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Abstract  

 

In this paper, we introduce gR1 spaces and 

the bitopological analogue of gR1 axiom by naming 

as pairwise gR1 spaces.  
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1. Introduction 

 

 In 1963, N. Levine [5] offered a new 

notion to the field of general topology by 

introducing semi-open sets and defined this notion 

by utilizing the known notion of closure of an open 

set. By using semi-open sets semi-R1 introduced by 

C. Dorsett [1]. In this paper we study and 

introducing the semi-R1 separation axiom of 

topological spaces in terms of g-open sets called 

gR1-axiom. Also by replacing open sets by g-open 

sets in pairwise R1axioms of Murdeshwar and 

Naimpally [8], we introduced pairwise gR1 axiom. 

 

2. Preliminaries 

 

A subset A of X is said to be g-closed [6] if 

cl(A)  U whenever A  U and U is open in (X, T). 

Clearly every closed set is g-closed. Complement of 

g-closed is called g-open. A set U is said to be g-

neighbourhood of point x  X if x  U and U is g-

open [7]. The family of all g-closed sets in a space 

(X, T) is denoted by GC (X, T). The g closure of a 

subset A in a space X, denoted by gcl A [6] is 

defined as the intersection of all g-closed sets that 

contain A. A space X is said to be a Pg-space [3] if x 

 cly implies that y  gclx. A space X is said to 

be a gR0-space [4] if x  gcly implies that y  

gclx. A bitopological space (X, T1, T2) is said to 

be pairwise Pg-space [2] if x  Ti-cl{y}  y  Tj-

gclx,  

 

 

where i, j  {1, 2} and i ≠ j. A bitopological space 

(X, T1, T2) is said to be pairwise gR0-space [4] if x  

Ti-gcl{y}  y  Tj-gclx.  A space X is said to be 

g1 [9] if for any two distinct points x and y of X, 

there exists a g-open set U containing x but not y 

and a g-open set V containing y but not x. A 

bitopological space (X, T1, T2) is said to be pairwise 

g1 [9] if for each pair of distinct points x, y of X, 

there is a Ti -g-open set U containing x but not y and 

a Tj-g-open V containing y but not x. A 

bitopological space X is pairwise R0 [8] if for each 

G  Ti, x  G implies Tj-cl ({x})  G.  

 

 3. gR1 Spaces 

 

Definition 3.1: A space (X, T) is said to be gR1 if 

for every pair of distinct points x, y of X, with 

gcl{x}  gcl{y} there exists a g-open set U and a g-

open set V such that x  U, y  V and U ∩ V =. 

Example 3.2: Let X = {a, b, c}, T = , a, {b, c}, 

X.  

GC (X, T) = , a, {b}, {c}, {a, b}, {b, c}, {a, c}, 

X. 

Clearly (X, T) is a gR1 space. But it is not R1. 

Theorem 3.3: Every g2-space is gR1-space.     

Proof: By definition, (X, T) is said to be g2 if for 

each pair of distinct points x, y of X, there is a g-

open set U and a g-open V such that x  U and y  

V and U ∩ V =. Therefore y  gcl{x} and x  

gcl{y}. Hence (X, T) is gR1. 

 

Theorem 3.4: Every g1 and gR1-space is g2.     

Proof: Let (X, T) be g1 and gR1-space. Let x, y be 

two distinct points of X. Since (X, T) is g1 therefore 

gcl{x}  gcl{y}. Since (X, T) be gR1, there exists a 

g-open set U and a g-open set V such that x  U, y 

 V and U ∩ V = .  Hence (X, T) is g2. 
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Theorem 3.5: Every gR1-space is gR0-space.     

Proof: Let (X, T) be gR1-space. Let G be any g-

open set and x  G. For each y  X – G, gcl{x}  

gcl{y}. Therefore there exists a g-open set Uy and a 

g-open set Vy such that x  Uy, y  Vy and Uy ∩ Vy 

= . If A = {Vy : y  X – G}, then X – G  A and x 

 A. g-openness of A implies gcl{x}  X – A  G. 

Hence (X, T) is gR0. 

Theorem 3.6: A space (X, T) is gR1 if and only if 

for every pair of distinct points x, y of X such that 

gcl{x}  gcl{y}, there exists a g-open set U and a g-

open V such that gcl{x}  V, gcl{x}  U and U ∩ 

V =. 

Proof: Let (X, T) be gR1-space. Let x, y be two 

distinct points of X such that gcl{x}  gcl{y}, then 

there exists a g-open set U and a g-open set V such 

that x  V, y  U and U ∩ V = . Since a gR1-space 

is gR0, therefore x  V implies gcl{x}  V and y  

U implies gcl{y}  U. Hence the result follows. The 

converse is obvious. 

 

4. Pairwise gR1Spaces 

Definition 4.1: A space (X, T1, T2) is said to be 

pairwise gR1 if for every pair of distinct points x, y 

of X, with Ti-gcl{x}  Tj-gcl{y} there exists a Tj-g-

open set U and a Ti -g-open set V such that x  U, y 

 V and U ∩ V =.  

Example 4.2: Let X = {a, b, c}, T1 = , a, {b, c}, 

X, T2 = , b, {a, c}, X.  

GC(X, T1) = , a, {b}, {c}, {a, b}, {b, c}, {a, c}, 

X, 

 GC(X, T2) = , a, {b}, {c}, {a, b}, {b, c}, {a, c}, 

X,  

Clearly (X, T1, T2) is a pairwise gR1 space. But it is 

not pairwise R1. 

Theorem 4.3: Every pairwise g2-space is pairwise 

gR1-space.     

Proof: By definition, (X, T1, T2) is said to be 

pairwise g2 if for each pair of distinct points x, y of 

X, there is a Ti -g-open set U and a Tj-g-open V such 

that x  U and y  V and U ∩ V =. Therefore y  

Ti-gcl{x} and x  Tj-gcl{y}. Hence (X, T1, T2) is 

pairwise gR1. 

Theorem 4.4: Every pairwise g1 and pairwise gR1-

space is pairwise g2.     

Proof: Let (X, T1, T2) be pairwise g1 and pairwise 

gR1. Let x, y be two distinct points of X. Since (X, 

T1, T2) is pairwise g1 therefore Ti-gcl{x}  Tj-gcl{y} 

[Sharma]. Since (X, T1, T2) be pairwise gR1, there 

exists a Tj-g-open set U and a Ti -g-open set V such 

that x  U, y  V and U ∩ V = . Hence (X, T1, T2) 

is pairwise g2. 

Theorem 4.5: Every pairwise gR1-space is pairwise 

gR0-space.     

Proof: Let (X, T1, T2) be pairwise gR1-space. Let G 

be any Ti-g-open set and x  G. For each y  X – G, 

Tj-gcl{x}  Ti-gcl{y}. Therefore there exists a Ti-g-

open set Uy and a Tj -g-open set Vy such that x  Uy,  

y  Vy and Uy ∩ Vy = . If A = { Vy : y  X – G}, 

then X – G  A and x  A. Tj-g-openness of A 

implies Tj-gcl{x}  X – A  G. Hence (X, T1, T2) is 

pairwise gR0. 

Theorem 4.6:  A space (X, T1, T2) is pairwise gR1 if 

and only if for every pair of distinct points x, y of X 

such that Ti-gcl{x}  Tj-gcl{y}, there exists a Ti-g-

open set U and a Tj-g-open V such that Ti-gcl{x}  

V, Tj-gcl{x}  U and U ∩ V =. 

Proof: Let (X, T1, T2) be pairwise gR1-space. Let x, 

y be two distinct points of X such that Ti-gcl{x}  

Tj-gcl{y}, then there exists a Ti-g-open set U and a 

Tj-g-open set V such that x  V, y  U and U ∩ V = 

. Since a pairwise gR1-space is pairwise gR0, 

therefore x  V implies Ti-gcl{x}  V and y  U 

implies Tj-gcl{y}  U. Hence the result follows. 

The converse is obvious. 
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