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Abstract 

 

It is shown that weakly essential supplemented modules need not be closed under extension (i.e. if U and M/U are 

weakly essential supplemented then M need not be weakly essential supplemented). We  prove that,  if  U has a weak essential 

supplement in M  then M  is weakly essential supplemented. For a commutative ring R, we prove that R is semilocal if and only if 

every direct product of simple R-modules is weakly essential supplemented. 
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Introduction 

 

Throughout, R is a commutative ring with identity and M is a unital left R-module.  By N ⊆ M , we mean that N  is a 

submodule of M. A submodule  L ⊆ M is said to be essential in M, denoted as L ⊴ M, if  L ∩ N ≠ 0  for every nonzero 

submodule N ⊆ M. . A submodule S of M is called small (in M), denoted as S ≪ M if M ≠ S + L for every proper submodule L 

of M. By Rad M we denote the sum of all small submodules of M or, equivalently the intersection of all maximal submodules of 

M. A ring R is said to be semilocal if R/ Rad R is semisimple. R is semilocal if and only if R has only finitely many maximal 

ideals. A module M is supplemented , if every submodule N of M has a supplement, i.e. a submodule K minimal with respect to 

N + K = M. K is a supplement of N in M if and only if N + K = M and  N ∩ K ≪ K . If N + K = M and N ∩ K ≪ M then K is 

called a weak supplement of N . M is a weakly essential supplemented module if every submodule of M has a weak essential 

supplement. By K we denote the set of all maximal ideals of R. Let R be a domain and M be an R-module. The submodule 

T(M) = {m ∈ M ∶ rm = 0 for some 0 ≠ r ∈ R} is called the torsion submodule of M, and if M=T(M) then M is called a torsion 

module. 

 In this paper we show that the class of weakly essential supplemented modules need not be closed under extensions, that 

is if U and M/U are weakly supplemented for some submodule U of M then M need not be weakly essential supplemented. But  if 

U has a weak essential supplement in M we show that M is weakly essential  supplemented. We prove that a commutative ring R is 

semilocal if and only if every direct product of simple R-modules is weakly essential  supplemented. Let R be a Dedekind domain. 

We obtain that an R-module M is weakly essential  supplemented if and and only if T (M) and M/T (M) are weakly essential 

supplemented and T (M) has a weak essential supplement in M. If M is a torsion R-module with Rad M ≪ M then every 

submodule of M is weakly essential  supplemented. 

 

Extensions of weakly essential supplemented modules 

 

A submodule N  of a module M  is called closed  in M if  N ⊴ K  for some K ⊆ M implies K=N. A submodule N of M is 

called coclosed in M if  N/K≪M/K for some K ⊆ M implies K = N . 

 

Theorem 2.1:  Let 0 → L → M → N → 0 be a short exact sequence. If L and N are weakly essential supplemented and L  has a 

weak essential supplement in M  then M is weakly essential supplemented. 

              If L is coclosed in M then the converse holds, that is if M is weakly essential supplemented then L and N are weakly 

essential supplemented. 

 

Proof.  Without restriction of generality we will assume that L⊆M. Let   S be a weak supplement of L in M i.e. L +  S =  M and 

L ∩ S ≪ M . Then we have, 

                                         M/(L ∩ S) = L/(L ∩ S) ⨁ S/(L ∩ S) 

L/L ∩ S is weakly essential supplemented as a factor module of L. On the other hand, S/(L∩ S) ≅ M/L≅ N is weakly essential 

supplemented. Then M/(L ∩ S) is weakly essential supplemented as a sum of weakly essential supplemented modules. Therefore 

M is weakly essential supplemented. 

               Suppose that L  is coclosed. Then L ∩ S ≪ L  i.e.   L is a supplement of S in M. Therefore L is weakly essential 

supplemented. 

 

 

Proposition 2.2.  Let R be a semilocal ring (not necessarily commutative) and M be an R-module. Suppose           U ⊆  M such that 

M/U is finitely generated. If U is weakly essential supplemented then M is weakly essential supplemented. 
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Proof. Suppose M/U is generated by 

                                 m1 + U, m2 + U,..., mn + U. 

For  the submodule K = Rm1 +  Rm2 + ……+ Rmn we have U + K = M. Then M is weakly essential 

 

 supplemented. 

 

The following well known lemma is given for completeness. 

 

Lemma 2.3. Let M be a module and U be a finitely generated submodule of M contained in Rad M. Then U is small in M. 

                 A module M is said to be locally noetherian if every finitely generated submodule of M is noetherian. 

 

Proposition 2.4. Let M be a locally noetherian module and X  ⊆ Rad M. Suppose M/X is finitely  

generated. If X and M/X are weakly essential supplemented then M is weakly essential supplemented. 

 

Proof. Since M/X finitely generated, X + L = M  for some finitely generated submodule L of M. Then               X ∩  L ⊆ X ⊆  
Rad M  is finitely generated, because L is finitely generated and M  is locally noetherian. So  X ∩ L ≪ M.  Thus L is a weak 

essential supplement of X in M. Therefore M is weakly essential supplemented by Theorem 2.1. 

              

           We shall give an example in order to prove that the class of weakly essential supplemented modules need be closed under 

extensions. The following lemmas will be useful to present this example. 

 

Lemma 2.5.  Let R be a Dedekind domain. For an R- module M the following are equivalent: 

1. M  is injective, 

2. M  is divisible, 

3. M = PM for every maximal ideal P of R, 

4. M does not contain any maximal submodule. 

 

              Note that if M is divisible module over a Dedekind domain then Rad M =M. Hence if N is a module with Rad N= 0 then 

N does not contain divisible submodule. 

 

Lemma 2.6. Let R be a domain and 𝔭 a maximal ideal of R. Then for every 𝔭 -primary R-module M, M/ Rad M is semisimple. 

 

 

Corollary 2.7. Let R be a Dedekind domain and M a torsion R-module, then M/ Rad M is semisimple. 

Proof. Since R is a Dedekind domain and M a torsion R-module, we have 

                                                  M = ⨁𝔭ϵΩT𝔭(M) 

Then                            M/ Rad M  =  [  ⨁𝔭ϵΩT𝔭(M) ] /[ ⨁𝔭ϵΩ Rad T𝔭(M)] 

                                                       ≅ ⨁𝔭ϵΩ[T𝔭(M) ∕ Rad T𝔭(M)] 

is semisimple by Lemma 2.6. 

 

 Lemma 2.8. Let R be a Dedekind domain and K  be the field of quotients of R. Then RK is weakly essential supplemented. 

 

Proof.  Since R is a Dedekind domain and K/R is a torsion R-module, we have K/R ≅ ⨁𝔭ϵΩT𝔭(K/R) 

so K/R is supplemented by Theorem 2.4. Since R is finitely generated and Rad K = K we have R≪ K. Therefore K is weakly 

essential supplemented by Proposition 2.2 . 

 

Lemma 2.9.  Let R be a Dedekind domain and {𝔭i } i∈I be an infinite collection of distinct maximal ideals of R. Let M =∏  i∈I
 (R/ 𝔭 

i) be the direct product of the simple R-modules R/þi and T = T (M) be the torsion submodule of M. Then the following hold: 

          (1) M/T  is divisible, therefore M/T  ≅  KJ
 for some index set J. 

            (2)   Rad M = 0. 

 

Proof. (1)  Let be a maximal ideal of R. Then Then 𝔭 (M/T ) = (𝔭 M + T )/T . Now if þ is not one of the ideals    { 𝔭 i }i∈I then 𝔭 M + 

T = M and so  𝔭(M/T ) = M/T. Suppose 𝔭 ∈ {𝔭i } i∈I say 𝔭 =  𝔭j  for some j ∈ I then          𝔭M = M(j)̅ where M(j)̅ consists of of 

those elements of M whose j th coordinate is zero. Let M(j) be the submodule of M whose all coordinates except j th are zero. 

Clearly M(j) ⊆ T . Then M = M(j)̅ +  M(j) ⊆  𝔭M + T, so 𝔭M + T = M and hence þ(M/T ) = M/T . Therefore by Lemma 2.5 M/T 

is divisible, and since it is torsion-free we have M/T  ≅  KJ. 
 

(2) M/ M(j)̅ ≅ R/𝔭j  is a simple module, so M(j)̅ is a maximal submodule of M for every j ∈ I. Then     we get Rad M ⊆∩j∈I  M(j)̅ 

= 0. 

 

Lemma 2.13. Let R be a domain and M be an R-module. Then the torsion submodule T (M) of M is closed in M. 

                    

              Note that over a Dedekind domain a submodule is closed if and only if it is co-closed. 
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Proposition 2.14. Let R be a Dedekind domain and M be an R-module.Then the following holds.  

1. If M is weakly essential supplemented then T (M) and M/T (M) are weakly essential supplemented. 

If T (M) has a weak essential supplement in M then the converse holds. 

2. If Rad T (M)≪ M then M is weakly essential supplemented if and only if T(M) has a weak essential supplement in M  and M/T 

(M) is weakly essential supplemented. 

3. Suppose M is torsion. Then M is weakly essential supplemented if Rad M is weakly essential supplemented and has a weak 

essential supplement in M. 

4. Suppose M/ Rad M is finitely generated and Rad M ⊴ M. Then M is weakly essential supplemented if Rad M is weakly essential  

supplemented. 

 

                  Proof.  (1) Suppose M is weakly supplemented. Then T (M) is a weak supplement in M. Since T (M) is also        coclosed it is a 

supplement in M by ([5], Lemma 1.1). Then T (M) and M/T (M) are weakly supplemented by Proposition 2.2(5) in [8]. 

             (2) If T (M) has a weak supplement then M is weakly supplemented by Theorem 2.1. 

               T (M)/ Rad T (M) is semisimple by Lemma 2.7 so it is weakly supplemented. Then T (M) is weakly  essential supplemented by 

Proposition 2.2(4) in [8]. Then the proof is clear by (1). 

              (3) By Lemma 2.7 M/ Rad M is semisimple. Then the proof is clear by Theorem 2.1. 

              (4) Suppose M/ Rad M is generated by            

                                           m1 + Rad M, m2 + Rad M,..., mn + Rad M 

Then for the finitely generated submodule K= Rm1 +  Rm2  +Rmn  we have Rad M  + K =  M and    K ∩ Rad M is finitely 

generated as K  is finitely generated, so K ∩ Rad M≪ M  by Lemma 2.3 i.e. K  is a weak essential supplement of Rad M in M. 

               By ([2] Proposition 9.15)  Rad(M/ Rad M)=0, and since Rad M ⊴ M, M/ Rad M is torsion. Therefore M/ Rad M is 

semisimple by Lemma 2.7. Hence M is weakly essential supplemented by Theorem 2.1. 

 

               A module M is called coatomic if every proper submodule of M is contained in a maximal submodule of M. Over a 

commutative noetherian ring every submodule of a coatomic module is coatomic (see Lemma 1.1 in [15]). Note that coatomic 

modules have small radicals. 

 

Proposition 2.15. Let R be a Dedekind domain and M be a torsion R- module. If Rad M ≪ M then every submodule of M is 

weakly essential supplemented. 

Proof. The module M/ Rad M is  semisimple  by  Lemma  2.7.  Since  Rad M ≪  M, every submodule of M  is contained in a 

maximal submodule i.e. M is coatomic. Let N be a submodule of M. Then N is coatomic so Rad N≪ N , and since N is torsion, 

N/ Rad N is semisimple. Hence N is weakly essential supplemented by Proposition 2.2(4) in [8]. 

 

              A domain R is said to be one-dimensional if R/I is artinian for every nonzero ideal I of R. One-dimensional domains are 

proper generalizations of Dedekind domains. 

 

Lemma 2.16. Let R be a ring,I ≪ R and M  be an R-module. If IM has a weak supplement K in M, then K is a weak essential 

supplement of InM in M for every n ≤ 1. 

 

Proof.  By hypothesis     IM + K = M and I2M + IK = IM      ,so  I2M + IK + K = IM + K which gives                   I2M + K = M. 

Continuing in this way we get: 

 

                          InM + K = M and InM ∩ K ⊆ IM ∩ K M.  

This means that K is a weak essential supplement of InM in M.     

 

Proposition 2.17. Let R be a one-dimensional domain and M be an R-module. Suppose that I is a nonzero ideal of R. If InM is 

weakly essential supplemented and IkM has a weak essential supplement in M for some k ≤ n, then M is weakly essential 

supplemented. 

 

Proof. Since R is a  domain In  ≠ 0 . So  R/In is  an  artinian  ring  because R is one-dimensional. Then M/InM is a supplemented 

R/In-module by Theorem 24.25 in [7] and Theorem 4.41 in [9]. Hence M/InM is a weakly essential supplemented R-module. By 

Lemma 2.16, InM has a weak essential supplement in M. Therefore by Theorem 2.1, M is weakly essential supplemented. 

 

Corollary 2.18. Let R be a one-dimensional domain and M be an R- module. If rM is weakly essential supplemented for 

some 0≠ r ∈ R and has a weak supplement in M then M is weakly essential supplemented. 
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