Some properties of gR₁ **and pairwise** gR₁ **Spaces**

Yogesh Kumar¹, Padmesh Tripathi² and V. K. Sharma³

^{1,2}Deptt. of Applied Science and Humanities IIMT College of Engineering, Greater Noida, U.P. (India)

³Deptt. of Mathematics D.N. (P.G.) College, Gulaothi Bulandshahr, U.P. (India)

Abstract

In this paper, we introduce gR_1 spaces and the bitopological analogue of gR_1 axiom by naming as pairwise gR_1 spaces.

Key words: gR₁ axiom, g-cl, g-ker.

1. Introduction

In 1963, N. Levine [5] offered a new notion to the field of general topology by introducing semi-open sets and defined this notion by utilizing the known notion of closure of an open set. By using semi-open sets semi- R_1 introduced by C. Dorsett [1]. In this paper we study and introducing the semi- R_1 separation axiom of topological spaces in terms of g-open sets called g R_1 -axiom. Also by replacing open sets by g-open sets in pairwise R_1 axioms of Murdeshwar and Naimpally [8], we introduced pairwise g R_1 axiom.

2. Preliminaries

A subset A of X is said to be g-closed [6] if $cl(A) \subset U$ whenever $A \subset U$ and U is open in (X, T). Clearly every closed set is g-closed. Complement of g-closed is called g-open. A set U is said to be gneighbourhood of point $x \in X$ if $x \in U$ and U is gopen [7]. The family of all g-closed sets in a space (X, T) is denoted by GC (X, T). The g closure of a subset A in a space X, denoted by gcl A [6] is defined as the intersection of all g-closed sets that contain A. A space X is said to be a Pg-space [3] if x $\notin cl\{y\}$ implies that $y \notin gcl\{x\}$. A space X is said to be a gR_0-space [4] if $x \notin gcl\{y\}$ implies that $y \notin$ $gcl\{x\}$. A bitopological space (X, T_1, T_2) is said to be pairwise Pg-space [2] if $x \notin T_i$ -cl $\{y\} \Rightarrow y \notin T_j$ $gcl\{x\}$,

where i, $j \in \{1, 2\}$ and $i \neq j$. A bitopological space (X, T_1, T_2) is said to be pairwise gR₀-space [4] if $x \notin$

 T_i -gcl{y} \Rightarrow y \notin T_j -gcl{x}. A space X is said to be g₁ [9] if for any two distinct points x and y of X, there exists a g-open set U containing x but not y and a g-open set V containing y but not x. A bitopological space (X, T_1, T_2) is said to be pairwise g₁ [9] if for each pair of distinct points x, y of X, there is a T_i -g-open set U containing x but not y and a T_j -g-open V containing y but not x. A bitopological space X is pairwise R₀ [8] if for each G \in $T_i, x \in$ G implies T_i -cl ({x}) \subset G.

3. gR₁ Spaces

Definition 3.1: A space (X, T) is said to be gR_1 if for every pair of distinct points x, y of X, with $gcl{x} \neq gcl{y}$ there exists a g-open set U and a gopen set V such that $x \in U$, $y \in V$ and $U \cap V = \phi$.

Example 3.2: Let $X = \{a, b, c\}, T = \{\phi, \{a\}, \{b, c\}, X\}.$

GC $(X, T) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}.$

Clearly (X, T) is a gR₁ space. But it is not R₁.

Theorem 3.3: Every g₂-space is gR₁-space.

Proof: By definition, (X, T) is said to be g_2 if for each pair of distinct points x, y of X, there is a gopen set U and a g-open V such that $x \in U$ and $y \in$ V and $U \cap V = \phi$. Therefore $y \notin gcl\{x\}$ and $x \notin$ $gcl\{y\}$. Hence (X, T) is gR_1 .

Theorem 3.4: Every g_1 and gR_1 -space is g_2 .

Proof: Let (X, T) be g_1 and gR_1 -space. Let x, y be two distinct points of X. Since (X, T) is g_1 therefore $gcl{x} \neq gcl{y}$. Since (X, T) be gR_1 , there exists a g-open set U and a g-open set V such that $x \in U, y \in V$ and $U \cap V = \phi$. Hence (X, T) is g_2 .

© 2019 JETIR June 2019, Volume 6, Issue 6

Theorem 3.5: Every gR₁-space is gR₀-space.

Proof: Let (X, T) be gR_1 -space. Let G be any gopen set and $x \in G$. For each $y \in X - G$, $gcl\{x\} \neq$ $gcl\{y\}$. Therefore there exists a g-open set U_y and a g-open set V_y such that $x \in U_y$, $y \in V_y$ and $U_y \cap V_y$ $= \phi$. If $A = \{V_y : y \in X - G\}$, then $X - G \subseteq A$ and $x \notin A$. g-openness of A implies $gcl\{x\} \subseteq X - A \subseteq G$. Hence (X, T) is gR_0 .

Theorem 3.6: A space (X, T) is gR_1 if and only if for every pair of distinct points x, y of X such that $gcl{x} \neq gcl{y}$, there exists a g-open set U and a gopen V such that $gcl{x} \subseteq V$, $gcl{x} \subseteq U$ and $U \cap$ $V = \phi$.

Proof: Let (X, T) be gR_1 -space. Let x, y be two distinct points of X such that $gcl\{x\} \neq gcl\{y\}$, then there exists a g-open set U and a g-open set V such that $x \in V$, $y \in U$ and $U \cap V = \phi$. Since a gR_1 -space is gR_0 , therefore $x \in V$ implies $gcl\{x\} \subseteq V$ and $y \in U$ implies $gcl\{y\} \subseteq U$. Hence the result follows. The converse is obvious.

4. Pairwise gR₁Spaces

Definition 4.1: A space (X, T_1, T_2) is said to be pairwise gR₁ if for every pair of distinct points x, y of X, with T_i-gcl{x} \neq T_j-gcl{y} there exists a T_j-gopen set U and a T_i-g-open set V such that x \in U, y \in V and U \cap V = ϕ .

Example 4.2: Let $X = \{a, b, c\}, T_1 = \{\phi, \{a\}, \{b, c\}, X\}, T_2 = \{\phi, \{b\}, \{a, c\}, X\}.$

 $GC(X, T_1) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, X\},\$

 $GC(X, T_2) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, X\},\$

Clearly (X, T_1, T_2) is a pairwise gR_1 space. But it is not pairwise R_1 .

Theorem 4.3: Every pairwise g_2 -space is pairwise gR_1 -space.

Proof: By definition, (X, T_1, T_2) is said to be pairwise g_2 if for each pair of distinct points x, y of X, there is a T_i -g-open set U and a T_j -g-open V such that $x \in U$ and $y \in V$ and $U \cap V = \phi$. Therefore $y \notin T_i$ -gcl{x} and $x \notin T_j$ -gcl{y}. Hence (X, T_1, T_2) is pairwise gR₁.

Theorem 4.4: Every pairwise g_1 and pairwise g_{R_1} -space is pairwise g_2 .

Proof: Let (X, T_1, T_2) be pairwise g_1 and pairwise gR_1 . Let x, y be two distinct points of X. Since (X, T_1, T_2) is pairwise g_1 therefore T_i -gcl $\{x\} \neq T_j$ -gcl $\{y\}$ [Sharma]. Since (X, T_1, T_2) be pairwise gR_1 , there exists a T_j -g-open set U and a T_i -g-open set V such that $x \in U$, $y \in V$ and $U \cap V = \phi$. Hence (X, T_1, T_2) is pairwise g_2 .

Theorem 4.5: Every pairwise gR_1 -space is pairwise gR_0 -space.

Proof: Let (X, T_1, T_2) be pairwise gR_1 -space. Let G be any T_i -g-open set and $x \in G$. For each $y \in X - G$, T_j -gcl $\{x\} \neq T_i$ -gcl $\{y\}$. Therefore there exists a T_i -g-open set U_y and a T_j -g-open set V_y such that $x \in U_y$, $y \in V_y$ and $U_y \cap V_y = \phi$. If $A = \{V_y : y \in X - G\}$, then $X - G \subseteq A$ and $x \notin A$. T_j -g-openness of A implies T_j -gcl $\{x\} \subseteq X - A \subseteq G$. Hence (X, T_1, T_2) is pairwise gR₀.

Theorem 4.6: A space (X, T_1, T_2) is pairwise gR_1 if and only if for every pair of distinct points x, y of X such that T_i -gcl $\{x\} \neq T_j$ -gcl $\{y\}$, there exists a T_i -gopen set U and a T_j -g-open V such that T_i -gcl $\{x\} \subseteq$ V, T_j -gcl $\{x\} \subseteq$ U and U \cap V = ϕ .

Proof: Let (X, T_1, T_2) be pairwise gR_1 -space. Let x, y be two distinct points of X such that T_i -gcl{x} \neq T_j -gcl{y}, then there exists a T_i -g-open set U and a T_j -g-open set V such that $x \in V$, $y \in U$ and $U \cap V =$ ϕ . Since a pairwise gR_1 -space is pairwise gR_0 , therefore $x \in V$ implies T_i -gcl{x} $\subseteq V$ and $y \in U$ implies T_j -gcl{y} \subseteq U. Hence the result follows. The converse is obvious.

References:

- [1] Dorset, C., "Semi-T1, Semi-R1 and Semi-R0 Topological Spaces", *Ann. Soc. Sci. Bruxelles*, Vol. 92, 143-150, 1978.
- [2] Kumar, Yogesh, "Separation and covering axioms in bitopological spaces", Ph. D. Thesis, Meerut Univ. Nov.2009.
- [3] Kumar, Yogesh & Tripathi Padmesh, "Some Properties of Pg and Pairwise Pg - Spaces" IJSRSET Vol. 3 (8), pg. 611-613, 2017.
- [4] Kumar, Yogesh, Tripathi, Padmesh & Sharma V. K, "Properties of gR_0 and pairwise gR_0 Spaces" IIJTM Vol. 3 (2), pg. 36-41, 2018.

© 2019 JETIR June 2019, Volume 6, Issue 6

- [5] Levine, N., "Semi-open sets and semicontinuity in topological spaces", Amer. Math. Monthly, Vol. 70, pp. 36-41, 1963.
- [6] Levine, N., "Generalized closed sets in topology", Rend. Cir. Mate. Di. Palermo. Series II, Vol. 21, 89-96, 1970.
- [7] Munshi, B.M., "Separation Axioms", Acta Ciencia Indica, 12 m (2), 140-144, 1986.
- [8] Murudeshwar, M.G., & Naimpally, S.A., "Quasi-Uniform Topological Spaces", Noordhoff, Groningen, 1966.
- [9] Sharma, V. K., "A study of some separation and covering axioms in topological and bitopological spaces", Ph. D. Thesis, Meerut Univ. Dec.1990.