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I INTRODUCTION 

 Optimization is the science of selecting the best of many possible decisions in a complex real life 

situation. The ultimate target of all such decisions is to either maximize the desire benefit or to minimize the 

effort required, incurred in a certain course of action. 

 The systematic approach to decision making generally involves three closely interrelated stages. The 

first stage towards optimization is to express the desired benefits, the required efforts and collecting the other 

relevant data, as a function of certain variables that may be called “decision variables”. The second stage 

continues the process with an analysis of the mathematical model and selection of appropriate numerical 

technique for finding the optimal solution. The third stage consists of finding an optimal solution, generally 

with the help of computer. 

 The existence of optimization problem can be traced to the middle of eighteenth century. The work of 

Newton, Lagrange and Cauchy in solving certain type of optimization problems arising in physics and 

geometry by using differential calculus methods and calculus of variations is pioneering. These optimization 

techniques are known as classical optimization techniques and can be generalized to handle cases in which the 

variables are required to be non-negative and constrains may be inequalities, but these generalizations are 

primarily of theoretical value and do not usually constitute computational procedure. However, in some simple 

situations they can provide solutions, which are practically acceptable. 

 The optimization problem that have been posed and solved in the recent years have tended to become 

more and more elaborate, not to say abstract. Perhaps, the most outstanding example of the rapid development 

of the optimization techniques occurred with the introduction of dynamic programming by Bellman in 1957 

and of the maximum principle by Pontryagin in 1958, and the techniques were designed to solve the problems 

of the optimal control of dynamic systems. 

II Mathematical Programming 

 A large number of real-life optimization problems that are usually not solvable by classical 

optimization methods are formulated as mathematical programming problems. There has been considerable 

advancement towards the development of the theory and algorithms for solving various types of mathematical 

programming problems. 
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 The first mathematical programming problem was considered by economists (Von Neumann) in early 

1930s, as the problem of optimum allocation of limited resources. Leontief in 1951 showed a practical solution 

method for linear type problems when demonstrated his input-output model of an economy. These economic 

solution procedures did not provide optimal solution, but only a feasible solution, providing the model’s linear 

constraints. In 1941, Hitchcock formulated and solved the transportation type problem, which was also 

accomplished by Koopmans in 1949. In 1942, Kantorovitch also formulated the transportation problem but 

did not solve it. In 1945, the economist G.J. Stigler formulated and solved the “minimum cost diet” problem. 

During World War II a group of researchers under the direction of Marshall K. Wood sought to solve allocation 

type problem for the United States Air Force team SCOOP (Scientific Computation of Optimum Porgrams). 

One of the members or this group, George B.Dantzig, formulated and devised a solution procedure in 1947 

for Linear Programming Problems (LPP). This solution procedure, called the Simplex method, marked the 

beginning of the field of study called mathematical programming. During the 1950s other researchers such as 

David Gale, H.W. Kuhn and A.W. Tucker contributed to the theory of duality in L.P. Others such a Charnes 

and Cooper contributed numerous LP applications illustrating the use of mathematical programming in 

managerial decision-making. 

 A general Mathematical Programming Problem can be stated as following: 

𝑀𝑎𝑥 (𝑜𝑟 𝑀𝑖𝑛) = 𝑍 = 𝑓(𝑋)        (2.1) 

𝑆𝑢𝑏𝑒𝑐𝑡 𝑡𝑜 𝑔𝑖(𝑋) ≤ 𝑜𝑟 = 𝑜𝑟 ≥ 𝑏𝑖∀ 𝑖 = 1,2,… . . ,𝑚                (2.2) 

Where 

𝑋 = Vector of unknown variables that are subject to the control of decision maker. 

𝑍 = Value of the objective function which measures the effectiveness of the  

        Decision choice. 

𝑔𝑖(𝑋) = The function representing the 𝑖𝑡ℎ constraint, 𝑖 = 1,…… ,𝑚 

𝑏𝑖 = available 𝑖𝑡ℎ productive resource in limited supply, 𝑖 = 1,…… ,𝑚 

 The objective function (2.1) is a mathematical equation describing a functional relationship 

between various decision variables and the outcome of the decisions. The outcome of managerial decision-

making is the index of performance, and is generally measured by profits, sales, costs, or time. Thus, the value 

of the objective function in mathematical programming is expressed in monetary, physical, or some other 

terms, depending on the nature of the problem. The objective function 𝑓(𝑋) and the constraining functions 

𝑔𝑖(𝑋) may be either linear or nonlinear functions of variables. The objectives of the decision makes is to select 

the values of the variables so as to optimize the value of the objective function 𝑍 under the given constraints. 

If 𝑓(𝑋) and 𝑔(𝑋) both are linear functions of 𝑋, then the problem (2.1)-(2.2) represents a linear programming 

problem (LPP). When the objective function to be minimized (maximized) is convex (concave) and the set 

defined by the constraining inequalities (2.2) is also convex, the problem is called a convex programming 

problem (C.P.P), otherwise it is a non-convex programming problem. If some or all the components of the 

vector 𝑋 are required to be integer, then we call it an integer programming problem (IPP). The methods of 

linear programming, non-linear programming and Integer Programming are discussed below. 

III Linear Programming Techniques 

 The general approach to the modeling and solution to linear mathematical models, and more 

specifically those models that seek to optimize a linear measure of performance, under linear constraints is 

called as linear programming or more appropriately as linear optimization. The general form of the (single 

objective) Linear Programming Problem (LPP) is given as to find the decision variables 𝑥1, 𝑥2, …… , 𝑥𝑝, which 

maximize or minimize a linear function, subject to some linear constraints and the non-negativity restrictions 

on the decision variables. Mathematical model for a general linear programming problem is stated as follows: 
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𝑀𝑎𝑥 (𝑜𝑟 𝑀𝑖𝑛) 𝑍 =∑𝑐𝑗𝑥𝑗

𝑝

𝑗=1

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  ∑𝑎𝑖𝑗𝑥𝑗

𝑝

𝑗=1

≤ 𝑜𝑟 = 𝑜𝑟 ≥ 𝑏𝑖∀ 𝑖 = 1,2, …… ,𝑚 

𝑥𝑗 ≥ 0                        ∀ 𝑗 = 1,2,…… , 𝑝 

where 𝑐𝑗, 𝑎𝑖𝑗 and 𝑏𝑖 (called parameters of the LPP) are known constants for all 𝑖 and 𝑗. 

IV Nonlinear Programming Techniques 

 The mathematical model that seeks to optimize a non-linear measure of performance is called 

non-linear program. Every real world optimization problem has always a non-linear form which becomes a 

linear programming problem after a slight modification. Non linear programming emerges as an increasingly 

important tool in economic studies and in operations research. Non linear programming problems arise in 

various disciplines as engineering, business administration, physical sciences and in mathematics or in any 

other area where decision must be taken in some complex situation that can be represented by a mathematical 

model: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥), 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔𝑖(𝑥) ≥ 0,       𝑖 = 1,2,… . , 𝑚 

where all or some of the functions 𝑓(𝑥) and 𝑔𝑖(𝑥), 𝑖 = 1,… . ,𝑚 are non-linear. 

 Interest in nonlinear programming problem developed simultaneously with the growing interest 

in linear programming. In the absence of general algorithms for nonlinear programming problem, it lies near 

at hand to explore the possibilities of approximate solution by linearization. The nonlinear functions of a 

mathematical programming problem were replaced by piecewise linear functions. These approximations mat 

be expressed in such a way that the whole problem is turned into linear programming. 

V Integer Programming 

 Any decision problem (with an objective to be maximized or minimized) in which the decision 

variables must assume non fractional or discrete values may be classified as an integer optimization problem. 

In general, an integer problem may be constrained or unconstrained and the functions representing the 

objective and constraints any be linear or non linear. An integer problem is classified as linear if by relaxing 

the integer restriction on the variables, the resulting functions are strictly linear. 

 The general mathematical model of an integer-programming problem can be stated as: 

Maximize (or Minimize) 

𝑍 = 𝑓(𝑋) 

Subject to  𝑔𝑖(𝑋){≤ 𝑜𝑟 = 𝑜𝑟 ≥}𝑏𝑖 , 𝑖 = 1,2,…… ,𝑚 

                  𝑥𝑗 ≥ 0                           𝑗 = 1,2,………𝑛. 

                  𝑥𝑗 is an integer for 𝑗 ∈ 𝐽 ⊆ 𝐼 = (1,2,…… . , 𝑛) 

where 𝑋 = (𝑥1, … . , 𝑥𝑛) is 𝑛-component vector of decision variables 

If 𝐽 = 𝐼, that is, all the variables are restricted to be integers we have an all (or pure) integer programming 

problem (AIPP) Otherwise, if 𝐽 ⊂ 𝐼, i.e., not all the variables are restricted to be integers, we have a mized 

integer-programming problem (MIPP). 
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VI Stochastic Programming 

 Stochastic programming is a framework for modeling optimization problems that involve 

uncertainty. Whereas deterministic optimization problem are formulated with known parameters, real world 

problems almost invariably include some unknown parameters. When the parameters are known only within 

certain bounds, one approach of tackling such problems is called robust optimization. Here is a goal to find a 

solution, which is feasible for all such data and optimal in some sense. Stochastic programming models are 

similar in style but take advantage of the fact that probability distribution governing the data are known or can 

be estimated. The goal here is to find some policy that is feasible for all (or almost all) the possible data; for 

instance we maximize the expectation of some function of the decision and random variables. More generally, 

such models are formulated, solved analytically or numerically, and analyzed in order to provide useful 

information to a decision maker. 

 The most widely applied and studied stochastic programming models are two stage linear 

programs. Here the decision maker takes some action in the first stage, after which a random event occurs 

affecting the outcome of the first stage decision. A recourse decision can then be made in the second state that 

compensates for any bad effects that might have been experienced as a result of first stage decision. The 

optimal policy from such a model is a single first stage policy and a collection of recourse decisions (a decision 

rule) defining which second stage action should be taken in response to each random outcome. 

A Stochastic linear programming problem can be stated as: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥) =∑𝑐𝑗𝑥𝑗

𝑛

𝑗=1

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑝 ∑𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

≥ 𝑏𝑖 , 𝑖 = 1,2,… . , 𝑚 

     and 𝑥𝑗 ≥ 0; 𝑗 = 1,2,… . . , 𝑛 

where some or all the coefficients 𝑐𝑗, 𝑎𝑖𝑗 and 𝑏𝑗 are random variables with known probability distributions. 

The decision variables 𝑥𝑗 are assumed to be deterministic for simplicity. 

VII Optimization in Multivariate Stratified Sampling with a Probabilistic Cost Constraint 

 Optimum allocation of sample size to various strata in univariate stratified random sampling is 

well defined in the literature. But usually in real life problems more than one population characteristics are to 

be estimated, which may be of conflicting nature. There are situations where the cost of measurement varies 

from stratum to stratum. Also the cost of enumerating various characters is generally much different. Further 

the strata variances for the various characters may not be distributed in the same way. Allocation based on one 

character may not be optimum for the others. One way to resolve this problem is to search for a compromise 

allocation, which is in some sense optimum for all character. 

 Kokan and Khan (1967), Chatterjee (1968), Huddleston et al. (1970), Bethel (1985, 1989), 

Chromy (1987) all discussed the use of convex programming in relation to multivariate optimal allocation 

problem. The above convex programming approach gives the optimal solution to the problem with given 

tolerance limits on variances but the resulting cost may not be acceptable so that a further search is usually 

required for an optimal solution which falls within the budgetary constraints limit. 

 The problem of optimal allocation in stratified sampling is generally stated in two ways. Either 

one minimizes the cost of survey for a desired precision or the variance of the sample estimate is minimized 

for a given budget of the survey. Kokan and Khan (1967) formulated the minimization of the cost of the survey 

for desired precisions on various characters as the following convex integer programming problem; 
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 𝑛
𝑀𝑖𝑛 ∑𝑐𝑖𝑛𝑖

𝐿

𝑖=1

 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑
𝑎𝑖𝑗

𝑛𝑖

𝐿

𝑖=1

−∑
𝑎𝑖𝑗

𝑁𝑖

𝐿

𝑖=1

≤ 𝑘𝑗, 𝑗 = 1, … 𝑝

𝑎𝑛𝑑 𝑎𝑖 ≤ 𝑛𝑖 ≤ 𝑁𝑖 , 𝑛𝑖 ∈ 𝐼, 𝑖 = 1,…… , 𝐿)    

}       (7.1) 

where 𝐿 is the number of strata, 𝑁𝑖 are the strata sizes, 𝑝 is the number of characters to be estimated in the 

survey, 𝐼 is the set of integers and 𝑐𝑖 , 𝑎𝑖 , 𝑎𝑖𝑗 and 𝑘𝑗 are all positive constants. 

 If the budget of the survey is fixed in advance, then the multivariate allocation problem was stated 

to minimize the variances for various characters for a desired precision as the following 𝑝 convex integer 

programming problems: 

 𝑛      
min𝑉 =  ∑

𝑎𝑖𝑗

𝑛𝑖

𝐿

𝑖=1

−∑
𝑎𝑖𝑗

𝑁𝑖

𝐿

𝑖=1

, 𝑗 = 1, … 𝑝

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                  

 ∑𝑐𝑖𝑛𝑖 + 𝑐0

𝐿

𝑖=1

≤ 𝐶 𝑎𝑛𝑑  𝑎𝑖 ≤ 𝑛𝑖 ≤ 𝑁𝑖 , 𝑛𝑖 ∈ 𝐼, 𝑖 = 1,…… , 𝐿)    
}
  
 

  
 

     (7.2)   

Further, in a survey the costs for enumerating a character in various strata are not know exactly, rather these 

are being estimated from sample costs. As such the formulated allocation problem should be considered as 

stochastic programming problem. Stochastic programming problem was first formulated by Dantzig (1955), 

who suggested a two stage programming technique for its solutions. Later, Charnes & Cooper (1959) 

developed the chance constrained programming technique in which the chance constraints where converted 

into equivalent deterministic non-linear constraints. 

 When the constants 𝑐𝑖 and 𝑎𝑖𝑗 , (𝑖 = 1, … . , 𝐿, 𝑗 = 1… . , 𝑝) are fixed, the problem (7.1) we solved 

Kokan and Khan (1967) by using analytical procedure. Prekopa (1995) developed a method from stochastic 

point of view. The case when sampling variances are random in the constraints (i.e. 𝑎𝑖𝑗 random in (1.1)) has 

been dealt with Diaz-Garcia et al. (2007). Javaid and Bakhshi (2009) applied modified E-model for solving 

this problem when the costs were considered random in the objective function. 

In this chapter, we consider the case of random costs in the formulation (2.2). The probabilistic cost constraint 

is converted to an equivalent deterministic constraint by using chance constrained programming. The problem 

(2.2) with multiple objectives is then treated for searching an optimum solution. In section 2.2 the cost 

functions in various strata are assume to be linear. This work has been published in international journal of 

Mathematics and Applied Statistics, see Bakshi,Z.H. et al (2010). The case of non-linear cost functions among 

various strata is treated in section 2.5. 

VIII Formulation of the problem for linear cost functions 

We consider a multivariate population consisting of 𝑁 units which is divided into 𝐿 disjoint strata of sizes 

𝑁1, 𝑁2, … , 𝑁𝐿 such that 𝑁 = ∑ 𝑁𝑖
𝐿
𝑖=1 . Suppose that 𝑝 characteristics (𝑗 = 1,… . , 𝑝) are measured on each unit 

of the population. We assume that the strata boundaries are fixed in advance. Let 𝑛𝑖 units be drawn without 

replacement from the 𝑖𝑡ℎ stratum 𝑖 = 1,…… . , 𝐿. 

For 𝑗𝑡ℎ  character, an unbiased estimate of the population mean �̅�𝑗 (𝑗 = 1,… , 𝑝), denoted by �̅�𝑗𝑠𝑡, has its 

sampling variance 

𝑉(�̅�𝑗𝑠𝑡) =∑(
1

𝑛𝑖
−
1

𝑁𝑖
)

𝐿

𝑖=1

𝑊𝑖
2𝑆𝑖𝑗

2 , 𝑗 = 1,… . , 𝑝,                                    (8.1) 
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Where  

𝑊𝑖 =
𝑁𝑖
𝑁
, 𝑆𝑖𝑗

2 =
1

𝑁𝑖 − 1
∑(𝑦𝑖𝑗ℎ − �̅�𝑖𝑗)

2

𝑁𝑖

ℎ=1

 

are the variances, 𝑦𝑖𝑗ℎ  are the population values and �̅�𝑖𝑗 is the population mean for the 𝑗𝑡ℎ  character in the 𝑖𝑡ℎ 

stratum. The estimated variance of 𝑗𝑡ℎ  character in 𝑖𝑡ℎ stratum is 

𝑆𝑖𝑗
2 =

1

𝑛𝑖 − 1
∑(𝑦𝑖𝑗ℎ − �̅�𝑖𝑗)

2

𝑛𝑖

ℎ=1

                                                  (8.2) 

Where �̅�𝑖𝑗 is the sample mean for 𝑗𝑡ℎ  character in 𝑖𝑡ℎ stratum. 

Let 𝐶𝑖𝑗 be the cost of enumerating the 𝑗𝑡ℎ  character in the 𝑖𝑡ℎ stratum and let the overhead cost 𝑐0 be constant. 

Let 𝐶 be the upper limit on the total cost of the survey. 

Then assuming linear cost function one should have 

∑∑𝑐𝑖𝑗𝑛𝑖 + 𝑐0

𝑝

𝑗=1

≤ 𝐶  𝑜𝑟  ∑𝑐𝑖𝑛𝑖 + 𝑐0

𝐿

𝑖=1

≤ 𝐶,                    (8.3)

𝐿

𝑖=1

 

Where 𝑐𝑖 = ∑ 𝑐𝑖𝑗
𝑝
𝑗=1  is the cost of enumeration of all the 𝑝 character in the 𝑖𝑡ℎ stratum. For minimizing the 

variances it is clear from (8.2) that we should have 𝑛𝑖 ≥ 2. Further, the sample size should not exceed the 

stratum size, i.e, 𝑛𝑖 ≤ 𝑁𝑖. So the restrictions on the sample from various strata are 

2 ≤ 𝑛𝑖 ≤ 𝑁𝑖,    𝑎𝑛𝑑 𝑛𝑖 ∈ 𝐼,                                              (8.4) 

Where 𝐼 is the set of integers. The survey is to be conducted in such a way that the variances for all the 𝑝 

characters are minimized for a fixed budget. Combining (8.1), (8.2) and (8.4) the multivariate allocation 

problem in stratified sampling can be stated as the following non-linear programming problem with multiple 

objectives: 

 

 𝑛      
min𝑉 =  ∑

𝑊𝑖
2𝑆𝑖𝑗

2

𝑛𝑖

𝐿

𝑖=1

−∑
𝑊𝑖

2𝑆𝑖𝑗
2

𝑁𝑖

𝐿

𝑖=1

, 𝑗 = 1,… 𝑝        (𝑖) 

Subject to                                                                                            (8.5) 

∑𝑐𝑖𝑛𝑖 + 𝑐0

𝐿

𝑖=1

≤ 𝐶                       (𝑖𝑖) 

2 ≤ 𝑛𝑖 ≤ 𝑁𝑖, 𝑛𝑖 ∈ 𝐼, 𝑖 = 1,… 𝐿            (𝑖𝑖𝑖)            

Ignoring the constant terms in {8.5(i)}, the problem (8.5) is reduced to the following 𝑝 convex programming 

problems: 

 

 𝑛      
min𝑉 =  ∑

𝑊𝑖
2𝑆𝑖𝑗

2

𝑛𝑖

𝐿

𝑖=1

, 𝑗 = 1, …𝑝  
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     Subject to                                            (8.6) 

∑𝑐𝑖𝑛𝑖 + 𝑐0

𝐿

𝑖=1

≤ 𝐶                    

𝑎𝑛𝑑 2 ≤ 𝑛𝑖 ≤ 𝑁𝑖, 𝑛𝑖 ∈ 𝐼, 𝑖 = 1, … 𝐿      

In many practical situations the costs 𝑐𝑖 in the various strata are not fixed and vary from on unit to the other. 

Let us assume that 𝑐𝑖 , 𝑖 = 1,… 𝐿 are independently normally distributed random variables. 

So, we write the problem (8.6) in the following chance constrained programming form: 

 

                      𝑛      
Min𝑉 =  ∑

𝑊𝑖
2𝑆𝑖𝑗

2

𝑛𝑖

𝐿
𝑖=1 , 𝑗 = 1, …𝑝        (𝑖) 

            Subject to                                                                                (8.7) 

𝑃 (∑𝑐𝑖𝑛𝑖 + 𝑐0

𝐿

𝑖=1

≤ 𝐶) ≥ 𝑝0            (𝑖𝑖)       

2 ≤ 𝑛𝑖 ≤ 𝑁𝑖, 𝑛𝑖 ∈ 𝐼, 𝑖 = 1,… 𝐿            (𝑖𝑖𝑖)            

Where 𝑝0, 0 ≤ 𝑝0 ≤ 1 is a specified probability. 

XI SOLUTION USING CHANCE CONSTRAINED PROGRAMMING 

The costs 𝑐𝑖 = 𝑖 = 1,… , 𝐿 in the constraint 8.7 (ii) are assumed to be independently and normally distributed 

random variables. Let 𝑐′ = (𝑐1, … , 𝑐𝐿) and 𝑛′ = (𝑛1, … , 𝑛𝐿). Then the function (𝑐′𝑛 + 𝑐0), will also be 

normally distributed with mean 𝐸(𝑐′𝑛 + 𝑐0) and variance 𝑉(𝑐′𝑛 + 𝑐0). 

If 𝑐𝑖~𝑁(𝜇𝑖 , 𝜎𝑖
2), then its p.d.f will be 

𝑓(𝑐𝑖) =
1

𝜎𝑖√2𝜋
𝑒
−
1

2𝜎𝑖
2(𝑐𝑖−𝜇𝑖)

2

, 𝑖 = 1, . . . , 𝐿 

The Joint distribution of (𝑐1, … , 𝑐𝐿) is given by 

𝑓(𝑐′) =
1

(2𝜋)𝐿/2∏ 𝜎𝑖
𝐿
𝑖=1

exp (−
1

2
∑

(𝑐𝑖− 𝜇𝑖)
2

𝜎𝑖
2

𝐿

𝑖=1

), 

Then, the mean of the function (𝑐′𝑛 + 𝑐0) is obtained as 

𝐸(𝑐′𝑛 + 𝑐0) = 𝐸 (∑𝑐𝑖𝑛𝑖

𝐿

𝑖=1

) + 𝑐0 =∑𝑛𝑖𝐸(𝑐𝑖)

𝐿

𝑖=1

+ 𝑐0 =∑𝑛𝑖𝜇𝑖

𝐿

𝑖=1

+ 𝑐0              (9.1) 

Where 𝜇𝑖 = 𝐸(𝑐𝑖), 𝑖 = 1, . . . , 𝐿. 

The variance is obtained as 
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𝑉(𝑐′𝑛 + 𝑐0) = 𝑉(𝑐′𝑛) = 𝑉 (∑𝑐𝑖𝑛𝑖

𝐿

𝑖=1

) =∑𝑛𝑖
2𝑉(𝑐𝑖)

𝐿

𝑖=1

=∑𝑛𝑖
2

𝐿

𝑖=1

𝜎𝑖
2,             (9.2) 

Where 𝜎𝑖
2 = 𝑉(𝑐𝑖). 

Now let 𝑓(𝑐) = ∑ 𝑐𝑖𝑛𝑖
𝐿
𝑖=1 + 𝑐0, then {2.9(ii)} is given by 

𝑃(𝑓(𝑐) ≤ 𝐶) ≥ 𝑝0, 

𝑜𝑟 𝑃

{
 

 
𝑓(𝑐) − 𝐸(𝑓(𝑐))

√𝑉(𝑓(𝑐))

≤
𝐶 − 𝐸(𝑓(𝑐))

√𝑉(𝑓(𝑐))
}
 

 

≥ 𝑝0 

Where [
𝑓(𝑐)−𝐸(𝑓(𝑐))

√𝑉(𝑓(𝑐))

] is a standard normal variate with mean zero and variance one. Thus the probability of 

realizing {𝑓(𝑐)} less than or equal to 𝐶 can be written as 

𝑃(𝑓(𝑐) ≤ 𝐶) = 𝜙

[
 
 
 
𝐶 − 𝐸(𝑓(𝑐))

√𝑉(𝑓(𝑐))
]
 
 
 

                                              (9.3) 

Where 𝜙(𝑧) represents the cumulative density function of the standard normal variable evaluated at 𝑧. If 𝐾𝛼 

represents the value of the standard normal variate at which 𝜙(𝐾𝛼) = 𝑝0, then the constraint (9.3) can be 

written as 

𝜙

[
 
 
 
𝐶 − 𝐸(𝑓(𝑐))

√𝑉(𝑓(𝑐))
]
 
 
 

≥ 𝜙(𝐾𝛼)                                                 (9.4) 

The inequality will be satisfied only if 

[
 
 
 
𝐶 − 𝐸(𝑓(𝑐))

√𝑉(𝑓(𝑐))
]
 
 
 

≥ (𝐾𝛼),                                                            

Or equivalently, 

𝐸(𝑓(𝑐)) + 𝐾𝛼√𝑉(𝑓(𝑐)) ≤ 𝐶                                         (9.5) 

Substituting from (9.1) and (9.2) in (9.5), we get 

(∑𝜇𝑖𝑛𝑖

𝐿

𝑖=1

+ 𝑐0) + 𝐾𝛼√∑𝑛𝑖
2

𝐿

𝑖=1

𝜎𝑖
2 ≤ 𝐶                     (9.6) 

The constants 𝜇𝑖 and 𝜎𝑖 in (9.6) are unknown (by hypothesis). So we will use the estimators of mean 

𝐸(𝑐′𝑛 + 𝑐0) and variance 𝑉(𝑐′𝑛 + 𝑐0) given by 
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�̂�(𝑐′𝑛 + 𝑐0) =∑𝑛𝑖𝐸(𝑐𝑖) + 𝑐0 =∑𝑛𝑖𝑐�̅� + 𝑐,0

𝐿

𝑖=1

,

𝐿

𝑖=1

𝑠𝑎𝑦 

�̂�(𝑐′𝑛 + 𝑐0) = �̂�(𝑐
′𝑛) =∑𝑛𝑖

2𝐸(𝜎𝑖
2) + 𝑐0 =∑𝑛𝑖

2𝜎𝑐𝑖
2

𝐿

𝑖=1

,

𝐿

𝑖=1

𝑠𝑎𝑦 

Where 𝑐�̅� and 𝜎𝑐𝑖
2  are the estimated means and variances from the sample. 

Thus, an equivalent deterministic constraint to the stochastic constraint is given by 

(∑𝑐�̅�𝑛𝑖

𝐿

𝑖=1

+ 𝑐0) + 𝐾𝛼√∑𝑛𝑖
2𝜎𝑐𝑖

2

𝐿

𝑖=1

≤ 𝐶 

The equivalent deterministic non-linear programming problem to the stochastic programming (8.7) problem 

is given by 

 𝑛      
min𝑉 =  ∑

𝑊𝑖
2𝑆𝑖𝑗

2

𝑛𝑖

𝐿

𝑖=1

, 𝑗 = 1, …𝑝  

     Subject to                                            (9.7) 

(∑𝑐�̅�𝑛𝑖

𝐿

𝑖=1

+ 𝑐0) + 𝐾𝛼√∑𝑛𝑖
2𝜎𝑐𝑖

2

𝐿

𝑖=1

≤ 𝐶                

 2 ≤ 𝑛𝑖 ≤ 𝑁𝑖 , 𝑛𝑖 ∈ 𝐼, 𝑖 = 1,… 𝐿. 

X COMPROMISE SOLUTION 

A compromise solution to the 𝑝 problems (9.7) can be obtained by assigning the weight to various characters 

according to some measure of their importance, see khan, E.A. et al. (2003). 

Let the respective weights be 𝑏𝑗 , 𝑗 = 1,… , 𝑝. 

Then the equivalent deterministic non-linear programming problem is  

 𝑛      
Min𝑉 =  ∑

𝑊𝑖
2

𝑛𝑖

𝐿

𝑖=1

∑ 𝑏𝑗𝑆𝑖𝑗
2

𝑝

𝑗=1

, 𝑗 = 1, …𝑝         (𝑖)  

     Subject to                                            (10.1) 

(∑𝑐�̅�𝑛𝑖

𝐿

𝑖=1

+ 𝑐0) + 𝐾𝛼√∑𝑛𝑖
2𝜎𝑐𝑖

2

𝐿

𝑖=1

≤ 𝐶            (𝑖𝑖) 

 2 ≤ 𝑛𝑖 ≤ 𝑁𝑖, 𝑛𝑖 ∈ 𝐼, 𝑖 = 1,… 𝐿                      (𝑖𝑖𝑖) 
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The non-linear programming problem in (10.1) is convex as the objective function in {10.1 (i)} is convex, see 

Kotan & Khan (1967) and the left hand side in {10.1(ii)} is also convex. So it is possible to solve the convex 

programming problem (CPP) (10.1) by using any standard convex programming algorithm. The optimal 

sample numbers thus obtained may turn out to be fractional. However, it is known that the variance functions 

are flat at the optimum solution. So for large sample size it is enough to round the fractional values to the 

nearest integers. However, for small 𝑛 the branch and bound method should be applied for finding the optimal 

integer solution. 

XI Numerical Illustration 

Consider an allocation problem in which the population is divided into three strata (𝐿 = 3) with two characters 

(𝑝 = 2) under study. The weight and variance in each stratum are as given in Table- 1. Let the relative weights 

of the two characters under estimation be 𝑏1 = 3 and 𝑏2 = 5. 

TABLE – 1 

Data for three strata and two characteristics 

Stratum 𝑖 𝑁𝑖 𝑊𝑖  
𝑆𝑖1 𝑆𝑖2 

𝑏1 = 3 𝑏2 = 5 

1 16 0.26 12.13 16.65 

2 25 0.42 7.89 11.93 

3 19 0.32 16.13 24.91 

We assume that the costs of measurement, 𝑐𝑖, (𝑖 = 1,… ,3) in the various strata are independently normally 

distributed with the following means and variances 

𝐸(𝑐1) = 25, 𝐸(𝑐2) = 30, 𝐸(𝑐3) = 40 and overhead cost 𝑐0 = 75 

      𝑉(𝑐1) = 6, 𝑉(𝑐2) = 5, 𝑉(𝑐3) = 7  

The total amount available for the survey 𝐶 = 1450 units. 

The chances constraint is required to be satisfied with 99% probability. 

On using this information in (8.7) the allocation problem turns into the following stochastic non-linear 

programming problem: 

 𝑛      
Min𝑉 =  ∑

𝑊𝑖
2

𝑛𝑖

3

𝑖=1

∑ 𝑏𝑗𝑆𝑖𝑗
2

2

𝑗=1

, 𝑗 = 1,2 

     Subject to                                            (11.1) 

𝑃 (∑𝑐𝑖𝑛𝑖

𝐿

𝑖=1

+ 𝑐0 ≤ 1450) ≥ 0.99               

 2 ≤ 𝑛𝑖 ≤ 𝑁𝑖, 𝑖 = 1,2,3. 

The value of standard normal variate 𝐾𝛼 corresponding to 99% confidence limits is 2.33. substituting the given 

values in (10.1), the equivalent deterministic (non-linear programming) problem to (11.1) is obtained is: 
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 𝑛      
Min.𝑉 =

123.54

𝑛1
+
158.47

𝑛2
+
399.1877

𝑛3
 

Subject to  

(25𝑛1+ 30𝑛2 + 40𝑛3 + 75)+ 2.33√3𝑛1
2+ 5𝑛2

2 + 4𝑛3
2 ≤ 1450     (11.2) 

2 ≤ 𝑛1 ≤ 16 

2 ≤ 𝑛2 ≤ 25 

2 ≤ 𝑛3 ≤ 19 

The non-linear deterministic problem in (11.2) is solved by using LINGO computer program, a package for 

constrained optimization by LINDO System Inc, see user guide (2001). The solution obtained is 𝑛1 = 6.321, 

𝑛2 = 5.968 and 𝑛3 = 8.617 with objective function value 

𝑓(𝑛) = 92.417 

The integer solution obtained by branch and bound method in 3 iteration is obtained as 𝑛1 = 7, 𝑛2 = 6 and 

𝑛3 = 8 with value of the objective function 𝑓(𝑛) = 93.958. 
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