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Abstract: Perturbation methods were used to study the sound wave propagation in several acoustic wave guides with weak surface 

undulations. These methods are highly complicated and applicable only in a very narrow domain of the wave guide. Moreover, 

such solutions create singularities in the solution. Singularities in solution of physical problems originate due to unrealistic 

assumptions. Therefore, a much simpler and widely applicable analytical method of solution was developed using separation of 
variables method and presented recently to such wave guide problems. Then application of that solution to find wave propagation 

in several periodic and non periodic waveguide structures is enumerated. In this article, a new and simple method of solution 

based on separation of variables and it’s applications to analyze wave propagation problems in several waveguides with 

periodically variable boundaries and medium are explained.   

 

Index terms: A new method of separation of variables and wave motion in periodic structures. 

  

I. INTRODUCTION   
      A. H. Nayfeh, O. A. Kandil, A. M. Nusayr, G.V. Anand, M. K. George and V. Sundaravadivel [1 2 3 4 5 6 7] had studied the 

propagation of sound waves in simple acoustic wave guide with weak waves at the boundary using analytical methods.  They used 

perturbation methods which are applicable only to wave guides with low frequency and smaller amplitude surface waves. 

Moreover, perturbation method of solution generates singularity in the solution and complicates the determination of solution at 
points close to the singularity. Therefore, later on John Daniel [8] developed a simpler analytical solution based on the method of 

separation of variables. Then application of that solution to find wave propagation in several periodic waveguide structures is 

enumerated [9]. In this article another new method of solution based on separation of variables is presented and it’s application to 

solve several wave propagation problems is presented. First the theory based on the method of separation of variables to solve the 

wave propagation problem in a ocean acoustic waveguide with a wavy surface is presented and then the application of the method 

to solve wave propagation problems in several periodic acoustic, radio and optical waveguides is explained. 

 

II. THEORY 

Consider an oceanic wave guide with a wavy surface as shown in the following Figure-1. The surface wave is a single frequency 

wave propagating in x direction which can be expressed mathematically as 

Z = h (x, t) = h0 + a Cos (x - t)                                                                                                                                               (1) 

Where h0 is average channel depth, α is wave number,  is circular frequency and a is amplitude of the surface wave. Let i, Ci (i 
= 1,2) denote respectively the density and velocity of sound in the two media. Medium 2 is assumed to be a semi-infinite one. The 

interface between medium 1 and medium 2 is assumed to be flat.   
Let us assume that a plane sound wave propagates in the wave guide in the direction x.  The acoustic pressure P (x, y, z, t) can 

be determined by solving the wave equation.  

                                                                

0
1

2

2

22

2

2

2

2

2





















t

P

Cz

P

y

P

x

P

                                                                    (2) 

with boundary conditions 

 

P (x, y, z, t) = 0 at z = h (x, t)                                                                                                                                      (3.1) 

P(x , y, + 0, t) = P (x, y, -0, t)                                                                                                                                        (3.2) 

                                                                                                                                   (3.3) 
where Vz  is z component of particle velocity 

P  0 a  z  -                                                                                                                                                                 (3.4) 
 

Where +0 and  -0 indicates that the interface z = 0 is approached from the sides z > 0 and z < 0 respectively. 

Since there is no variation of pressure in y direction, equation  (2) can be written as 
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Figure-1 

 

Therefore, equation (4) can be written as  

∂2P/∂x2 + ∂2P/∂y2 + k2P = 0               

Where                                                                                                                                                                                                 (5) 
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Therefore, by separation of variables methods, 

P (x, z, t) = n (z).Px( x)                                                                                                                                                                  (7.1) 
Px(x) = Sin(ζn.x). Cos(n.α.x – Ωt)                                                                                                                                                    (7.2) 

The function n(z)  must satisfy the equation 
∂2ψn/∂z2 + (k2 – ζn

2- (nα)2).ψn = 0                                                                                                                                                       (8) 

with the boundary conditions  

n = 0 at z = h0                                                                                                                                                                           (9.1) 

n (+0) = n (-0)                                                                                                                                                                              (9.2) 
(1/ρ1).∂ψn/∂z = (1/ρ2).∂ψn/∂z                                                                                                                                                           (9.3) 

n    0 as z  -                                                                                                                                                                          (9.4) 
The solution to the equation (8) is 

n    = Nn sin n (z/h0 – 1) for 0 < z < h0 

= Cn eDnz for z < 0                                                                                                                                                                 (10) 

Where Nn, Cn, n  & Dn, are constants and n  must satisfy the ortho normality condition.  
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                                                                                                                                              (11) 

Where  (z)    = 1 for 0 < z < h 

= 2 for  z < 0 

and mn
 is kronecker delta. 

By substituting the equating (10) into equation (1) and (8) we get  
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ζn
2 = k1

2 – (αn)2 - (χn/h0)2                                                                                                                                                                                                                                                          (13) 

Dn = (ζn
2 + (αn)2 – k2

2)1/2                                                                                                                                                                                                                                                          (14) 

Substitution of equation (10) into equations (9b) & (9c) gives, 

-Nn sinn = Cn                                                                                                                                                                  (15) 
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Equations (13) to (16) can be combined to get 

Cot χn = - (q χn )-1 2/12
n
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(17) 

where q =  2 / 1  From equation (12) we get 
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χn can be found by solving the equation (17). 

Thus the complete analytical solution to the problem finding wave propagation in the waveguide is obtained. For Cn = 0,  n =  0 

at z = 0. Therefore, sin n = nπ, where n is a positive integer.  

The solution is P (x, z, t) =  Sin n (z/h0 – 1). Cos((α.n.x) - Ωt). Sin(ζn.x - ωt)                                                                                (19)  

 

III. APPLICATION-I 

      A. H. NAYFEH [1 2] DEVELOPED perturbation method to determine acoustic field inside a two dimensional acoustic 

waveguide with weakly undulating hard walls. This method is valid only for a waveguide with smaller waveguide undulations and 

the direct perturbation expansion results in solution which contains singularities at certain frequencies. At these resonant 

frequencies, method of multiple scales is used to find solutions at frequencies close to singularities. Such solutions are highly 

inaccurate at frequencies close to the singularities. As per the theory presented in this paper, solution to such wave motion 

problems is  

P( x, z, t ) = sin((z/h0-1).γz).cos(n.α.x). cos(n.β.x +θ).sin(γxx – ωt),where γz = nπ, γx = ((γz)2 –(nα)2 –(nβ)2- (ω/c)2)1/2                            (20) 

and boundaries are assumed to be at z = h1(x) = a.cos(αx) and z = h2(x) = h0+b.cos(βx+θ), where a, b, θ, α, β and h0 are constants 


A.H.Nayfeh assumed that h1(x) = a.cos(αx) and h2(x) = a.cos(αx+θ)                                                                                              (22) 

Therefore, solution presented here is more generalized solution.            

 

IV. APPLICATION-II 

       A.H.Nayfeh and O.A.Kandil [3] developed perturbation method to find the acoustic field inside a circular cylindrical 

waveguide with weakly undulating waveguide walls. As per theory presented in this paper the generalized solution to such wave 

propagation problems is 

P(r, φ, z, t) = Jn(r.h).(Ancos(n.φ) + Bn.sin(n.φ)).sin(γz.z – ωt). sin(n.k1.z) where Jn(a.h) = 0, r0(x) = a + b.Σ.αm.sin(kmx), γz = ( k2 – 

(nk1)2 - h2)1/2 , k = ω/c, m is an integer, αm, km, a and b are constants and r0(x) is a periodic function                                            (23) 

Jn(r.h) is a Bessel’s function of first kind of order n. 

 

V. APPLICATION-III 

A. M. Nusayr [4] applied perturbation methods developed by A. H. Nayfeh to solve wave propagation problem in a rectangular 

waveguide with weak hard wall undulations. To this wave propagation problem generalized solution is 

P(x,y,z,t)=sin((z/h0-1).γz).sin((y/w0-1).γy).cos(n.α.x). cos(β.n.x+θ). cos(m.α1.x). cos(m.β1.x+θ1).( sin(γxx – ωt), where γz = nπ, γy = 

mπ, γx = ((γz)2 +(γy)2- (nα)2 – (nβ)2 - (mα1)2 - (mβ1)2 - (ω/c)2)1/2                                                                                                      (24) 

and boundaries are assumed to be at z = h1(x) = a.cos(αx) and z = h2(x) = h0+b.cos(βx+θ), y = h3(x) = c.cos(α1.x) and y = h4(x) = 

w0+d.cos(β1.x+θ1), where a, b, c, d, θ, θ1, α, α1, β, β1, h0 and w0 are constants                                                                               (25)  

Waveguide dimensions h1, h2, h3, and h4 are periodic functions of x. Therefore, solution presented here is much more generalized 

solution as compared with that of A.M.Nusayr.            

 

VI. APPLICATION-IV 

M.A. Hawwa [5] has applied perturbation methods developed by Nayfeh, et al to study the wave propagation with a periodic 
square wall profile. Since the method developed in this article is applicable to waveguide with any type of periodic boundary 

variations, solutions developed in sections applications-I, II, III are valid to two dimensional, rectangular and circular cylindrical 

waveguides with any type of periodic boundary variations.  

 

VII. APPLICATION-V[6 7 8 9] 

In the theory presented in the first section, an underwater acoustic waveguide with a travelling sinusoidal surface on the top 

boundary of the waveguide and a semi infinite medium from the bottom flat boundary were assumed. However, in practice bottom 

floor of the ocean can’t be flat. Therefore, assumption of variable boundary at the oceanic floor will be closer to natural situation. 

Since the method developed in this article is applicable to waveguides with any type of periodic boundary variations, the 

generalized solution is applicable to ocean acoustic waveguides with any type of periodic surface and ocean floor variations. 

 

VIII. APPLICATION-VI[9 10 11] 

     One dimensional Photonic Band Gap (P.B.G.) materials with periodic defects and bound by metal planes on both sides are 

analyzed for their filtering behavior to develop nano scale electronic filters. Since dielectric medium varies periodically in the 

direction of propagation of electromagnetic wave, the velocity of electromagnetic signal could be described in the Fourier series 

form and the method of separation of variables could be applied to determine the solution to the wave propagation problem. The 

solution is E(x, z, t) = sin(γz.z).sin(n.(2π/l).x).sin(γxx – ωt), where γz = nπ/h0 , γx = ((nπ/h0)2-(2nπ/l)2- k2)1/2 , k = ω/c, l is the period 

of dielectric variation in x direction and c = 3x108 m/s                                                                                                                   (26) 
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This solution is applicable to any type of periodic dielectric medium ε(x) variations. The solution clearly indicates the dependency 

of filtering characteristics on dielectric medium variations. Therefore, by proper choice of c(x) all types of filters could be 

constructed.  

 

IX. APPLICATION-VII [9 10 11 12] 

     One and two dimensional PBG materials with air-dielectric interface and periodic defects are analyzed for their filtering 

behavior. The solution for TM wave propagation in one dimensional PBG material bound by air-dielectric interface  is H(x, z, t) = 

sin(γz.z). sin(γxx – ωt).sin((2nπ/l).x) or cos(γz.z).sin((2nπ/l).x).sin(γx.x - ωt) for 0 < z < h0 and H(x, z, t) =H0.e-γz for z > h0 and = 
H0e

γz  for z < 0 where h0 is the height of the dielectric material of the 1-D PBG material and γx, γz, γ and H0 are constants   

                                                                                                                                                                                                          (27) 

The unknown constants could be found by substituting the solution at the boundaries and in the wave equation. In the wave 

equation, k = ω/c and c = 3x108 m/s. This solution is applicable to any type of periodic dielectric medium ε(x) variations. The 

solution clearly indicates the dependency of filtering characteristics on dielectric medium variations. Therefore, by proper choice 

of c(x) all types of filters could be constructed.  

 

X. CONCLUSION 

     A much simpler analytical solution to the problem of finding wave propagation in several acoustic, radio and optical 

waveguides with periodic structures is explained which is applicable to periodic structures of any dimensions and parameter 

values without any singularity in the solution. The method of solution could be extended easily to 2 and 3 dimensions also. The 
method could be extended to analyze the ionosphere radio wave propagation and also to analyze the light wave propagation in 

optical waveguides with surface irregularities. 
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