Study of Convex hull of a Set
 \&

Balanced set

By
Dr. Kumar Swetank
Jai Prakash University,Chapra(Saran), Bihar, India

Abstract

In this work we confine ourselves to that branch of functional Analysis which deals with some advancement in the theory of linear spaces and allied topics in functional Analysis. The whole work is based on the following new types of set called C-Set. C-Set in a real or complex linear space. It is the generalisation of convex set.

I. INTRODUCTION

This research work concerns that branch of functional analysis, which deals with the theory of linear spaces. The whole work has been divided into four parts. In this paper we have introduced a new type of set, called C-Set in a real or complex space. We study C-Set in linear and Hilbert spaces.

If A be a Non-empty sub set of a linear space L. If for $x, y \in A, \alpha x-\beta y \in A$, where $0 \leq \alpha$ and $0 \leq \beta$ and $\alpha+\beta=1$, then we define A to be a C-Set. Choosing $\alpha=\beta=\frac{1}{2}, y=x$, then $\frac{1}{2} x-\frac{1}{2} x=0 \in A$.

Choosing $\alpha=0, \beta=1$, we see that $-y \in A$. also, taking -y in place of $\mathrm{y}, \quad \alpha x-\beta(-y)=\alpha x+\beta y \in A$. Hence a C -Set is also a convex set. But as it is clear from the definition, a convex set is not necessarily a C-Set. Thus a C-Set is more general than a convex set.

Also 0 is an element of every C-Set which is not true in case of a convex set. It is also clear that a non-empty set A is a C-Set if and only if for $\alpha \geq 0, \beta \geq 0, \alpha+\beta=1, \alpha x \pm \beta y \in A$. We have defined the hull of a set A , denoted by $C_{H}(A)$, in a linear space L . $C_{H}(A)$ is the set of all linear combination of members of A, that is, the set of all sums $\alpha_{1} x_{1} \pm \alpha_{2} x_{2} \pm \ldots \ldots \pm \alpha_{n} x_{n}$ in which $x_{i} \in A, \alpha_{i} \geq O_{\text {and }} \sum_{i=1}^{n} \alpha_{i}=1 \quad n$ being arbitrary. A few theorems concerning hull are as follows: If A be set in linear space L . Then $C_{H}(A)$ is a C-Set. Let A be a set in a linear space L . Then $C_{H}(A)$ is the intersection of all C -Sets containing A. If A and B are subsets of a linear space L such that

$$
A \subseteq B_{\text {then }} \quad C_{H}(A) \subseteq C_{H}(B)
$$

Definition: (I).The Convex hull of a set A in a Vector L in sort denoted by $C(A)$ is the set of all sums .
$t_{1} x_{1}+t_{2} x_{2}+\ldots \ldots+t_{n} x_{n}$, in which $x_{i} \in A, t_{i} \geq 0, \Sigma t_{i}=1 ; n$ being arbitrary.
(II). Let A be a Sub set of a linear space L then the Smallest balanced set containing A is called the balanced extension of A , in sort is denoted by B (A).

Theorem: Let A be a subset of a linear space L,

$$
\text { Then } B\left(C_{H}(A)\right) \subseteq\left(C_{H} B(A)\right)
$$

Proof: First we show that $B(A)=\bigcup_{\alpha}\{\alpha A:|\alpha| \leq 1\} \quad$ Let $D=\bigcup_{\alpha}\{\alpha A:|\alpha| \leq 1\} \quad$ Taking $\alpha=1, A \subseteq D$.Let $x \in D$ then $x=\alpha a$ for $a \in A$ and some α such that $|\alpha| \leq 1$. Let β be a scalar such that $|\beta| \leq 1$. Then $\beta x=\beta \alpha A$, where $|\beta \alpha|=|\beta| .|\alpha| \leq 1$.

Therefore $\beta x \in \beta \alpha A \subseteq D$.Hence D is balanced. Let S be a set such that $A \subseteq S$ and S is balanced. Let $x \in D$ then $x=\alpha a$, where $a \in A,|\alpha| \leq 1$. But $A \subseteq S \Rightarrow a \in S$ Since S is balanced, $\alpha a \in S$, Thus $x \in S$. Hence $x \in D \Rightarrow x \in S$. Therefore $D \subseteq S$.Hence D is the smallest balanced set containing A. So we conclude that

$$
B(A)=D=\bigcup_{\alpha}\{\alpha A:|\alpha| \leq 1\}
$$

Let z be an element of $B\left(C_{H}(A)\right)$.From above result $B\left(C_{H}(A)\right)=\underset{\alpha}{\cup}\left\{\alpha C_{H}(A):|\alpha| \leq 1\right\}$.So we see that $z \in \alpha C_{H}(A)$ for some α such that $|\alpha| \leq 1$. Hence we can write
$z=\alpha t_{1} a_{1} \pm \alpha t_{2} a_{2} \pm \ldots \ldots \ldots \pm \alpha t_{n} a_{n}, \quad$ where $a_{i} \in A, t_{i} \geq 0$ and $\quad \Sigma t_{i}=1$

Hence $\quad z=t_{1}\left(\alpha a_{1}\right) \pm t_{2}\left(\alpha a_{2}\right) \pm \ldots \ldots \ldots . \pm t_{n}\left(\alpha a_{n}\right)$. Now $a_{i} \in A \Rightarrow \alpha a_{i} \in B(A)$.

Therefore $z \in C_{H}(B(A))$. Thus $z \in B\left(C_{H}(A)\right) \Rightarrow z \in C_{H}(B(A))$.

$$
\text { Hence } B\left(C_{H}(A)\right) \subseteq C_{H}(B(A)) \text {. }
$$

