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Abstract: The filtering approach has been proved to be the 

best when the image is corrupted with salt and pepper 

noise. The wavelet based approach finds applications in 

denoising images corrupted with Gaussian noise. Data are 

transmitted as the high quality digital images in the major 

fields of communication in all of the modern applications. 

This paper focused on the work which works on the 

received image processing before it is used for particular 

applications. We applied image denoising which involves 

the manipulation of the DWT coefficients of noisy image 

data to produce a visually high standard denoised image. 

This works consist of extensive reviews of the various 

parametric and non parametric existing denoising 

algorithms based on statistical estimation approach related 

to wavelet transforms connected processing approach and 

contains analytical results of denoising under the effect of 

various noise at different intensities. 
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1. Introduction: 

A very large portion of digital image processing is devoted to 

image restoration. This includes research in algorithm 

development and routine goal oriented image processing. 
Image restoration is the removal or reduction of degradations 

that are incurred while the image is being obtained [3]. 

Degradation comes from blurring as well as noise due to 

electronic and photometric sources. Blurring is a form of 

bandwidth reduction of the image caused by the imperfect 

image formation process such as relative motion between the 

camera and the original scene or by an optical system that is 

out of focus [4]. When aerial photographs are produced for 

remote sensing purposes, blurs are introduced by atmospheric 

turbulence, aberrations in the optical system and relative 

motion between camera and ground. In addition to these 
blurring effects, the recorded image is corrupted by noises too. 

A noise is introduced in the transmission medium due to a 

noisy channel, errors during the measurement process and 

during quantization of the data for digital storage. Each 

element in the imaging chain such as lenses, film, digitizer, 

etc. contribute to the degradation. Image denoising is often 

used in the field of photography or publishing where an image 

was somehow degraded but needs to be improved before it can 

be printed. For this type of application we need to know 

something about the degradation process in order to develop a 

model for it. When we have a model for the degradation 

process, the inverse process can be applied to the image to 
restore it back to the original form. This type of image 

restoration is often used in space exploration to help eliminate 

artifacts generated by mechanical jitter in a spacecraft or to 

compensate for distortion in the optical system of a telescope. 

Image denoising finds applications in fields such as astronomy 

where the resolution limitations are severe, in medical imaging 

where the physical requirements for high quality imaging are 

needed for analyzing images of unique events, and in forensic 
science where potentially useful photographic evidence is 

sometimes of extremely bad quality [4]. 

Accurate image modeling, whether done explicitly or 

implicitly, is a critical component of many image processing 

tasks. A simple yet effective statistical spatially-adaptive 

wavelet image model was developed and formed the basis of 

the state-of-the-art Estimation-Quantization (EQ) compression 

algorithm. In this work, we develop a closely related model 

for image wavelet coefficients and apply it to denoising of 

images corrupted by noise. Our new model significantly 

reduces the computational burden of an earlier version of our 
scheme, yet produces comparable results in terms of mean-

squared error (MSE) and perceptual image quality. The key 

ingredient of our new algorithm is the use of simple but 

efficient spatial adaptation techniques. Our primary goal is to 

demonstrate the importance of accurate modeling for image 

denoising problems. In this work, we modify this model for 

the purpose of image denoising, and demonstrate the benefits 

of this approach. A related model, that accounts for local 

dependencies, was independently proposed and its 

effectiveness was verified by various experimental results. 

Another related adaptive model was used to perform image 

denoising via wavelet thresholding using context modeling of 
the global coefficients histogram. In our work, we take an 

opposite approach which exploits the local structure of 

wavelet image coefficients. 

 

2. Related Work: 

Recently, the dual-tree complex wavelet transform has been 

proposed by Alin Achim et. al. (2005) [15], as a novel 

analysis tool featuring near shift-invariance and improved 

directional selectivity compared to the standard wavelet 

transform. Within this framework, we describe a novel 

technique for removing noise from digital images. We design 
a bivariate maximum a posteriori estimator, which relies on 

the family of isotropic -stable distributions. Using this 

relatively new statistical model we are able to better capture 

the heavy-tailed nature of the data as well as the interscale 

dependencies of wavelet coefficients. We test our algorithm 

for the Cauchy case, in comparison with several recently 

published methods. The simulation results show that our 

proposed technique achieves state-of-the-art performance in 

terms of root mean squared error. 

Aleksandra Pizurica and Wilfried Philips (2006) [9], they 

develop three novel wavelet domain denoising methods for 

subband-adaptive, spatially-adaptive and multivalued image 
denoising. The core of our approach is the estimation of the 

probability that a given coefficient contains a significant 

noise-free component, which we call “signal of interest.” In 

this respect, we analyze cases where the probability of signal 

presence is 1) fixed per subband, 2) conditioned on a local 

spatial context, and 3) conditioned on information from 

multiple image bands. All the probabilities are estimated 
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assuming a generalized Laplacian prior for noise-free subband 

data and additive white Gaussian noise. The results 
demonstrate that the new subband-adaptive shrinkage function 

outperforms Bayesian thresholding approaches in terms of 

mean-squared error. The spatially adaptive version of the 

proposed method yields better results than the existing 

spatially adaptive ones of similar and higher complexity. The 

performance on color and on multispectral images is superior 

with respect to recent multiband wavelet thresholding. 

 

This work introduced by Florian Luisier et. al. (2007) [13], a 

new approach to orthonormal wavelet image denoising. 

Instead of postulating a statistical model for the wavelet 
coefficients, we directly parametrize the denoising process as 

a sum of elementary nonlinear processes with unknown 

weights. We then minimize an estimate of the mean square 

error between the clean image and the denoised one. The key 

point is that we have at our disposal a very accurate, 

statistically unbiased, MSE estimate—Stein’s unbiased risk 

estimate—that depends on the noisy image alone, not on the 

clean one. Like the MSE, this estimate is quadratic in the 

unknown weights, and its minimization amounts to solving a 

linear system of equations. The existence of this a priori 

estimate makes it unnecessary to devise a specific statistical 

model for the wavelet coefficients. Instead, and contrary to the 
custom in the literature, these coefficients are not considered 

random anymore. We describe an interscale orthonormal 

wavelet thresholding algorithm based on this new approach 

and show its near-optimal performance—both regarding 

quality and CPU requirement—by comparing it with the 

results of three state-of-the-art nonredundant denoising 

algorithms on a large set of test images. An interesting fallout 

of this study is the development of a new, group-delay-based, 

parent–child prediction in a wavelet dyadic tree. 

 

This work presentd by Hossein Rabbani (2009) [17] a new 
image denoising algorithm based on the modeling of 

coefficients in each subband of steerable pyramid employing a 

Laplacian probability density function (pdf) with local 

variance. This pdf is able to model the heavy-tailed nature of 

steerable pyramid coefficients and the empirically observed 

correlation between the coefficient amplitudes. Within this 

framework, we describe a novel method for image denoising 

based on designing both maximum a posteriori (MAP) and 

minimum mean squared error (MMSE) estimators, which 

relies on the zero-mean Laplacian random variables with high 

local correlation. Despite the simplicity of our spatially 
adaptive denoising method, both in its concern and 

implementation, our denoising results achieves better 

performance than several published methods such as Bayes 

least squared Gaussian scale mixture (BLS-GSM) technique 

that is a state-of-the-art denoising technique. 

 

A new method based on the curvelet transform is proposed by 

Qiang Guo et. al. (2010), [11] for image denoising. This 

method exploits a multivariate generalized spherically 

contoured exponential (GSCE) probability density function to 

model neighboring curvelet coefficients. Based on the 

multivariate probability model, which takes account of the 
dependency between the estimated curvelet coefficients and 

their neighbors, a multivariate shrinkage function for image 

denoising is derived by maximum a posteriori (MAP) 

estimator. Experimental results show that the proposed 

method obtains better performance than the existing curvelet-

based image denoising method. 
 

3. Methodology: 

In the last decade, there has been considerable interest in using 

multiscale decompositions as a framework to develop 

algorithms aiming at recovering signals from noisy data. Many 

of these algorithms have been developed based on Donoho’s 

pioneering work [1] on soft thresholding. However, wavelet 

shrinkage techniques have come a longway in recent years due 

to the better statistical models adopted for the wavelet 

coefficients. For example, in a number of recent publications 

[2]–[4], it has been shown that alpha-stable distributions, a 
family of heavy-tailed densities, are sufficiently flexible and 

rich to appropriately model wavelet coefficients of images in 

various applications. On the other hand, algorithms that 

exploit dependencies between coefficients could achieve 

better results compared with the ones based on the 

independence assumption [5]–[8]. In this context, Sendur and 

Selesnick [7] have developed amaximuma posteriori(MAP) 

estimator based on a circular-symmetric Laplacian model for a 

coefficient and its parent.  

The wavelet transform is a linear operation. Consequently, 

after decomposing an image we get, in each of the six oriented 

subbands and for every two adjacent levels, sets of 
noisywavelet coefficients represented as the sum of the 

transformations of the signal and of the noise 

𝑦𝑗 = 𝑥𝑗 +𝑛𝑗  

𝑦𝑗+1 = 𝑥𝑗+1 +𝑛𝑗+1 

where l <  j < J refers to the decomposition level. The above 

set of equations can be written in vectorial form as 

y = x + n 

where y=(yj, yj+1), x=(xj, xj+1) , n=(nj, nj+1) . The MAP 
estimator of x given the noisy observation y can be easily 

derived as being 

𝑥(𝑦) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑃𝑥|𝑦(𝑥|𝑦) 

Using Bayes’ theorem, this equation can be written as 

𝑥(𝑦) =  arg 𝑚𝑎𝑥 𝑃𝑛(𝑦 − 𝑥)𝑃𝑥(𝑥) 

                                                                            = 𝑎𝑟𝑔 𝑚𝑎𝑥 

𝑃𝑛(𝑛)𝑃𝑋(𝑥)  

The behavior of this processor incorporates themainproperty 

of theones proposed in [3],and [4]namelythat large-amplitude 

observations are essentially preserved while small-amplitude 

values are suppressed. In addition, the shrinkage of a 

coefficient is also conditioned on the value of the 

corresponding coefficient at the next decomposition level 
(parent value): The smaller the parent value, the greater the 

shrinkage [7]. Depending on the noise variance, the “dead 

zone” of the 2-D shrinkage function (i.e., the circular region 

where coefficients are heavily shrunk) is more or less 

extended but the shape of the function remains similar. 

 

3.1 Proposed Work: 

The basic idea is to perform wavelet decomposition on the 

input noisy image, then estimate the noise-free wavelet 

coefficients by employing a Bayesian estimator, which is 

developed by using a suitable probability density function 
(pdf) as a prior for modeling the wavelet coefficients of the 

image. Finally, the denoised image is reconstructed by 

performing an inverse wavelet transform. 

In contrast to aforementioned conventional parametric model-

based approaches, formulate the marginal distribution of 

wavelet coefficients. Since the proposed non-parametric 
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wavelet coefficients model automatically adapts to the 

observed image data, it is expected to yield superior 
performance to that of the conventional approaches using 

parametric models that are fixed in advance. Furthermore, a 

maximum a posteriori (MAP) estimation-based image 

denoising approach is derived by incorporating the proposed 

model into a Bayesian inference framework.  

A non-parametric statistical model to formulate the 

distribution of wavelet coefficients, followed by the derivation 

of the proposed MAP estimation-based image denoising 

approach. Experimental results are provided to show that the 

proposed MAP estimation-based image denoising algorithm 

outperforms the conventional algorithms. 
 

3.1.1 Proposed Image Denoising Approach: 

A statistical approach is exploited in this paper to perform 

image denoising. Given the noisy wavelet coefficient of the 

noisy image (denoted as yi, where I is the index), the aim is to 

recover the noise-free wavelet coefficient (denoted as si) via 

its MAP estimator (denoted as ˆsi) as 

𝑠̂ = 𝑎𝑟𝑔  max 𝑝(𝑠𝑖|𝑦𝑖) .     

According to the Bayes rule, (1) can be rewritten as 

𝑝(𝑠𝑖|𝑦𝑖) =
𝑝(𝑠𝑖,𝑦𝑖)

𝑝(𝑦𝑖)
 ∝ 𝑝(𝑠𝑖 , 𝑦𝑖) = 𝑝(𝑦𝑖|𝑠𝑖)𝑝(𝑠𝑖)   

The formulation of (2) boils down to the formulations of its 

two product terms p(yi|si) and p(si), respectively. 

we get 

𝑝(𝑠𝑖|𝑦𝑖) 𝛼
1

√2𝜋𝜎𝑛
𝑒

−
(𝑦𝑖−𝑠𝑖)2

𝜎𝑇1
2 1

√2𝜋ℎ𝑗
𝑒

−
(𝑠𝑎−𝑦𝐽)2

2ℎ𝐽
2

   

 By setting the derivative of (5) to be zero with respect to si, 

we can obtain the MAP estimator of the noise-free coefficient 

(denoted as ˆsj i) as 

𝑠̂𝑖
𝑗

= 
𝜎𝑛

2𝑦𝑗+ℎ𝑗
2𝑦𝑖

𝜎𝑛
2+ℎ𝑗

2       

  
Finally, the estimated noise-free coefficient can be obtained by 

averaging all MAP estimators, which are obtained by using 

each component of (4) as the prior image model, respectively; 

that means  

𝑠̂𝑖 =
1

|𝛺𝑖|
 ∑ 𝑠̂𝑖

𝑗
𝑦𝑗∈𝛺1

  =
1

|𝛺𝑖|
 ∑  

𝜎𝑛
2𝑦𝑗+ℎ𝑗

2𝑦𝑖

𝜎𝑛
2+ℎ𝑗

2 ,𝑦𝑗∈𝛺𝑖
   

  

where |Ωi| represents the number of coefficients in the 

neighborhood Ωi. 

The noisy images are generated by adding the ground truth 

image with an additive white Gaussian noise with a zero mean 

and a standard deviation σn, respectively. 
The proposed approach first performs a 2-D discrete wavelet 

decomposition (a five-level decomposition using a 

Daubechies’s wavelet with eight vanishing moments) on a 

noisy image to get the noisy wavelet coefficients. The  wavelet 

decomposition is implemented via a five-level decomposition 

using a Daubechies’s wavelet with eight vanishing moments. 

Then, the proposed approach uses (7) to estimate each noise-

free coefficient excluding those of the LL subband. Finally, 

the inverse wavelet transform is applied to obtain the denoised 

image. 

 
Fig 1. Flow Chart 

 

4. Result and Discussion: 

All the collected SAR images are degraded by different levels 

of Gaussian and speckle noise, respectively. To avoid errors 

we have taken 15 SAR images and noisy image are produced 

by adding different noise realizations. All noisy images are 

processed, and the numerical evaluation is based on the 

average of the results. 

In this work the statistics of peak signal-to-mean-square-error 
ratio PSNR is used to evaluate these denoising methods. 

PSNR in case of additive noise is suitable and effective 

measure of noise in image processing cases. 
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Fig 2 (a): Original SAR image ‘09.jpg’ (left ) and noisy 

image(right). 

 
Figure 2(b): Image block of 64 x 64 from noisy image. 

 

Figure 2(a) shows the origina SAR image ‘09.jpg’ and its 

noisy image obtained by adding Gaussian noise is also shown 

(figure 2(a) right).Our algorithm extracts 64x64 size block one 

by one from  the noisy image .One of the block of noisy image 

is shown in figure 1b.This block image is passed through 4 

level 2D-DWT wavelet transform operation and we get four 

approx.The left most i.e first column is approximation blocks 
(A1,A2,A3,Ad3),then second column represent the horizontal 

detail (LH1,LH2,LH3 and LH4),third column is vertical 

details (HL1,HL2,HL3 and HL4) and the last column i.e. 

fourth represents the diagonal detail coeff. 

Each wavelet aproxx. and detail coefficient matrix of noisy 

image blocks are passed through one by one through PCA 

algorithm to obtain the principal components these principal 

components are labeled in different cluster using K-mean 

clustering all these matrix are shown in figure 2(d). 

The noise components of labeled elements are supressed from 

cluster indexed matrix and the reverese PCA and 2d-DWT is 

applied to reconstruct the denoised image of the stage one as 
in figure 2(f). 

The denoised image obtained in the stage 1 is again taken as 

reference original image and again whole process is repeated 

to obtain the new denoised image blocks treating as stage 1 

denoised images as original one to find out the noisy clusters 

in blocks using LMSE values. Hence after end of this stage 2 

we obtain the final denoised image shown in figure 2(h).In this 

figure we can observe the original image (left ),noisy 

image(middle) and finally obtained denoised image on 

applying stage 2 denoising. We can also observe the PSNR 

and and noise intensity value given at the top of denoised 
image and noisy image. 

 
Figure 2(c): Wavelet coeff. Matrix blocks of noisy image 

block shown in figure (2b). 

 

 
Figure 2(d): Block matrix component image(top left),its 

PCA matrix (top middle),matrix obtained after cluster 

indexing (top right). 

 
Figure 2(e): Image of arbitrary block taken from Original 

image (left) and denoised block image obtained in stage 1 

of algorithm (right). 
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Figure 2(f): Original image (left) , Noisy image (middle ) 

and denoised image of stage1(right)  

 
Figure 2(g): Denoised image blocks and its 2d DWT coeff. 

matrix. 

The denoised image obtained in the stage 1 is again taken as 

refrence original image and again whole process is repeated to 

obtain the new denoised image blocks treating as stage 1 

denoised images as original one to find out the noisy clusters 

in blocks using LMSE values.Hence after end of this stage 2 

we obtain the final denoised image shown in figure 2(h).In this 

figure we can observe the original image (left ),noisy 

image(middle) and finally obtained denoised image on 

applying stage 2 denoising. We can also observe the PSNR 

and and noise intensity value given at the top of denoised 

image and noisy image. 

 
Figure 2(h): Denoised image and its PSNR after denoising. 
 

 

 

 

 

5. Conclusion: 

We have applied our algorithm for analysis of the results of 
proposed work to various SAR image denoising techniques 

from the different literature results on standard images. To 

measure the denoising performance of the improved algorithm 

we applied the peak signal-to-noise ratio (PSNR).We 

compared our proposed algorithm to other effective techniques 

from the different literatures using the standard images. In this 

work estimation of noise free coefficients is applied to the 

values of the DWT coefficients of SAR image. We have 

currently explored the algorithm performance on several 

images at the effects of different types of noise effect at 

different noise intensity. We have performed analytical 
investigation of the results of our proposed algorithm for SAR 

image denoising techniques and compared results on standard 

images. In our implementation the bivariate PCA analysis 

function is applied along with k-mean clustering to the 

magnitude of the DWT coefficients, which is more shift 

invariant than the real or imaginary parts. To measure the 

denoising performance of the improved algorithm we applied 

the peak signal-to-noise ratio (PSNR).It has been observed 

that for lossy image processing the PSNR should be in 

between 25 to 30. 
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