝜇𝛿2
 

4.1 Expected Number of interruptions encountered by a customer 

For computing expected number of interruptions encountered by a customer we proceed in the same line as in 

Krishnamoory et. Al. by considering a Markov process {𝑋1(𝑡), 𝑡 ≥ 0} = {(𝑁1(𝑡), 𝑆1(𝑡)) , 𝑡 ≥ 0}, where 𝑁1(𝑡) 
denoted the number of interruptions that has occurred up to time 𝑡 = 𝑆1(𝑡) = 0 or 1 according as the service 

is under interruption or not at time 𝑡. The Markov process {𝑋1(𝑡), 𝑡 ≥ 0} has state space {0,1,2, … . } × {0,1} ∪
{∆}, where ∆ is an absorbing state which denotes service completion. The infinitesimal generator of the process 

is the same. 
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𝑈̂ =

[
 
 
 
 
 
 
 
0 0 0  0 0   . . .

𝐵̂00 𝐴̂00 𝐴̂01 0 0      . .

𝐴̂2

𝐴̂2
𝐴̂2
  
 

0
0
0
  
 

𝐴̂1
0
0
  
 

𝐴̂0
𝐴̂1
0
  
 

0
𝐴̂0
𝐴̂1
  
 

 
.
𝐴̂0
  
 

. .

. .

. .

. .

.

.
.
.]
 
 
 
 
 
 
 

, where in the present case, 

𝐵̂00 = [𝜇], 𝐴̂00 = [−(𝜇 + 𝛿1)], 𝐴̂01 = [𝛿1 0], 𝐴̂2 = [
0
μ
] , 𝐴̂1 = [

−𝛿2 𝛿2
0 −(μ + 𝛿1)

]   and 𝐴̂0 = [
0 0
𝛿1 0

] 

If 𝑦𝑘  is the probability that absorption occurs with exactly 𝑘 interruptions, then 

𝑦0 = −𝐴̂00
−1
𝐵̂00 =

𝜇

𝜇 + 𝛿1
 

𝑦𝑘 = (−𝐴̂00
−1
𝐴̂01) (−𝐴̂1

−1
𝐴̂0) (−𝐴̂1

−1
𝐴̂2) =

𝜇

𝜇 + 𝛿1
(

𝜇

𝜇 + 𝛿1
)
𝑘

, 𝑘 = 1,2,3,… 

The expected number of interruptions before absorption is given by 

𝐸1 =∑𝑘𝑦𝑘

∞

𝑘=0

= (−𝐴̂00
−1
𝐴̂01) [𝐼2 − (−𝐴̂1

−1
𝐴̂0)]

−1

𝑒 =
𝛿1
𝜇

 

4.2 Expected duration of an interrupted service 

Here we calculated the average duration of an interrupted service. The procedure for this is again similar to 

that in [29]. The service process with interruption can be viewed as a Markov process with two transient states 

0 and 1, which denote whether the server is interrupted or is busy respectively, and a single absorption state 

∆. The absorption state ∆ denotes the completion of the service after the intervening interruptions and repairs. 

The process can be represented by 𝑋̂(𝑡) = {0,1, ∆}. Let 𝑇 be the time until absorption in the process 𝑋̂(𝑡). The 

infinitesimal generator matrix of the process is given by 

𝐻̂ = [𝐵̂, 𝐵̂0], where 𝐵̂ = [
−𝛿2 𝛿2
𝛿1 −(μ + 𝛿1)

]  and 𝐵̂0 = [
0
𝜇
] 

The probability distribution 𝐹(∙) of 𝑇 is given by 𝐹(𝑥) = 1 − 𝜉 exp(𝐵̂𝑥) 𝑒, x ≥ 0. Its density function 𝐹  ′(𝑥) 
in (0,∞) is given by 𝐹′(𝑥) = 𝜉 exp(𝐵̂𝑥) 𝐵̂0. The Lapalce-Stieltjes transform 𝑓(𝑠) of 𝐹(∙) is 𝑓(𝑠) =
. 𝜉(𝑠𝐼 − 𝐵̂)−1𝐵̂0. The expected time 𝐸𝑠 for service completion is 

𝐸𝑠 = 𝜉(−𝐵̂)
−1𝑒 =

𝛿1 + 𝛿2
𝜇𝛿2

 

4.3 Expected amount of time a customer is served during his (possibly interrupted) service 

Though we can find the expected waiting time using Little’s formulae we do so otherwise and verify the result 

obtained using the above. For any M/G/1 queue the mean waiting time of a customer in the system is given by 

𝐸{𝑊} = 𝐸{𝑊𝑄 + 𝑠} = 𝐸(𝑠) + 𝐸{𝑊𝑄} 

= 𝐸𝑠 +
𝜆

2(1 − 𝜌)
𝐸(𝑠2) =

𝛿1 + 𝛿2
𝜇𝛿2

+
𝜆

2 {1 −
𝜆(𝛿1+𝛿2)

𝜇𝛿2
}
2𝜉(−𝐵̂)−2𝑒 
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=
𝛿1 + 𝛿2
𝜇𝛿2

+
𝜆

2 {1 −
𝜆(𝛿1+𝛿2)

𝜇𝛿2
}

2

𝜇2𝛿2
2
{𝜇𝛿1 + (𝛿1 + 𝛿2)

2} =
𝛿2
2 + 𝛿1𝜆 + 𝛿1𝛿2

𝛿2{𝜇𝛿2 − 𝜆(𝛿1 + 𝛿2)2}
. 

We have obtained the expression for the expected number of customers in the system as  

𝐸𝑁 =
𝛿2
2 + 𝛿1𝜆 + 𝛿1𝛿2

𝜇𝛿2 − 𝜆(𝛿1 + 𝛿2)
 

Hence Little’s theorem us verified 

4.5 Busy Period 

We have the expected duration of a busy period 𝑇 is given by 

𝐸(𝑇) = 𝐸(𝑠) +
𝜆

2(1 − 𝜌)
𝐸(𝑠2) =

𝛿1 + 𝛿2/𝜇𝛿2
{1 − 𝜆(𝛿1 + 𝛿2)/𝜇𝛿2} 

=
𝛿1 + 𝛿2

𝜇𝛿2 − 𝜆(𝛿1 + 𝛿2)
 

4.6 Other performance measures 

1. Probability that server is busy is given by 

𝑃𝛽 =∑ ∑ 𝜋𝑖(1, 𝑗)

𝑆

𝑗=𝑠+1

=
𝜆

𝜇

∞

𝑖=1

 

2. Probability that server is on interruption is given by 

𝑃𝛼 =∑ ∑ 𝜋𝑖(2, 𝑗)

𝑆

𝑗=𝑠+1

=
𝛿1
𝛿2

𝜆

𝜇

∞

𝑖=1

 

3. Probability that server is idel is given by 

𝑃𝛾 = 1 − 𝑃𝛼 − 𝑃𝛽 = 1 −
𝜆

𝜇
(1 +

𝛿1
𝛿2
) 

4. Expected inventory level is given by 

𝐸𝐼𝐿 = ∑ 𝜋0(0, 𝑗)

𝑠

𝑗=𝑠+1

+∑ ∑ 𝜋𝑖(1, 𝑗)

𝑆

𝑗=𝑠+1

+ 𝜋𝑖(2, 𝑗)

∞

𝑖=1

=
𝑠 + 𝑆

2
 

5. Expected number of customers in the system is given by 

𝐸𝑁 =∑ ∑ {𝑖𝜋𝑖(1, 𝑗) + 𝑖𝜋𝑖(2, 𝑗)}

𝑆

𝑗=𝑠+1

 

∞

𝑖=1

= 𝜋1(𝐼 − 𝑅)
−2𝑒 =

𝜆

𝛿2

𝛿2
2 + 𝛿1𝜆 + 𝛿1𝛿2

𝜇𝛿2 − 𝜆(𝛿1 + 𝛿2)
 

6. Expected rate of ordering is given by 

𝐸𝑂𝑅 =∑𝜇𝜋𝑖(1, 𝑠 + 1)

∞

𝑖=1

=
𝜆

𝑄
 

7. Expected interruption rate is given by 

𝐸𝐼𝑁𝑇𝑅 = 𝛿1∑ ∑ 𝜋𝑖(1, 𝑗)

𝑆

𝑗=𝑠+1

∞

𝑖=1

=
𝛿1𝜆

𝜇
 

5. System behavior with variational in parameters 

The explicit expressions for all the system performance measures make the analysis of their dependence on 

various parameters more transparent. The maximum inventory level 𝑆 and the reorder level 𝑠 affects the 

expected inventory level and expected reorder rate only. The other performance measures are independent of 

𝑠 and 𝑆. This can be attributed to the fact that replenishment is instantaneous. The expression fro server 
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interruption probability 𝑃𝛼 show that if we take 𝛿1 = 𝛿2, the probability 𝑃𝛼 is just 
𝜆

𝜇
 which is independent of 

both 𝛿1 and 𝛿2. The expected number of customers in the system increases with increase in arrival rate 𝜆 and 

decrease with decrease in service rate 𝜇; both these facts are clear from the expression for expected number of 

customers. However, since the effect of the parameters 𝛿1 and 𝛿2 on the expected number of customers is not 

that clear from the expression for 𝐸𝑁, we studied this numerically. Table 1(a) and 1(b) show the effect of 𝛿1 

and 𝛿2 respectively on 𝐸𝑁. Table 1(a) shows that as 𝛿1, the interruption rate increases, 𝐸𝑁 also increases, 

which is expected as the interruptions become more frequent, the effective service time of a customer increases 

and this leads to an increase in the queue length. Table 1(b) shows that an increase in the repair rate 𝛿2, results 

in a decrease in the expected number of customers in the system. This is also expected as the repair rate 

increases; the server becomes active in a shorter time after an interruption which leads to an increase in the 

service completion rate and hence the queue length also. 

 

𝛿1 𝐸𝑁 

2 1.417 

2.2 1.561 

2.4 1.722 

2.6 1.902 

2.8 2.104 

3 2.33 

  3.2 2.595 

3.4 2.897 

3.6 3.25 

3.8 3.667 

4 4.267 
 

𝛿2 𝐸𝑁 

2 2.5 

2.2 2.129 

2.4 1.869 

2.6 1.678 

2.8 1.532 

3 1.416 

3.2 1.324 

3.4 1.248 

3.6 1.184 

3.8 1.13 

4 1.083 
 

  

(a)                                                                                (b) 

Table 1 : Effect of 𝛿1 and 𝛿2 on 𝐸(𝜎) with 𝜆 = 1, 𝜇 = 3, 𝑠 = 6, 𝑆 = 20; we have taken for table 1(a), 𝛿2 = 3, 

and for table 1(b), 𝛿1 = 2. 
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