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Abstract: We took for the following results 𝑢 ∈ 𝐸, 𝑥 ∈ 𝐵(𝑢), 𝑦 ∈ 𝐶(𝑢), 𝑧 ∈ 𝐷(𝑢), 𝑣 ∈ 𝐹(𝑢) and 𝑤 ∈ 𝐺(𝑢) 

is the solution of problem (5.1) if and only if (𝑢, 𝑥, 𝑦, 𝑧, 𝑣, 𝑤) satisfies the relation  𝑔(𝑢) = 𝑚(𝑤) +

𝑅𝜂,𝑀(∙,𝑢)
𝜌,𝐴

[𝐴(𝑔(𝑢) − 𝑚(𝑤)) − 𝜌(𝑁(𝑥, 𝑦) − 𝑊(𝑧, 𝑣) + 𝑚(𝑤))]                                                                                                                 

Where 𝑅𝜂,𝑀(∙,𝑢)
𝜌,𝐴

= (𝐴 + 𝜌𝑀(∙, 𝑢))
−1

 and 𝜌 ∈ (0,
𝑟

𝑚
) is a constant and Let 𝐸 be a  𝑞-uniformly smooth Banach 

space and 𝜂: 𝐸 × 𝐸 → 𝐸 be Lipschitz continuous mapping with constant 𝒯. Let 𝐴: 𝐸 → 𝐸 be 𝑟-strongly 𝜂-

accretive and Lipschitz continuous mapping with constant 𝜆𝐴, 𝑚: 𝐸 → 𝐸 be Lipschitz continuous mapping 

with constant 𝜆𝑚 and 𝑀: 𝐸 × 𝐸 → 2𝐸 be (𝐴, 𝜂)-accretive mapping in the first argument such that 𝑔(𝑢) −

𝑚(𝑤) ∈ dom(M(∙, u)), for all 𝑢, 𝑤 ∈ 𝐸. Suppose 𝑁, 𝑊: 𝐸 × 𝐸 → 𝐸 be Lipschitz continuous mappings in both 

arguments with constants 𝜆𝑁1
, 𝜆𝑁2

, 𝜆𝑊1
 and 𝜆𝑊2

 , respectively and 𝐵, 𝐶, 𝐷, 𝐹 and 𝐺: 𝐸 → 𝐶𝐵(𝐸) be ℋ-

Lipschitz continuous mappings with constants 𝛼, 𝛽, 𝛾, 𝜇 and δ, respectively. Let 𝑔: 𝐸 → 𝐸 be (𝑏, 𝜉)-relaxed 

cocoercive, Lipschitz continuous mapping with constant 𝜆𝑔 and strongly accretive with constant 𝑙.  

Keywords: Functional analysis, Stochastic process, Queuing theory And Inventory models. 

1. INTRODUCTION 

 Because of the applications of functional analysis in sciences, engineering and social sciences, a great 

deal of work has been done in this area. Specially, the nonlinear analysis, a branch of functional analysis, has 

grown very rapidly and has many interesting applications in partial differential equations, mechanics, 

optimization, game theory, economics, engineering sciences etc.. The theory of variational inequalities is one 

of the fields of applications of non-linear analysis. It was introduced in early sixties by the Italian and French 

school as a joint efforts of two leading mathematicians of that period, Guido Stampacchia and Jacques-Louis 

Lions. This theory has many applications in different branches of science. In the last five decades, variational 

inequalities have been extended and generalized in different directions.  A considerable interest has been 

shown in developing various extensions and generalizations of variational inequalities related to set-valued 

operators, nonconvex optimization and structural analysis. This theory was developed simultaneously not only 

to study the fundamental facts about the qualitative behavior of solutions of nonlinear problems, but also to 

solve them more efficiently numerically. In second section, we present some definitions and results from 

functional analysis which will be used in the sequel. The third section deals with brief introduction of 

variational inequalities and their generalizations. Section for is devoted to the study of system of variational 

inequalities (inclusions). 

2. SOME BASIC CONCEPTS AND RESULTS 

 In this section, we present some basic notation, definitions and results of functional analysis which will 

be used in the subsequent chapters. 
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 Throughout this thesis, unless otherwise specified, we assume that 𝐸 is a real Banach space endowed 

with the norm ‖∙‖, 𝐸∗ is the topological dual of 𝐸〈∙,∙〉 is the duality pairing between 𝐸 and 𝐸∗, 𝑑 is the metric 

induced by the norm ‖∙‖, 𝐶𝐵(𝐸) is the family of all closed and bounded subsets of 𝐸, 2𝐸  is the family of all 

nonempty subsets of 𝐸, ℋ(∙,∙) is the Hausdorff metric on 𝐶𝐵(𝐸) defined by  

ℋ(𝑃, 𝑄) = max {
sup

𝑥 ∈ 𝑃
𝑑(𝑥, 𝑄) ,

sup
𝑦 ∈ 𝑄 𝑑(𝑃, 𝑦)} 

Where   𝑑(𝑥, 𝑄) =
inf

𝑦 ∈ 𝑄
𝑑(𝑥, 𝑦)  𝑎𝑛𝑑 𝑑(𝑃, 𝑦) =

inf
𝑥 ∈ 𝑃

𝑑(𝑥, 𝑦).  We denote by 𝑋 a real Hilbert space unless 

otherwise specified. 

Definition : 2.1 

 A continuous and strictly increasing function 𝜑: ℝ+ → ℝ+ such that 𝜑(0) = 0 and lim
𝑡→∞

𝜑(𝑡) = ∞ is 

called a gauge function. 

Definition : 2.2 

 Given a gauge function 𝜑, the mapping 𝒯𝜑: 𝐸 → 2𝐸∗
 defined by 

𝒯𝜑(𝑥) = {𝑓 ∈ 𝐸∗: 〈𝑥, 𝑓〉 = ‖𝑥‖‖𝑓‖; ‖𝑓‖ = 𝜑(‖𝑥‖)}, for all 𝑥 ∈ 𝐸, 

is called the duality mapping with gauge function 𝜑. 

Definition: 2.3 

 Let 𝐸 be real Banach space. Then  

(i) a mapping 𝒯: 𝐸 → 2𝐸∗
 is called normalized duality mapping defined by  

𝒯(𝑥) = {𝑓 ∈ 𝐸∗: 〈𝑥, 𝑓〉 = ‖𝑥‖‖𝑓‖; ‖𝑥‖ = ‖𝑓‖}, for all 𝑥 ∈ 𝐸. 

(ii) a mapping 𝒯𝑞: 𝐸 → 2𝐸∗
, 𝑞 > 1 is called generalized duality mapping defined by 

𝒯𝑞(𝑥) = {𝑓 ∈ 𝐸∗: 〈𝑥, 𝑓〉 = ‖𝑥‖𝑞; ‖𝑓‖ = ‖𝑥‖𝑞−1}, for all 𝑥 ∈ 𝐸. 

Remark: 2.1 

In particular, for 𝑞 = 2 the generalized duality mapping coincides with the normalized duality 

mapping. 

Definition: 2.4 

A set-valued mapping 𝑇: 𝐸 → 𝐶𝐵(𝐸) is said to be ℋ-Lipschitz continuous, if there exists a constant 

𝜉1 > 0 such that 

ℋ(𝑇𝑥, 𝑇𝑦) ≤ 𝜉1‖𝑥 − 𝑦‖, for all 𝑥, 𝑦 ∈ 𝐸. 

Theorem: 2.1 

Let (𝐸, 𝑑) be a metric space. If 𝐹: 𝑋 → 𝐶𝐵(𝐸) is a set-valued contraction mapping, then 𝐹 has fixed 

point. 
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Definition: 2.5 

A Banach space 𝐸 is said to be uniformly convex, if for any given 𝜖 > 0, there exists 𝛿 > 0 such that 

for all 𝑥, 𝑦 ∈ 𝐸, ‖𝑥‖ ≤ 1, ‖𝑦‖ ≤ 1 and ‖𝑥 − 𝑦‖ = 𝜖, we have ‖𝑥 + 𝑦‖ ≤ 2(1 − 𝛿).  The function  𝛿𝐸(𝜖) =

inf {1 −
‖𝑥+𝑦‖

2
: ‖𝑥‖ = 1, ‖𝑦‖ = 1, ‖𝑥 − 𝑦‖ = 𝜖} 

is called the modulus of convexity of the space 𝐸. 

Definition: 2.6 

The modulus of smoothness of 𝐸 is the function 𝜌𝐸: [0, ∞) → [0, ∞) defined by 

𝜌𝐸(𝜖) = sup {1 −
‖𝑥 + 𝑦‖ + ‖𝑥 − 𝑦‖

2
− 1 ∶  ‖𝑥‖ ≤ 1, ‖𝑦‖ ≤ 𝑡} 

A Banach space 𝐸 is called uniformly smooth, if     lim
𝑡→0

𝜌𝐸(𝑡)

𝑡
. 

Definition: 2.7   

The Banach space 𝐸 is called 𝑞-uniformly smooth, if there exists a constant 𝐶 > 0 such that    𝜌𝐸(𝑡) ≤
𝐶𝑡𝑞, 𝑞 > 1 

Proposition: 2.1 

Let 𝐸 be a real Banach space and 𝒯: 𝐸 → 2𝐸∗
 be a normalized duality mapping. Then for any 𝑥, 𝑦 ∈ 𝐸, 𝑗(𝑥 +

𝑦) ∈ 𝒯(𝑥 + 𝑦) 

(i) ‖𝑥 + 𝑦‖2 ≤ ‖𝑥‖2 + 2〈𝑦, 𝑗(𝑥 + 𝑦)〉; 

(ii) 〈𝑥 − 𝑦, 𝑗(𝑥) − 𝑗(𝑦)〉 ≤ 2𝐷𝜌𝐸
2 (

4‖𝑥−𝑦‖

𝐷
) , where D = √‖𝑥‖2 + ‖𝑦‖2/2. 

Lemma: 2.1 

Let 𝐸 be a real uniformly smooth Banach space. Then 𝐸 is 𝑞-uniformly smooth if and only if there exists a 

constant 𝐶𝑞 > 0 such that, for all 𝑥, 𝑦 ∈ 𝐸, 

‖𝑥 + 𝑦‖𝑞 ≤ ‖𝑥‖𝑞 + 𝑞〈𝑦, 𝒯𝑞(𝑥)〉 + 𝐶𝑞‖𝑦‖𝑞 

Definition: 2.8 

Let 𝜑: 𝐸 → ℝ ∪ {+∞} be a proper function, 𝜑 is said to be subdifferential at a point 𝑥 ∈ 𝐸, if there 

exists a point 𝑓 ∈ 𝐸∗ such that 𝜑(𝑦) − 𝜑(𝑥) ≥ 〈𝑓, 𝑦 − 𝑥〉, for all 𝑦 ∈ 𝐸, 

Where 𝑓 is called subgradient of 𝜑 at 𝑥. The set of all subgradient of 𝜑 at 𝑥 is denoted by 𝜕𝜑(𝑥). 

The mapping 𝜕𝜑: 𝐸 → 2𝐸∗
defined by 𝜕𝜑(𝑥) = {𝑓 ∈ 𝐸∗: 𝜑(𝑦) − 𝜑(𝑥) ≥ 〈𝑓, 𝑦 − 𝑥〉, for all 𝑦 ∈ 𝐸} 

is called subdifferentail of 𝜑 at 𝑥. 

 

Definition: 2.9 

Let 𝑋 be a real Hilbert space and 𝑔: 𝑋 → 𝑋 be a single-valued mapping. Then 𝑔 is said to be  

(i) monotone, if 
〈𝑔(𝑥) − 𝑔(𝑦), 𝑥 − 𝑦〉 ≥ 0, for all 𝑥, 𝑦 ∈ 𝑋; 
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(ii) strictly monotone, if 
〈𝑔(𝑥) − 𝑔(𝑦), 𝑥 − 𝑦〉 > 0, for all 𝑥, 𝑦 ∈ 𝑋, 

(iii) strongly monotone, if there exists a constant 𝜉2 > 0 such that 

〈𝑔(𝑥) − 𝑔(𝑦), 𝑥 − 𝑦〉 ≥ 𝜉2‖𝑥 − 𝑦‖2, for all 𝑥, 𝑦 ∈ 𝑋; 
(iv) Lipschitz continuous, if there exists a constant 𝜆𝑔 > 0 such that 

‖𝑔(𝑥) − 𝑔(𝑦)‖ ≤ 𝜆𝑔‖𝑥 − 𝑦‖, for all 𝑥, 𝑦 ∈ 𝑋; 

(v) 𝛼1-expansive, if there exists a constant 𝛼1 > 0 such that 
‖𝑔(𝑥) − 𝑔(𝑦)‖ ≥ 𝛼1‖𝑥 − 𝑦‖, for all 𝑥, 𝑦 ∈ 𝑋; 

If 𝛼1 = 1, then it is expansive. 

Definition: 2.10  

Let 𝐸 be a real Banach space. Let 𝑔: 𝐸 → 𝐸 is a single-valued mapping. Then 𝑔 is said to be  

(i) accretive, if for any 𝑥, 𝑦 ∈ 𝐸, there exists 𝑗(𝑥 − 𝑦) ∈ 𝒯(𝑥 − 𝑦) such that  
〈𝑔(𝑥) − 𝑔(𝑦), 𝑗(𝑥 − 𝑦)〉 ≥ 0; 

(ii) strictly accretive, if for any 𝑥, 𝑦 ∈ 𝐸, there exists 𝑗(𝑥 − 𝑦) ∈ 𝒯(𝑥 − 𝑦) such that  

〈𝑔(𝑥) − 𝑔(𝑦), 𝑗(𝑥 − 𝑦)〉 > 0; 

     and equality holds if and only if 𝑥 = 𝑦; 

(iii) 𝑘1- strongly accretive, if for any 𝑥, 𝑦 ∈ 𝐸,there exists 𝑗(𝑥 − 𝑦) ∈ 𝒯(𝑥 − 𝑦) and a constant 𝑘1 > 0 

such that  

〈𝑔(𝑥) − 𝑔(𝑦), 𝑗(𝑥 − 𝑦)〉 ≥ 𝑘1‖𝑥 − 𝑦‖2; 
(iv) 𝑘1- strongly accretive, if for any 𝑥, 𝑦 ∈ 𝐸,there exists 𝑗(𝑥 − 𝑦) ∈ 𝒯(𝑥 − 𝑦) and a constant 𝑘1 > 0 

such that  

〈𝑔(𝑥) − 𝑔(𝑦), 𝑗(𝑥 − 𝑦)〉 ≥ 𝑘1‖𝑥 − 𝑦‖2; 
(v) 𝑚1- relaxed accretive, if for any 𝑥, 𝑦 ∈ 𝐸,there exists 𝑗(𝑥 − 𝑦) ∈ 𝒯(𝑥 − 𝑦) and a constant 𝑚1 > 0 

such that  

〈𝑔(𝑥) − 𝑔(𝑦), 𝑗(𝑥 − 𝑦)〉 ≥ −𝑚1‖𝑥 − 𝑦‖2. 
3. VARIATIONAL INEQUALITIES 

Many problems of elasticity and fluid mechanics can be expressed in terms of a n unknown 𝑢, 

representing the displacement of a mechanical system, satisfying 

𝑎(𝑢, 𝑣 − 𝑢) ≥ 𝐹 (𝑣 − 𝑢), for all 𝑣 ∈ 𝐾,                                               (3.1) 

where 𝐾 is a nonempty, closed, convex subset of a Hilbert space, 𝑋, 𝑎(∙,∙) is a bilinear from and 𝐹 is a bounder 

linear functional on 𝑋. The inequalities of the type (3.1) are called variational inequalities.  If the bilinear from 

𝑎(∙,∙) is continuous, then by Reiz-representation theorem, we have 

𝑎(𝑢, 𝑣) = 〈𝐴(𝑢), 𝑣〉, for all 𝑢, 𝑣 ∈ 𝑋,                                                    (3.2) 

Where 𝐴 is a continuous linear operator on 𝑋. Then equality (3.1) is equivalent to find 𝑢 ∈ 𝐾 such that 

〈𝐴(𝑢), 𝑣 − 𝑢〉 ≥ 〈𝐹, 𝑣 − 𝑢〉, for all 𝑣 ∈ 𝐾                                            (3.3) 

 If the operators 𝐴 and 𝐹 are nonlinear, then the variational inequality (3.3) is known as strongly 

nonlinear variation inequality, introduced and studied by many authors.  If 𝐹 = 0, then (3.3) is equivalent to 

find 𝑢 ∈ 𝐾 such that 

  〈𝐴(𝑢), 𝑣 − 𝑢〉 ≥ 0, for all 𝑣 ∈ 𝐾.                                                 (3.4) 

The variational inequality of the type (3.4) was introduced and studied by Fichera in 1964. Lion and 

Stampacchia proved the existence of unique solution of (3.4) using the projection techniques.  Variational-like 
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inequality is a generalization of variational inequality, which is introduced and studied by Parida, Sahoo and 

Kumar.  Let 𝐾 be a closed convex set in ℝ𝑛. Given two continuous mappings 𝑓: 𝐾 → ℝ𝑛 and 𝜂: 𝐾 × 𝐾 → ℝ𝑛, 

then the variational-like inequality problem is to find 𝑢 ∈ 𝐾 such that 

  〈𝑓(𝑢), 𝜂(𝑢, 𝑣)〉 ≥ 0, for all 𝑣 ∈ 𝐾.                        (3.5) 

Remark: 3.1 

If 𝜂(𝑢, 𝑣) = 𝑢 − 𝑣, then variational-like inequality (3.5) is equivalent to the variational inequality 

(3.4).  Dien introduced and studied the following general variational-like inequality problem in ℝ𝑛. Given 

𝜙: 𝐾 → ℝ, find 𝑢 ∈ 𝐾 such that 

〈𝑓(𝑢), 𝜂(𝑢, 𝑣)〉 ≥ 𝜙(𝑢) − 𝜙(𝑣), for all 𝑣 ∈ 𝐾.                                   (3.6) 

It has been further studied by Siddiqi, Ansari and Ahmad in the setting of reflexive Banach spaces and 

topological vector spaces with or without convexity assumptions.  In many applications, the convex set in the 

formulation of variational-like inequality problem also depends upon the solution itself. In this case 

variational-like inequality problem is called quasi-variational-like inequality problem. More precisely, for a 

given set-valued mapping 𝑄: 𝐾 → 2𝐾, the general quasi-variational-like inequality problem is the following: 

Find 𝑢 ∈ 𝐾 such that 𝑢 ∈ 𝑄(𝑢) and  〈𝑓(𝑢), 𝜂(𝑢, 𝑣)〉 ≥ 𝜙(𝑢) − 𝜙(𝑣), for all 𝑣 ∈ 𝑄(𝑢).                                   (3.7). 

Where 𝑓, 𝜂 and 𝜙 are same in (3.6). 

In 1994, Hassouni and Moudafi used the resolvent operator technique for maximal monot one 

mappings to study mixed type variational inequalities with single-valued mappings, which are called 

variational inclusions and developed a perturbed algorithm for finding approximate solutions of mixed 

variational inequalities.  Given continuous mappings 𝑇, 𝑔: 𝑋 → 𝑋 with 𝐼𝑚 (𝑔) ∩ dom(𝜕𝜑) ≠ Ø.  Then the 

following problem of finding 𝑢 ∈ 𝑋 such that 𝑔(𝑢) ∩  dom(𝜕𝜑) ≠ Ø and  

 〈𝑇(𝑢) − 𝐴(𝑢), 𝑣 − 𝑔(𝑢)〉 ≥ 𝜑(𝑔(𝑢)) − 𝜑(𝑣), for all 𝑣 ∈ 𝑋                  (3.8) 

Where 𝐴 is a nonlinear continuous mapping on 𝑋, 𝜕𝜑 denotes the subdifferential of a proper, convex and 

lower-semicontinuous function 𝜑: 𝑋 → ℝ ∪ {∞}, dom(𝜕𝜑) denotes the domain of  𝜕𝜑. Problem (3.8) is called 

variational inclusion problem, introduced and studied.  If 𝜑 ≡ 𝛿𝐾, the indicator function of a closed convex 

set 𝐾 in 𝐻 defined by 

𝛿𝐾(𝑥) = {
0, 𝑥 ∈ 𝐾

+∞, otherwise
 

Then the variational inclusion problem reduces to the following strongly non-linear variational inequality 

problem.  〈𝑇(𝑢) − 𝐴(𝑢), 𝑣 − 𝑔(𝑢)〉 ≥ 0, for all 𝑣 ∈ 𝐾                                (3.9) 

4. SYSTEM OF VARIATIONAL INEQUALITIES 

In recent past, system of inequalities are used as tools to solve various equilibrium problems e.g., Nash 

equilibrium problem, spatial equilibrium problem and general equilibrium programming problem, problems 

from operations research, economics, game theory, mathematical physics and other areas, see for example and 

references therein. Pang uniformly modeled these equilibrium problems in the form of a variational inequality 

defined on a product of sets. He decomposed the original variational inequality into a system of variational 

inequalities, which are easy to solve, to establish some solution methods for finding the approximate solutions 

of above mentioned equilibrium problems. Later, it is found that these two problems, variational inequality 

defined on a product of sets and system of variational inequalities, are equivalent. Kassay and Kolumban 

introduced the following system of variational inequalities and proved the existence of solutions using Ky-

Fan’s lemma.  Let 𝑋1 and 𝑋2 are two Hilbert spaces, 𝐴 ⊂ 𝑋1 and 𝐵 ⊂ 𝑋2 are two nonempty closed and convex 

sets. Let 𝐹: 𝑋1 × 𝑋2 → 𝑋1, 𝐺: 𝑋1 × 𝑋2 → 𝑋2 be the single-valued mappings. Find (𝑎, 𝑏) ∈ 𝐴 × 𝐵 such that 
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                       {
〈𝐹(𝑎, 𝑏), 𝑥 − 𝑎〉 ≥ 0, for all 𝑥 ∈ 𝐴
〈𝐺(𝑎, 𝑏), 𝑦 − 𝑏〉 ≥ 0, for all 𝑦 ∈ 𝐵

                                (4.1) 

Verma introduced and studied the following system of nonlinear variational inequalities. 

Let 𝑋 be a real Hilbert space and 𝐴 be a closed, convex subset of 𝑋. 𝑇: 𝐴 → 𝑋 is a nonlinear mapping and 

𝜌, 𝛾 > 0 are constants.  Find (𝑎, 𝑏) ∈ 𝐴 × 𝐴 such that 

                 {
〈𝜌𝑇(𝑏) + 𝑎 − 𝑏, 𝑥 − 𝑎〉 ≥ 0, for all 𝑥 ∈ 𝐴
〈𝛾𝑇(𝑏) + 𝑏 − 𝑎, 𝑥 − 𝑏〉 ≥ 0, for all 𝑦 ∈ 𝐴

                                (4.2) 

Lan introduced a following system of 𝐴-monotone set-valued variational inclusions in Hilbert spaces. Let 𝑋1 

and 𝑋2 be two real Hilbert spaces, 𝑆: 𝑋1 × 𝑋2 → 𝑋1, 𝑇: 𝑋1 × 𝑋2 → 𝑋2, 𝑝: 𝑋1 → 𝑋1 and 𝑞: 𝑋2 → 𝑋2 be the 

single-valued mappings, 𝐹: 𝑋1 → 2𝑋1, 𝐺: 𝑋2 → 2𝑋2  be the set-valued mappings. Let 𝐴1: 𝑋1 → 𝑋1 and 𝐴2: 𝑋2 →
𝑋2, 𝑀: 𝑋1 → 2𝑋1, 𝑁: 𝑋2 → 2𝑋2  be any nonlinear mappings and 𝑓: 𝑋1 → 𝑋1, 𝑔: 𝑋2 → 𝑋2 be nonlinear mappings 

with 𝑓(𝑋1) ∩ dom(𝑀) = Ø and 𝑔(𝑋2) ∩ dom(𝑁) ≠ Ø respectively.   Find (𝑥, 𝑦) ∈ 𝑋1 × 𝑋2, 𝑢 ∈ 𝐹(𝑥), 𝑣 ∈
𝐺(𝑦) such that 

                      {
0 ∈ 𝑆(𝑝(𝑥), 𝑣) + 𝑀(𝑓(𝑥))

0 ∈ 𝑇(𝑢, 𝑞(𝑦)) + 𝑁(𝑔(𝑥))
                                                (4.3) 

Recently , Zou and Huang introduced and study the following system of variational inclusions involving 

𝐻(∙,∙)-accretive operator in 𝑞-uniformly smooth Banach spaces.  Let 𝐸1 and 𝐸2 are two 𝑞-uniformly smooth 

Banach spaces and 𝐶1 ⊂ 𝐸1 and 𝐶2 ⊂ 𝐸2 are two nonempty, closed and convex sets. Let 𝐹: 𝐸1 × 𝐸2 →
𝐸1, 𝐺: 𝐸1 × 𝐸2 → 𝐸2 , 𝐻1: 𝐸1 × 𝐸1 → 𝐸1, 𝐻2: 𝐸2 × 𝐸2 → 𝐸2, 𝐴1, 𝐵1: 𝐸1 → 𝐸1, 𝐴2, 𝐵2: 𝐸2 → 𝐸2 be the single-

valued mappings. Furthermore, let 𝑀: 𝐸1 → 2𝐸1  be set-valued 𝐻1(𝐴1, 𝐵1)-accretive operator and 𝑁: 𝐸2 → 2𝐸2 

be set-valued 𝐻2(𝐴2, 𝐵2)-accretive operator.  Find (𝑎, 𝑏) ∈ 𝐸1 × 𝐸2, such that 

                      {
0 ∈ 𝐹(𝑎, 𝑏) + 𝑀(𝑎)

0 ∈ 𝐺(𝑎, 𝑏) + 𝑁(𝑏) 
                                              (4.4) 

The following system of variation inequality (inclusion) can be obtained from the above system. 

(i) If 𝑋1, 𝑋2 are two Hilbert spaces, 𝐻1(𝐴1, 𝐵1) = 𝐻1, 𝐻2(𝐴2, 𝐵2) = 𝐻2, 𝑀 is (𝐻1, 𝜂)-monotone and 𝑁 

is also (𝐻2, 𝜂)-monotone, then the problem (4.4) becomes the system of variational inclusions 

studied by Fang, Huang and Thompson. 

(ii) If 𝑋1 and 𝑋2 are two Hilbert spaces, 𝐻1(𝐴1, 𝐵1) = 𝐴1, 𝐻2(𝐴2, 𝐵2) = 𝐴2 and 𝑀(𝑥) =
𝜕𝜙(𝑥), 𝑁(𝑦) = 𝜕𝜓(𝑦), for all (𝑥, 𝑦) ∈ 𝑋1 × 𝑋2, where 𝜙: 𝑋1 → ℝ ∪ {∞} and 𝜓: 𝑋2 → ℝ ∪ {∞} 
are two proper, convex, lower semicontinuous functional and 𝜕𝜙 and 𝜕𝜓 denotes the 

subdifferential operator of 𝜙 and 𝜓, respectively. Then the problem (4.4) becomes the following 

problem. Find (𝑎, 𝑏) ∈ 𝐶1 × 𝐶2 such that 

{
〈𝐹(𝑎, 𝑏), 𝑥 − 𝑎〉 + 𝜙(𝑥) − 𝜙(𝑎) ≥ 0 for all 𝑥 ∈ 𝑋1

〈𝐺(𝑎, 𝑏), 𝑦 − 𝑏〉 + 𝜓(𝑦) − 𝜓(𝑏) ≥ 0 for all 𝑦 ∈ 𝑋2
          (4.5) 

which is called a system of nonlinear variational inequalities. 

(iii) If 𝑋1, 𝑋2 are two Hilbert spaces, 𝐻1(𝐴1, 𝐵1) = 𝐴1, 𝐻2(𝐴2, 𝐵2) = 𝐴2 and 𝑀(𝑥) = 𝜕𝛿𝐶1
(𝑥), 𝑁(𝑦) =

𝜕𝛿𝐶2
(𝑦), for all (𝑥, 𝑦) ∈ 𝐶1 × 𝐶2, where 𝐶1 ⊂ 𝑋1 and 𝐶2 ⊂ 𝑋2 are nonempty, closed, convex, 𝜕𝛿𝐶1

 

and 𝜕𝛿𝐶2
 denote the indicator functions of 𝐶1 and 𝐶2, respectively inequalities studied . 

(iv) If 𝑋1 = 𝑋2 = 𝑋, 𝐶1, 𝐶2 = 𝐶 and 𝐹(𝑥, 𝑦) = 𝜌𝑇(𝑦) + 𝑥 − 𝑦, 𝐺(𝑥, 𝑦) = 𝛾𝑇(𝑥) + 𝑦 − 𝑥, for all 

𝑥, 𝑦 ∈ 𝑋, where 𝑇: 𝐶 → 𝑋 is a nonlinear mapping 𝜌 > 0, 𝛾 > 0 are two constants, then the problem 

(4.1) reduces to the following system of variational inequalities. Find (𝑎, 𝑏) ∈ 𝐶 × 𝐶 such that 

{
〈𝜌  𝑇(𝑏) + 𝑎 − 𝑏, 𝑥 − 𝑎 〉 ≥ 0 for all 𝑥 ∈ 𝐶
〈𝛾𝑇(𝑎) + 𝑏 − 𝑎, 𝑦 − 𝑏 〉 ≥ 0 for all 𝑦 ∈ 𝐶

                           (4.6) 

which is the system of nonlinear variational inequalities considered by Verma. 
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5. GENERALIZED QUASI-VARIATIONAL-LIKE INCLUSIONS WITH (𝑨, 𝜼)-ACCRETIVE 

AND RELAXED COCOERCIVE MAPPINGS 

Throughout this section, we take 𝐸 to be 𝑞-uniformly smooth Banach space. This section is devoted to study 

a generalized quasi-variational-like inclusion problem involving (𝐴, 𝜂)-accretjve and relaxed cocoercive 

mappings. An iterative algorithm is constructed to approximate the solutions of generalized quasi-variational-

like inclusion problem. Finally, some applications are given. Let 𝑁, 𝑊, 𝜂: 𝐸 × 𝐸 → 𝐸, 𝑔, 𝑚, 𝐴: 𝐸 → 𝐸 be the 

single-valued mappings, 𝐵, 𝐶, 𝐷, 𝐹, 𝐺: 𝐸 → 2𝐸 be the set-valued mappings. Let 𝑀: 𝐸 × 𝐸 → 2𝐸 be an (𝐴, 𝜂)-

accretive mapping in the first argument such that 𝑔(𝑢) − 𝑚(𝑤) ∈ dom(𝑀(∙, 𝑢)), for all 𝑢, 𝑤 ∈ 𝐸. We 

consider the following generalized quasi-variational-like inclusion problem.  Find 𝑢 ∈ 𝐸, 𝑥 ∈ 𝐵(𝑢), 𝑦 ∈
𝐶(𝑢), 𝑧 ∈ 𝐷(𝑢), 𝑣 ∈ 𝐹(𝑢) and 𝑤 ∈ 𝐺(𝑢) such that 

              0 ∈ 𝑁(𝑥, 𝑦) − 𝑊(𝑧, 𝑣) + 𝑚(𝑤) + 𝑀(𝑔(𝑢) − 𝑚(𝑤), 𝑢)             (5.1) 

Below are some special cases of problem (5.1). 

Some special cases: 

(i) If 𝑚 = 0, 𝑀(𝑔(𝑢) − 𝑚(𝑤), 𝑢) = 𝑀(𝑔(𝑢)) and  𝑊, 𝐷, 𝐹 = 0, then problem (5.1) reduces to the 

problem of finding 𝑢 ∈ 𝐸, 𝑥 ∈ 𝐵(𝑢), 𝑦 ∈ 𝐶(𝑢) such that 

                            0 ∈ 𝑁(𝑥, 𝑦) + 𝑀(𝑔(𝑢))                                     (5.2) 

              Problem (5.2) is considered by Chang. 

(ii) If 𝐵 and 𝐶 are single-valued mappings, then problem (5.2) can be replaced by finding 𝑢 ∈ 𝐸 such 

that 

                   0 ∈ 𝑁(𝐵(𝑢), 𝐶(𝑢)) + 𝑀(𝑔(𝑢))                                (5.3) 

               A problem similar to problem (5.3) is considered by Lan. 

(iii) If 𝐶 = 0 and 𝐵, 𝑔 = 𝐼, the identity mappings, the (5.3) reduces to the problem of finding 𝑢 ∈ 𝐸 

such that 

                                 0 ∈ 𝑁(𝑢) + 𝑀(𝑢)                                        (5.4) 

   which is considered by Bi et al. 

Lemma: 5.1 

𝑢 ∈ 𝐸, 𝑥 ∈ 𝐵(𝑢), 𝑦 ∈ 𝐶(𝑢), 𝑧 ∈ 𝐷(𝑢), 𝑣 ∈ 𝐹(𝑢) and 𝑤 ∈ 𝐺(𝑢) is the solution of problem (5.1) if and only if 

(𝑢, 𝑥, 𝑦, 𝑧, 𝑣, 𝑤) satisfies the relation 

𝑔(𝑢) = 𝑚(𝑤) + 𝑅𝜂,𝑀(∙,𝑢)
𝜌,𝐴 [𝐴(𝑔(𝑢) − 𝑚(𝑤)) − 𝜌(𝑁(𝑥, 𝑦) − 𝑊(𝑧, 𝑣) + 𝑚(𝑤))] 

                                                                                                                           (5.5) 

Where 𝑅𝜂,𝑀(∙,𝑢)
𝜌,𝐴

= (𝐴 + 𝜌𝑀(∙, 𝑢))
−1

 and 𝜌 ∈ (0,
𝑟

𝑚
) is a constant. 

Proof: 

The proof follow directly from the known definition. 

 

Algorithm: 5.1 

For any given 𝑢0 ∈ 𝐸, we choose 𝑥0 ∈ 𝐵(𝑢0), 𝑦0 ∈ 𝐶(𝑢0), 𝑧0 ∈ 𝐷(𝑢0), 𝑣0 ∈ 𝐹(𝑢0), 𝑤0 ∈ 𝐺(𝑢0) and 
{𝑢𝑛}, {𝑥𝑛}, {𝑦𝑛}, {𝑧𝑛}, {𝑣𝑛} and {𝑤𝑛} by the following iterative schemes. 
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𝑔(𝑢𝑛+1) = 𝑚(𝑤𝑛)

+ 𝑅𝜂,𝑀(∙,𝑢𝑛)
𝜌,𝐴 [𝐴(𝑔(𝑢𝑛) − 𝑚(𝑤𝑛)) − 𝜌(𝑁(𝑥𝑛 , 𝑦𝑛) − 𝑊(𝑧𝑛 , 𝑣𝑛) + 𝑚(𝑤𝑛))]                       (5.6) 

       𝑥𝑛+1 ∈ 𝐵(𝑢𝑛+1), ‖𝑥𝑛+1 − 𝑥𝑛‖ ≤ ℋ(𝐵(𝑢𝑛+1), 𝐵(𝑢𝑛));                     (5.7) 

       𝑦𝑛+1 ∈ 𝐶(𝑢𝑛+1), ‖𝑦𝑛+1 − 𝑦𝑛‖ ≤ ℋ(𝐶(𝑢𝑛+1), 𝐶(𝑢𝑛));                     (5.8) 

       𝑧𝑛+1 ∈ 𝐷(𝑢𝑛+1), ‖𝑧𝑛+1 − 𝑧𝑛‖ ≤ ℋ(𝐷(𝑢𝑛+1), 𝐷(𝑢𝑛));                     (5.9) 

       𝑣𝑛+1 ∈ 𝐹(𝑢𝑛+1), ‖𝑣𝑛+1 − 𝑣𝑛‖ ≤ ℋ(𝐹(𝑢𝑛+1), 𝐹(𝑢𝑛));                     (5.10) 

       𝑤𝑛+1 ∈ 𝐺(𝑢𝑛+1), ‖𝑤𝑛+1 − 𝑤𝑛‖ ≤ ℋ(𝐺(𝑢𝑛+1), 𝐺(𝑢𝑛));                   (5.11) 

Where 𝑛 = 0,1,2,3, … . , 𝜌 ∈ (0,
𝑟

𝑚
) is a constant. Now, we prove the following existence and convergence 

result for generalized quasi-variational-like inclusion problem. 

Theorem: 5.1 

Let 𝐸 be a  𝑞-uniformly smooth Banach space and 𝜂: 𝐸 × 𝐸 → 𝐸 be Lipschitz continuous mapping with 

constant 𝒯. Let 𝐴: 𝐸 → 𝐸 be 𝑟-strongly 𝜂-accretive and Lipschitz continuous mapping with constant 

𝜆𝐴, 𝑚: 𝐸 → 𝐸 be Lipschitz continuous mapping with constant 𝜆𝑚 and 𝑀: 𝐸 × 𝐸 → 2𝐸 be (𝐴, 𝜂)-accretive 

mapping in the first argument such that 𝑔(𝑢) − 𝑚(𝑤) ∈ dom(M(∙, u)), for all 𝑢, 𝑤 ∈ 𝐸. Suppose 𝑁, 𝑊: 𝐸 ×
𝐸 → 𝐸 be Lipschitz continuous mappings in both arguments with constants 𝜆𝑁1

, 𝜆𝑁2
, 𝜆𝑊1

 and 𝜆𝑊2
 , respectively 

and 𝐵, 𝐶, 𝐷, 𝐹 and 𝐺: 𝐸 → 𝐶𝐵(𝐸) be ℋ-Lipschitz continuous mappings with constants 𝛼, 𝛽, 𝛾, 𝜇 and δ, 

respectively. Let 𝑔: 𝐸 → 𝐸 be (𝑏, 𝜉)-relaxed cocoercive, Lipschitz continuous mapping with constant 𝜆𝑔 and 

strongly accretive with constant 𝑙. 

Suppose that there exists 𝜌 ∈ (0,
𝑟

𝑚
) and 𝑡 > 0 such that the following conditions hold. 

‖𝑅𝜂,𝑀0(∙,𝑢𝑛)
𝜌,𝐴 (𝑥) − 𝑅𝜂,𝑀(∙,𝑢𝑛−1)

𝜌,𝐴
(𝑥)‖ ≤ 𝑡‖𝑢𝑛 − 𝑢𝑛−1‖, for all 𝑢𝑛 , 𝑢𝑛−1 ∈ 𝐸      (5.12) 

and 

0 < 𝜆𝑚𝛿(𝜌 + 𝜆𝐴) + 𝜆𝐴 √(1 − 𝑞𝜉 + (𝑞𝑝 + 𝐶𝑞)𝜆𝐺
𝑞𝑞

 

+𝜌 √(𝜆𝑁1
𝛼 + 𝜆𝑁2

𝛽)
𝑞

− (𝑞 − 𝐶𝑞)(𝜆𝑊1
𝛾 + 𝜆𝑊2

𝜇)
𝑞𝑞

            (5.13) 

+𝜆𝐴 <
[𝑙 − 𝜆𝑚𝛿 + 𝑡](𝑟 − 𝜌𝑚)

𝛾𝑞−1
, 𝑙 > 𝜆𝑚𝛿 + 𝑡) 

Where 𝐶𝑞 is the constant as in Lemma, then the iterative sequences {𝑢𝑛}, {𝑥𝑛}, {𝑦𝑛}, {𝑧𝑛}, {𝑣𝑛} and {𝑤𝑛} 

generated by Algorithm (5.1) converge strongly to 𝑢, 𝑥, 𝑦, 𝑧, 𝑣 and 𝑤, respectively and (𝑢, 𝑥, 𝑦, 𝑧, 𝑣, 𝑤) is a 

solution of problem. 

Proof: 

From Algorithm 5.1, Proposition, we have 
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‖𝑔(𝑢𝑛+1) − 𝑔(𝑢𝑛)‖

= ‖𝑚(𝑤𝑛) + 𝑅𝜂,𝑀(∙,𝑢𝑛)
𝜌,𝐴 [𝐴(𝑔(𝑢𝑛) − 𝑚(𝑤𝑛)) − 𝜌(𝑁(𝑥𝑛 , 𝑦𝑛) − 𝑊(𝑧𝑛 , 𝑣𝑛) + 𝑚(𝑤𝑛))]

− {𝑚(𝑤𝑛−1)

+ 𝑅𝜂,𝑀(∙,𝑢𝑛−1)
𝜌,𝐴 [𝐴(𝑔(𝑢𝑛−1) − 𝑚(𝑤𝑛−1))

− 𝜌(𝑁(𝑥𝑛−1, 𝑦𝑛−1) − 𝑊(𝑧𝑛−1, 𝑣𝑛−1) + 𝑚(𝑤𝑛−1))]}‖ 

≤ ‖𝑚(𝑤𝑛) − 𝑚(𝑤𝑛−1)‖

+ ‖𝑅𝜂,𝑀(∙,𝑢𝑛)
𝜌,𝐴 [𝐴(𝑔(𝑢𝑛) − 𝑚(𝑤𝑛)) − 𝜌(𝑁(𝑥𝑛, 𝑦𝑛) − 𝑊(𝑧𝑛 , 𝑣𝑛) + 𝑚(𝑤𝑛))]

− 𝑅𝜂,𝑀(∙,𝑢𝑛)
𝜌,𝐴 [𝐴(𝑔(𝑢𝑛−1) − 𝑚(𝑤𝑛−1)) − 𝜌(𝑁(𝑥𝑛−1, 𝑦𝑛−1) − 𝑊(𝑧𝑛−1, 𝑣𝑛−1) + 𝑚(𝑤𝑛−1))]‖

+ ‖𝑅𝜂,𝑀(∙,𝑢𝑛−1)
𝜌,𝐴 [𝐴(𝑔(𝑢𝑛−1) − 𝑚(𝑤𝑛−1)) − 𝜌(𝑁(𝑥𝑛−1, 𝑦𝑛−1) − 𝑊(𝑧𝑛−1, 𝑣𝑛−1) + 𝑚(𝑤𝑛−1))]

− 𝑅𝜂,𝑀(∙,𝑢𝑛)
𝜌,𝐴 [𝐴(𝑔(𝑢𝑛−1) − 𝑚(𝑤𝑛−1)) − 𝜌(𝑁(𝑥𝑛−1, 𝑦𝑛−1) − 𝑊(𝑧𝑛−1, 𝑣𝑛−1) + 𝑚(𝑤𝑛−1))]‖ 

≤ ‖𝑚(𝑤𝑛) − 𝑚(𝑤𝑛−1)‖

+
𝑡𝑞−1

𝑟 − 𝜌𝑚
[‖𝐴(𝑔(𝑢𝑛) − 𝑚(𝑤𝑛)) − 𝐴(𝑔(𝑢𝑛−1) − 𝑚(𝑤𝑛−1))

− 𝜌{(𝑁(𝑥𝑛 , 𝑦𝑛) − 𝑊(𝑧𝑛 , 𝑣𝑛) + 𝑚(𝑤𝑛)) − (𝑁(𝑥𝑛−1, 𝑦𝑛−1) − 𝑊(𝑧𝑛−1, 𝑣𝑛−1) + 𝑚(𝑤𝑛−1))‖]

+ 𝑡‖𝑢𝑛 − 𝑢𝑛−1‖ 

≤ (1 +
𝑡𝑞−1

𝑟 − 𝜌𝑚
) ‖𝑚(𝑤𝑛) − 𝑚(𝑤𝑛−1)‖ +

𝑡𝑞−1

𝑟 − 𝜌𝑚
‖𝐴(𝑔(𝑢𝑛) − 𝑚(𝑤𝑛)) − 𝐴(𝑔(𝑢𝑛−1) − 𝑚(𝑤𝑛−1))‖

+
𝑡𝑞−1

𝑟 − 𝜌𝑚
𝜌‖𝑁(𝑥𝑛, 𝑦𝑛) − 𝑁(𝑥𝑛−1, 𝑦𝑛−1) − (𝑊(𝑧𝑛 , 𝑣𝑛)) − 𝑊(𝑧𝑛−1, 𝑣𝑛−1)‖

+ 𝑡‖𝑢𝑛 − 𝑢𝑛−1‖                                         (5.14) 

Since 𝐴 is 𝜆𝐴-Lipschiyz continuous, we have 

‖𝑔(𝑢𝑛+1) − 𝑔(𝑢𝑛)‖

≤ [1 +
𝑡𝑞−1

𝑟 − 𝜌𝑚
(𝜌 + 𝜆𝐴)] ‖𝑚(𝑤𝑛) − 𝑚(𝑤𝑛−1)‖

+
𝑡𝑞−1

𝑟 − 𝜌𝑚
𝜆𝐴‖𝑢𝑛 − 𝑢𝑛−1 − (𝑔(𝑢𝑛) − 𝑔(𝑢𝑛−1))‖

+
𝑡𝑞−1

𝑟 − 𝜌𝑚
𝜌‖𝑁(𝑥𝑛, 𝑦𝑛) − 𝑁(𝑥𝑛−1, 𝑦𝑛−1) − (𝑊(𝑧𝑛 , 𝑣𝑛)) − 𝑊(𝑧𝑛−1, 𝑣𝑛−1)‖

+ (
𝑡𝑞−1

𝑟 − 𝜌𝑚
𝜆𝐴 + 𝑡) ‖ 𝑢𝑛 − 𝑢𝑛−1‖               (5.15) 

Since 𝑚 is Lipschitz continuous with constant 𝜆𝑚 and 𝐺 is ℋ –Lipschits continuous with constant 𝛿, we have 

‖𝑚(𝑤𝑛) − 𝑚(𝑤𝑛−1)‖ ≤ 𝜆𝑚‖𝑤𝑛 − 𝑤𝑛−1‖ ≤ 𝜆𝑚ℋ(𝐺(𝑢𝑛) − 𝐺(𝑢𝑛−1)) 

≤ 𝜆𝑚𝛿‖ 𝑢𝑛 − 𝑢𝑛−1‖                                                (5.16) 

Since 𝑔 is (𝑏, 𝜉)-relaxed cocoercive and 𝜆𝑔-Lipschitz continuous, we have 

‖𝑢𝑛 − 𝑢𝑛−1 − (𝑔(𝑢𝑛) − 𝑔(𝑢𝑛−1))‖
𝒒
 

≤ ‖𝑢𝑛 − 𝑢𝑛−1‖𝒒 − 𝑞〈𝑔(𝑢𝑛) − 𝑔(𝑢𝑛−1), 𝒥𝑞(𝑢𝑛 − 𝑢𝑛−1)〉 + 𝐶𝑞‖(𝑔(𝑢𝑛) − 𝑔(𝑢𝑛−1))‖
𝒒
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≤ ‖𝑢𝑛 − 𝑢𝑛−1‖𝒒 + 𝑞𝑏‖(𝑔(𝑢𝑛) − 𝑔(𝑢𝑛−1))‖
𝒒

− 𝑞𝜉‖𝑢𝑛 − 𝑢𝑛−1‖𝒒 + 𝐶𝑞𝜆𝑔
𝑞‖𝑢𝑛 − 𝑢𝑛−1‖𝒒 

≤ ‖𝑢𝑛 − 𝑢𝑛−1‖𝒒 + 𝑞𝑏𝜆𝑔
𝑞‖𝑢𝑛 − 𝑢𝑛−1‖𝒒 − 𝑞𝜉‖𝑢𝑛 − 𝑢𝑛−1‖𝒒 + 𝐶𝑞𝜆𝑔

𝑞‖𝑢𝑛 − 𝑢𝑛−1‖𝒒 

= (1 − 𝑞𝜉 + (𝑞𝑏 + 𝐶𝑞)𝜆𝑔
𝑞)‖𝑢𝑛 − 𝑢𝑛−1‖𝒒 

Thus, we have 

‖𝑢𝑛 − 𝑢𝑛−1 − (𝑔(𝑢𝑛) − 𝑔(𝑢𝑛−1))‖ ≤ √1 − 𝑞𝜉 + (𝑞𝑏 + 𝐶𝑞)𝜆𝑔
𝑞‖ 𝑢𝑛 − 𝑢𝑛−1‖                                     (5.17) 

Also  

‖𝑁(𝑥𝑛 , 𝑦𝑛) − 𝑁(𝑥𝑛−1, 𝑦𝑛−1) − (𝑊(𝑧𝑛 , 𝑣𝑛) − 𝑊(𝑧𝑛−1, 𝑣𝑛−1))‖
𝑞

≤ ‖𝑁(𝑥𝑛 , 𝑦𝑛) − 𝑁(𝑥𝑛−1, 𝑦𝑛−1)‖𝑞

− (𝑞 − 𝐶𝑞)‖𝑊(𝑧𝑛 , 𝑣𝑛) − 𝑊(𝑧𝑛−1, 𝑣𝑛−1)‖𝑞                               (5.18) 

By using Lipschitz continuity of 𝑁 with constant 𝜆𝑁1
for the first argument and 𝜆𝑁2

 for the second argument 

and ℋ-Lipschitz continuity of 𝐵 and 𝐶 with constants 𝛼 and 𝛽, respectively, we have 

‖𝑁(𝑥𝑛 , 𝑦𝑛) − 𝑁(𝑥𝑛−1, 𝑦𝑛−1)‖ 

= ‖𝑁(𝑥𝑛 , 𝑦𝑛) − 𝑁(𝑥𝑛−1, 𝑦𝑛−1) + 𝑁(𝑥𝑛 , 𝑦𝑛−1) − 𝑁(𝑥𝑛−1, 𝑦𝑛−1)‖ 

≤ ‖𝑁(𝑥𝑛 , 𝑦𝑛) − 𝑁(𝑥𝑛−1, 𝑦𝑛−1)‖ + ‖𝑁(𝑥𝑛 , 𝑦𝑛−1) − 𝑁(𝑥𝑛−1, 𝑦𝑛−1)‖ 

≤ 𝜆𝑁2
‖𝑦𝑛 − 𝑦𝑛−1‖ + 𝜆𝑁1

‖𝑥𝑛 − 𝑥𝑛−1‖ 

= (𝜆𝑁1
𝛼 + 𝜆𝑁2

𝛽)‖𝑢𝑛 − 𝑢𝑛−1‖                                                                                  (5.19) 

Thus  

‖𝑁(𝑥𝑛 , 𝑦𝑛) − 𝑁(𝑥𝑛−1, 𝑦𝑛−1)‖𝑞 ≤ (𝜆𝑁1
𝛼 + 𝜆𝑁2

𝛽)
𝑞

‖𝑢𝑛 − 𝑢𝑛−1‖ 𝑞                  (5.20) 

Using the similar arguments as for (5.19), we have 

‖𝑊(𝑧𝑛 , 𝑣𝑛) − 𝑊(𝑧𝑛−1, 𝑣𝑛−1)‖𝑞 ≤ (𝜆𝑊1
𝛾 + 𝜆𝑊2

𝜇)
𝑞

‖𝑢𝑛 − 𝑢𝑛−1‖ 𝑞              (5.21) 

Using (5.20) and (5.21), (5.18) becomes 

‖𝑁(𝑥𝑛 , 𝑦𝑛) − 𝑁(𝑥𝑛−1, 𝑦𝑛−1) − [𝑊(𝑧𝑛 , 𝑣𝑛) − 𝑊(𝑧𝑛−1, 𝑣𝑛−1)]‖𝑞

= [(𝜆𝑁1
𝛼 + 𝜆𝑁2

𝛽)
𝑞

− (𝑞 − 𝐶𝑞)(𝜆𝑊1
𝛾 + 𝜆𝑊2

𝜇)
𝑞

]‖𝑢𝑛 − 𝑢𝑛−1‖ 𝑞                                 (5.22) 

It follows that  

‖𝑁(𝑥𝑛 , 𝑦𝑛) − 𝑁(𝑥𝑛−1, 𝑦𝑛−1) − (𝑊(𝑧𝑛 , 𝑣𝑛) − 𝑊(𝑧𝑛−1, 𝑣𝑛−1))‖

≤ √(𝜆𝑁1
𝛼 + 𝜆𝑁2

𝛽)
𝑞

− (𝑞 − 𝐶𝑞)(𝜆𝑊1
𝛾 + 𝜆𝑊2

𝜇)
𝑞𝑞

‖𝑢𝑛 − 𝑢𝑛−1‖  

                                                                                                                   (5.23) 

Combining (5.16), (5.17), (5.23) with (5.15), we obtain 

 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                             www.jetir.org (ISSN-2349-5162) 

JETIR1906A73 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 486 
 

‖𝑔(𝑢𝑛+1) − 𝑔(𝑢𝑛)‖

≤ [𝜆𝑚𝛿 +
𝑇𝑞−1𝜆𝑚𝛿

𝑟 − 𝜌𝑚
(𝜌 + 𝜆𝐴)] ‖𝑢𝑛 − 𝑢𝑛−1‖

+
𝑇𝑞−1𝜌

𝑟 − 𝜌𝑚
𝜆𝐴 √1 − 𝑞𝜉 + (𝑞𝑏 + 𝐶𝑞)𝜆𝑔

𝑞𝑞
‖𝑢𝑛 − 𝑢𝑛−1‖

+
𝑇𝑞−1𝜌

𝑟 − 𝜌𝑚
√(𝜆𝑁1

𝛼 + 𝜆𝑁2
𝛽)

𝑞
− (𝑞 − 𝐶𝑞)(𝜆𝑊1

𝛾 + 𝜆𝑊2
𝜇)

𝑞𝑞

 ‖𝑢𝑛 − 𝑢𝑛−1‖

+ ( 
𝑇𝑞−1𝜆𝐴

𝑟 − 𝜌𝑚
+ 𝑡) ‖𝑢𝑛 − 𝑢𝑛−1‖ 

≤ [𝜆𝑚𝛿 +
𝑇𝑞−1𝜆𝑚𝛿

𝑟 − 𝜌𝑚
(𝜌 + 𝜆𝐴) +

𝑇𝑞−1𝜌

𝑟 − 𝜌𝑚
𝜆𝐴 √1 − 𝑞𝜉 + (𝑞𝑏 + 𝐶𝑞)𝜆𝑔

𝑞𝑞

+
𝑇𝑞−1

𝑟 − 𝜌𝑚
𝜌 √(𝜆𝑁1

𝛼 + 𝜆𝑁2
𝛽)

𝑞
− (𝑞 − 𝐶𝑞)(𝜆𝑊1

𝛾 + 𝜆𝑊2
𝜇)

𝑞𝑞

+
𝑇𝑞−1

𝑟 − 𝜌𝑚
𝜆𝐴 + 𝑡] ‖𝑢𝑛

− 𝑢𝑛−1‖                                            (5.24)    

By the strong accretivity of 𝑔 with constant 𝑙. We have 

‖𝑔(𝑢𝑛+1) − 𝑔(𝑢𝑛)‖. ‖𝑢𝑛+1 − 𝑢𝑛‖𝑞−1 ≥ 〈𝑔(𝑢𝑛+1) − 𝑔(𝑢𝑛), 𝒥𝑞(𝑢𝑛+1 − 𝑢𝑛)〉 

                                  ≥ 𝑙‖𝑢𝑛+1 − 𝑢𝑛‖𝑞 

Which implies that 

‖𝑢𝑛 − 𝑢𝑛−1‖ ≤
1

𝑙
‖𝑔(𝑢𝑛+1) − 𝑔(𝑢𝑛)‖                                                 (5.25) 

Combining (5.24) and (5.25), we have 

‖𝑢𝑛+1 − 𝑢𝑛‖ ≤ 𝜃‖𝑢𝑛 − 𝑢𝑛−1‖                                                             (5.26) 

Where 

𝜃 = [𝜆𝑚𝛿 +
𝑇𝑞−1𝜆𝑚𝛿

𝑟 − 𝜌𝑚
(𝜌 + 𝜆𝐴) +

𝒯𝑞−1𝜌

𝑟 − 𝜌𝑚
𝜆𝐴 √1 − 𝑞𝜉 + (𝑞𝑏 + 𝐶𝑞)𝜆𝑔

𝑞𝑞

+
𝑇𝑞−1

𝑟 − 𝜌𝑚
𝜌 √(𝜆𝑁1

𝛼 + 𝜆𝑁2
𝛽)

𝑞
− (𝑞 − 𝐶𝑞)(𝜆𝑊1

𝛾 + 𝜆𝑊2
𝜇)

𝑞𝑞

+
𝑇𝑞−1

𝑟 − 𝜌𝑚
𝜆𝐴 + 𝑡] /𝑙 

By (5.13), we know that 𝜃 < 1 and so (5.26) implies that {𝑢𝑛} is a Cauchy sequence. Thus, there exists 𝑢 ∈ 𝐸 

such that 𝑢𝑛 → 𝑢 as 𝑛 → ∞. By the ℋ-Lipschitz continuity of set-valued mappings 𝐵, 𝐶, 𝐷, 𝐹 and 𝐺 and (5.6)-

(5.11) of Algorithm (5.1), it follows that 𝑥𝑛 → 𝑥, 𝑦𝑛 → 𝑦, 𝑧𝑛 → 𝑧, 𝑣𝑛 → 𝑣 and 𝑤𝑛 → 𝑤. 

As 𝐴, 𝜂, 𝑀, 𝑁, 𝑊, 𝐵, 𝐶, 𝐷, 𝐹, 𝐺, 𝑚, 𝑔 and 𝑅𝜂,𝑀
𝜌,𝐴

 are all continuous and by Algorithm (5.1), it follows that 

𝑢, 𝑥, 𝑦, 𝑧, 𝑣, 𝑤 satisfy the following relation. 

𝑔(𝑢) = 𝑚(𝑤) + 𝑅𝜂,𝑀(∙,𝑢𝑛)
𝜌,𝐴 [𝐴(𝑔(𝑢) − 𝑚(𝑤)) − (𝑁(𝑥, 𝑦) − 𝑊(𝑧, 𝑣) + 𝑚(𝑤))] 

It follows that (𝑢, 𝑥, 𝑦, 𝑧, 𝑣, 𝑤) is a solution of generalized quasi-variational-like inclusion problem. This 

completes the proof. 
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