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Abstract: The main purpose of this paper is to delineate the results for the electromagnetic field tensor in magnetohydrodynamical 
approximations. The fundamental governing equations for electromagnetic field tensor have been obtained under MHD 

approximations. The vorticity is also discussed under the same approximations. 
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1. INTRODUCTION: 

In this paper we develop results for the electromagnetic field tensor 𝐻𝑎𝑏 in the MHD approximation. Lichnerowicz [1] has shown 

that 

ℒ𝑢𝐻𝛼𝛽 = 0                                                         (1.1) 

wherein 𝐿𝑢 

denotes the Lie derivative with respect to the velocity 4-vector 𝑢𝛼. 

And 

ℒ𝐵𝐻𝛼𝛽 = 0                                                          (1.2) 

wherein 𝐿𝐵 denotes the magnetic induction 4-vector 𝐵𝛼. 

It is to be noted that the dot indicates the covariant derivative along a particle world line is given by 

𝐴�̇� = 𝐴𝛼 ,𝛽 𝑈𝛽 

The following identities for the permutation tensor 𝜂𝑎𝑏𝑐𝑑  are defined as 

𝜂𝛼𝛽𝛾𝛿𝜂𝛼𝑟𝑠𝑡 = −3! {𝛿𝛽
𝑟𝛿𝛾

𝑠𝛿𝛿
𝑡 − 𝛿𝛾

𝑠𝛿𝛿
𝑡𝛿𝛽

𝑟}                              (1.3) 

𝜂𝛼𝛽𝛾𝛿𝜂𝛼𝛽𝑠𝑡 = −2! 2! {𝛿𝛾
𝑠𝛿𝛿

𝑡 − 𝛿𝛿
𝑡𝛿𝛾

𝑠}                               (1.4) 

In this paper we shall determine that equation (1.1) contracted with 𝐻𝛼𝛽 is equivalent to the divergence equation for 𝐵𝛼. We shall 

also develop the physical significance of equation (1.2) by showing that it is equivalent to the propagation equation for 𝐵𝛼. 

The analogy between the equations governing Ω
𝛼 = 𝑟𝜔𝛼 and  𝐵𝛼 in the magnetohydrodynamic approximation has been given in 

[4]. The analogy between magnetic field and the vorticity has given an application in the non-relativistic theory of 

magnetohydrodynamical turbulence and in the theory of gravitational collapse [1]. 

2. FUNDAMENTAL EQUATIONS: 

For sufficiently large time, a porous disk of infinite radius has been rotating about a fixed axis through its centre with constant 

velocity 𝜔. The constitutive equation of a fluid is given by [9] 

𝑃𝑖𝑘 = −𝑃𝛿 𝑖𝑘 + 2𝜇𝑔𝑖𝑘 − 2𝐾0𝑔
𝑖𝑘

                                 (2.1) 
 

𝑔
𝑖𝑗

= 𝑔𝑘
𝑖𝑗

𝑣𝑘 − 𝑔𝑖𝑘𝑣𝑘
𝑗

− 𝑔𝑘𝑗𝑣𝑘
𝑖 + 𝑔𝑖𝑗𝑣𝑘

𝑘                          (2.2) 

wherein 𝑃𝑖𝑘 is the stress tensor and 𝑔𝑖𝑗 is the rate of strain tensor and is given by 

2𝑔𝑖𝑘 = 𝑣𝑖𝑘 + 𝑣𝑘𝑖                                                  (2.3) 

In the magnetohydrodynamical approximation as 𝐸𝛼 = 0, then electromagnetic field tensor 𝐻𝛼𝛽 yields 

𝐻𝛼𝛽 = 𝜂𝛼𝛽𝛾𝛿𝐵𝛾𝑈𝛿                                               (2.4) 

Consequently 

𝐻𝛼𝛽 = −𝐻𝛽𝛼                                                     (2.5) 

𝐻𝛼𝛽𝑈𝛽 = 0                                                     (2.6)  
i.e. 

𝐻𝛽𝛼𝑈𝛼 = 0 

𝐻𝛼𝛽𝐵𝛽 = 0                                                             (2.7) 

i.e. 

𝐻𝛽𝛼𝐵𝛼 = 0 

By virtue of equation (1.4) 

𝐵𝛼 =
1

2
𝜂𝛼𝛽𝛾𝛿𝑈𝛽𝐻𝛾𝛿                                          (2.8) 

3.MAXWELL’S EQUATIONS AND MHD APPROXIMATIONS: 

Maxwell’s equations in the magnetohydrodynamical approximation are given by [9]. 

(𝐵𝛼𝑈𝛽 − 𝐵𝛽𝑈𝛼),𝛽 = 0                                           (3.1) 

These may be split up with regards to the projection tensor. 

ℎ𝛽
𝛼 = 𝑔𝛽

𝛼 + 𝑈𝛼𝑈𝛽                                                    (3.2) 
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And 𝑈𝛼 into the propagation equation for 𝐵𝛼. 

The electromagnetic field tensor 𝐻𝛼𝛽 in the magnetohydrodynamical approximation in general theory of relativity is given by [7] 

ℎ𝛽
𝛼𝐵�̇� + 𝜃𝐵𝛼 − 𝑈𝛼 ,𝛽 𝐵𝛽 = 0                                          (3.3) 

wherein 𝜃 = 𝑈,𝛼
𝛼  

The divergence equation for 𝐵𝛼 is given by 

𝐵𝛽
𝛼ℎ𝛽

𝛼 = 0                                                      (3.4) 

REMARK 3.1: It is noteworthy that the equation (1.2) is equivalent to the equation (3.3) and that the relation 

𝐻𝛼𝛽 (𝓛
𝑩

𝐻𝛼𝛽) = 0                                                (3.5) 

is equivalent to equation (3.3). 

First we define 

𝐴𝛼𝛽 = 𝓛
𝑼

𝐻𝛼𝛽 ,                                                    (3.6) 

On expressing 𝐻𝛼𝛽 in terms of 𝐵𝛼 by means of equation (2.4) and multiplying equation (3.6) by 
1

2
𝜂𝑓𝑔𝛼𝛽𝑈𝑔 on both sides and 

using the relation (1.2), we get 
1

2
𝜂𝑓𝑔𝛼𝛽𝑈𝑔𝐴𝛼𝛽 = ℎ𝑔

𝑓
𝐵�̇� + 𝜃𝐵𝑓 − 𝑈𝑓 ,𝑔 𝐵𝑔                    (3.7) 

From the properties of 𝐻𝛼𝛽, we get 𝐴𝛼𝛽 = −𝐴𝛽𝛼  and  𝐴𝛼𝛽𝑈𝛽 = 0 , operating 𝜂𝑓𝑟𝑠𝑡𝑈𝑡 we get 𝜂𝑓𝑔𝛼𝛽 𝑈𝑔𝐴𝛼𝛽 = 0 if and only if 

𝐴𝛼𝛽 = 0                                                         (3.8) 

Secondly we define 

𝐻𝛼𝛽 (𝓛
𝑩

𝐻𝛼𝛽) =
1

2
(𝐻𝛼𝛽𝐻𝛼𝛽),𝛾 𝐵𝛾 + 2𝐻𝛽𝛼𝐻𝛽𝛼𝐵𝛼

𝛾
                 (3.9) 

Express 𝐻𝛼𝛽 in terms of 𝐵𝛼 by using equation (2.4) and the relation (1.2), we get 

𝐻𝛼𝛽 (𝓛
𝑩

𝐻𝛼𝛽) = 2𝐵2𝐵𝛼 ,𝛽 ℎ𝛼,
𝛽

                                   (3.10) 

wherein 

𝐵2 = 𝐵𝛼𝐵𝛼 
Remark 3.2: It is to be noted that if 𝐵 ≠ 0, then equation (3.5) is satisfied if and only if equation (3.4) is also satisfied. 

4. VORTICITY IN MHD APPROXIMATIONS: 

Let us consider the relation 

𝑈𝛼𝛽 = 𝜎𝛼𝛽 +
1

3
𝜃ℎ𝛼𝛽 + 𝜔𝛼𝛽 − �̇�𝛼𝑈𝛽 ,                            (4.1) 

where in σαβ is the shear tensor. 

Inserting equation (4.1) into the equation (3.2), we get the propagation equation for electromagnetic field tensor 𝐻𝛼𝛽 . 

ℎ𝛼
𝛾

ℎ𝛽
𝛿(𝐻𝛾𝛿) +

2

3
𝜃𝐻𝛼𝛽 − 2 {(𝜎𝛼

𝛾
+ 𝜔𝛼

𝛾)𝐻𝛽𝛾 − (𝜎𝛽
𝛾

+ 𝜔𝛽
𝛾)𝐻𝛼𝛾} = 0       (4.2) 

On comparing with the propagation equation for 𝜔𝛼𝛽 and taking the skew symmetric part of the propagation equation for 𝑉𝛼𝛽 =

ℎ𝛼
𝛾

ℎ𝛽
𝛿𝑈𝛾𝛿 , we get 

ℎ𝛼
𝛾

ℎ𝛽
𝛿(𝜔𝛾𝛿) + (�̇�𝛾𝛿 − �̇�𝛿𝛾) +

2

3
𝜃𝜔𝛼𝛽 − 2(𝜎𝛼

𝛾
𝜔𝛽𝛾 − 𝜎𝛽

𝛾
𝜔𝛼𝛾) = 0      (4.3) 

In the MHD approximation, an acceleration potential 𝑟 is defined as [8] 

U̇α ≝ −hα
β(log r)β,                                                    (4.4) 

We have 

ℎ𝛼
𝛾

ℎ𝛽
𝛿(�̇�𝛾𝛿 − �̇�𝛿𝛾) = −ℎ𝛼

𝛾
ℎ𝛽

𝛿
�̇�

𝑟
𝜔𝛾𝛿                                     (4.5) 

If we take Ω𝛼𝛽 = 𝑟𝜔𝛼𝛽, then the equation (4.3) reduces in the form 

ℎ𝛼
𝛾

ℎ𝛽
𝛿Ω𝛾𝛿 +

2

3
𝜃Ω𝛼𝛽 − 2(𝜎𝛼

𝛾
Ω𝛽𝛾 − 𝜎𝛽

𝛾
Ω𝛼𝛾) = 0                     (4.6) 

If 𝜔𝛼
𝛾
Ω𝛽𝛾 − 𝜔𝛽

𝛾
Ω𝛼𝛾 = 0 then this equation for Ω𝛼𝛽 is the same equation (4.2) for 𝐻𝛼𝛽. 

Multiplying equation (2.4) on both side by 𝑈𝛽, we get 

𝐻𝛼𝛽𝑈𝛽 = 𝜂𝛼𝛽𝛾𝛿𝐵𝛾𝑈𝛿𝑈𝛽                                              (4.7) 

By virtue of equations (2.6) and (4.7), we get 

𝜂𝛼𝛽𝛾𝛿𝑈𝛽𝐵𝛾𝑈𝛿 = 0                                                  (4.8) 

Multiplying equation (3.2) by 𝐻𝛼𝛽, we obtain 

𝐻𝛼𝛽ℎ𝛽
𝛼 = 𝐻𝛼𝛽𝑔𝛽

𝛼 + (𝐻𝛼𝛽𝑈𝛼)𝑈𝛽                                   (4.9) 

Inserting equation (2.6) in the above equation, we obtain 

𝐻𝛼𝛽ℎ𝛽
𝛼 = 𝐻𝛼𝛽𝑔𝛽

𝛼                                              (4.10) 

Multiplying equation (2.8) by 𝑈𝛾 on both sides, we get 

�̇�𝛼𝑈𝛾 =
1

2
𝜂𝛼𝛽𝛾𝛿𝑈𝛽(𝐻𝛾𝛿𝑈𝛾)                                   (4.11) 

As a consequence of the equations (4.11) and (2.6), we obtain 

�̇�𝛼𝑈𝛼 = 0 
Equation (4.6) can be written as 

ℎ𝛼
𝛾

ℎ𝛽
𝛿Ω𝛾𝛿 +

2

3
𝑈𝛼

𝛼Ω𝛼𝛽 − 2(𝜎𝛼
𝛾
Ω𝛽𝛾 − 𝜎𝛽

𝛾
Ω𝛼𝛾) = 0                       (4.12) 
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Multiplying equation (4.12) by 𝐵𝛼
𝛾
 on both sides, we get 

(𝐵𝛼
𝛾

ℎ𝛼
𝛾

)ℎ𝛽
𝛿Ω𝛾𝛿 +

2

3
𝐵𝛼

𝛾
𝜃Ω𝛼𝛽 − 2𝐵𝛼

𝛾
(𝜎𝛼

𝛾
Ω𝛽𝛾 − 𝜎𝛽

𝛾
Ω𝛼𝛾) = 0              (4.13) 

By virtue of equations (3.4) and (4.13), we obtain 
2

3
𝐵𝛼

𝛾
𝜃Ω𝛼𝛽 − 2𝐵𝛼

𝛾(𝜎𝛼
𝛾
Ω𝛽𝛾 − 𝜎𝛽

𝛾
Ω𝛼𝛾) = 0                         (4.14) 

---------------- 
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