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Abstract :  Fractals can derive from the application of the complex Newton-Raphson method for solving nonlinear equations. The 

iterative “nature” of the method yields two main sets: convergence and divergence sets. The chaotic Julia set consists of the 

topological boundary of these two sets. In the present work, it is proven that the dynamical system of the Julia set and its complex 

Newton-Raphson transformation is, in fact, a chaotic dynamical system. An iterative algorithmic approach that helps obtain and 
represent graphically the Julia set is then presented. 
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I. INTRODUCTION 

Strange phenomena have often been observed in solving nonlinear equations, even when implementing one as simple as the 

Newton-Raphson method. This can produce a complicated behavior of numerical solutions. The beginning appeared in a difficult 

period of Gaston Julia’s life, when he was recovering from a severe injury from his World War I service. At that time, he 

published an article that described the iteration of a rational function [15]. It was in this paper that Julia first introduced the 

modern idea of a “Julia set”. At the same period, another mathematician, Pier Fatou, created the area of Mathematics which is 

called holomorphic dynamics and it deals with a global study of analytic functions iterability. Moreover, Fatou introduced and 

studied the Julia set [20]. The subject was lulled after a while and it was not until Benoit Mandelbrot began studying iterability in 

early 1970’s that Julia sets re-emerged. After that, there was a boom of interest in Julia sets in correlation with fractals ([2], [4], 
[10], [16]) and consequently with chaos ([1], [3], [7]). The simultaneous advancement and rapid evolution of computers created 

new research interest that involved chaotic phenomena and fractals in Numerical Analysis ([8], [9]), and of course their 

implementations in programming ([5], [6], [11]). 

The well-known Newton-Raphson (N-R) algorithm, for complex functions of one variable, for finding the roots of 𝑓(𝑧) = 0 

is given by 

𝑧𝑘 = 𝑧𝑘−1 −
𝑓(𝑧𝑘−1)

𝑓′(𝑧𝑘−1)
 , 

where 𝑓′ is the complex derivative of 𝑓 , 𝑧0 is the point of initialization, k = 1, 2… is the iteration index. 

The study of the complex Newton-Raphson leads to unexpected subsets of the complex field, with properties of the so-called 

“fractals”. It also leads to dynamical systems with chaotic behavior and other intriguing properties. These properties have been 

studied extensively by Steven Smale ([12], [13], [14]). 

Complex Newton-Raphson is applied in solving with iterative algorithms non linear equations in ℂ. So let  𝑓(𝑧) = 0  be a 

given polynomial equation and define 𝑆 to be the set of the initial values 𝑧0 ∈ ℂ  of the corresponding iterative Newton-Raphson 

type, for which the sequence {𝑧𝑛} converges to one of the roots of the equation. Let also 𝐴 be the set of the initial values 𝑧0 ∈ ℂ 

for which the sequence {𝑧𝑛} diverges. Then the boundary of 𝑆 and 𝐴 is called the Julia Set and it is symbolized with  𝐽. 

As a paradigm, consider the equation 𝑓(𝑧) = 𝑧3 − 1 = 0. The application of N-R method yields 𝑆, 𝐴 and  𝐽 sets as defined 

above. In this case, 𝐴 is identical to 𝐽, which has a “strange” shape (in fact, it is a fractal). The N-R method, when it is used for 

solving this equation in the real field, generally diverges for large regions of the initial 𝑥0 ∈ ℝ , and converges when 𝑥0 is “close 

enough” to a root. The fact that all the complex roots exist (Fundamental Theorem of Algebra) does not, a priori, imply that the 

complex N-R converges for almost every 𝑧0 ∈ ℂ. In other words, the existence of solutions does not guarantee the existence of a 

converging algorithm for finding them. It is, thus, interesting, not only that the complex N-R converges for almost every initial 

value 𝑧0 ∈ ℂ, but also that the corresponding Julia set (in this case, the set of all  𝑧0 ∈ ℂ for which the method diverges), is, as is 

shown, a chaotic dynamical system. 

 

II. DEFINITIONS AND THEORETICAL BACKGROUND 

Definition 1. 

Let (𝑋, 𝑑) a complete metric space and 𝐻(𝑋) the set of all of nonempty compact subsets of 𝑋. We define as Hausdorff metric of 

𝐴 and 𝐵 , when 𝐴, 𝐵 ∈ 𝐻(𝑋), the relation ℎ(𝐴, 𝐵) = 𝑑(𝐴, 𝐵)⋁𝑑(𝐵, 𝐴), where 𝑑(𝐴, 𝐵) = max{𝑑(𝑥, 𝐵): 𝑥 ∈ 𝐴} and  

 𝑑(𝑥, 𝐵) = min {𝑑(𝑥, 𝑦): 𝑦 ∈ 𝐵}. Thus, we consider the topological space (𝐻(𝑋), ℎ(𝑑)), which is the fundamental space of 

deterministic fractals. 
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Lemma 1.  

Let 𝑤: 𝑋 → 𝑋 be a contraction mapping on the metric space (𝑋, 𝑑) with contractivity factor 𝑠. Then 𝑤: 𝐻(𝑋) → 𝐻(𝑋) defined by 

𝑤(𝐵) = {𝑤(𝑥): 𝑥 ∈ 𝐵} for every 𝐵 ∈ 𝐻(𝑋) is a contraction mapping on (𝐻(𝑋), ℎ(𝑑)) with contractivity factor 𝑠. 
Proof: 

Every contraction mapping on a metric space is continuous, therefore 𝑤: 𝑋 → 𝑋 is continuous. Furthermore it is easy to be proven 

that 𝑤 maps 𝐻(𝑋) into itself. 

Let 𝐵, 𝐶 ∈ 𝐻(𝑋), then 

𝑑(𝑤(𝐵), 𝑤(𝐶)) = max {min{𝑑(𝑤(𝑥), 𝑤(𝑦)): 𝑦 ∈ 𝐶} : 𝑥 ∈ 𝐵} 

                                           ≤ max{min{𝑠 ∙ 𝑑(𝑥, 𝑦): 𝑦 ∈ 𝐶} : 𝑥 ∈ 𝐵} = 𝑠 ∙ 𝑑(𝐵, 𝐶). 

Similarly, 𝑑(𝑤(𝐶), 𝑤(𝐵)) ≤ 𝑠 ∙ 𝑑(𝐶, 𝐵) 

Therefore, ℎ(𝑤(𝐵), 𝑤(𝐶)) ≤ 𝑠 ∙ ℎ(𝐵, 𝐶) 
 

Lemma 2. 

For all 𝐴1, 𝐴2, 𝐴3, 𝐴4  in 𝐻(𝑋)   ℎ(𝐴1⋃𝐴2, 𝐴3⋃𝐴4) ≤ ℎ(𝐴1, 𝐴3)⋁ℎ(𝐴2, 𝐴4) , where ℎ is Hausdorff metric. 

 

Lemma 3. 

Let (𝑋, 𝑑) a complete metric space, and also, let {𝑤𝑛 , 𝑛 = 1,2, … , 𝑁} be contraction mappings on (𝐻(𝑋), ℎ(𝑑)). The contractivity 

factor for 𝑤𝑛 be denoted by 𝑠𝑛  for each 𝑛. We define 𝑊: 𝛨 (𝑋)  →  𝐻(𝑋) by 𝑊(𝐵) = ⋃ 𝑤𝑛(𝐵)𝑁
𝑛=1 , for each 𝐵 ∈ 𝐻 (𝑋). Then 𝑊 

is a contraction mapping with contractivity factor 𝑠 = max {𝑠𝑛: 𝑛 = 1,2, … , 𝑁}  

Proof: 

Let assume that 𝑁 = 2, and let 𝐵, 𝐶 ∈ 𝐻(𝑋), then we have 

ℎ(𝑊(𝐵), 𝑊(𝐶)) = ℎ(𝑤1(𝐵) ∪ 𝑤2(𝐵), 𝑤1(𝐶) ∪ 𝑤2(𝐶) 

≤ ℎ(𝑤1(𝐵), 𝑤1(𝐶))⋁ ℎ(𝑤2(𝐵), 𝑤2(𝐶)) 

≤ 𝑠1 ∙ ℎ(𝐵, 𝐶) ∨ 𝑠2 ∙ ℎ(𝐵, 𝐶) ≤ 𝑠 ∙ ℎ(𝐵, 𝐶) 

And by induction the proof is completed. 

 

Theorem 2. 

Let {𝑋; 𝑤𝑛 , 𝑛 = 1,2, … , 𝑁 } be a hyperbolic iterated function (IFS) with contraction factor 𝑠 =  𝑚𝑎𝑥{𝑠𝑛 , 𝑛 = 1,2, . . . , 𝑁}, where 

𝑤𝑛: 𝛸 → 𝛸 is a contraction mapping with contraction factor 𝑠𝑛  , where (𝑿, 𝒅) is a complete metric space. 

Then the transformation 𝑊: 𝛨 (𝑋)  →  𝐻(𝑋) defined by 

𝑊(𝐵) = ⋃ 𝑤𝑛(𝐵)𝑁
𝑛=1 , for each 𝐵 ∈ 𝐻 (𝑋), 

is a contraction mapping on the complete metric space (𝐻(𝑋), ℎ(𝑑)) with contraction factor 𝑠 . That is 

ℎ(𝑊(𝐵), 𝑊(𝐶)) ≤ 𝑠 ∙ ℎ(𝐵, 𝐶) for all 𝐵, 𝐶 ∈ 𝐻(𝑋). 

Its unique fixed point, 𝐴 ∈  𝛨 (𝑋), obeys 𝐴 =  𝑊(𝐴) = ⋃ 𝑤𝑛(𝐴𝑁
𝑛=1 ) and is given by 𝐴 = 𝑙𝑖𝑚

n→∞
𝑊°n(𝐵) , for all 𝐵 ∈  𝛨 (𝑋), 

where 𝑊∘𝑛(𝐵)  =  𝑊(𝑊 (. . . 𝑊 (𝐵) … )) . 

This unique fixed point 𝐴 ∈ 𝐻(𝑋) is called the attractor of the IFS and it is a fundamental concept in the study of fractals. 

In parallel to the “geometrical” structure of fractals, we consider a fractal code space, in order to explore the relation 

between a “geometrical” fractal and its corresponding “algebraic-encoded” form. This will be used for studying the chaotic 

structure of Julia sets. 

A well known such analogy is easily seen in the construction of the Shierpinski triangle in which the attractor is a zero 

measure “cloud” of the code space and is generated by an alphabet of cardinality 3. 

 

III. CHAOTIC DYNAMICAL SYSTEMS 

Definition 2. 

Let 𝛴 be the code space on 𝑁 symbols {0,1,2, … , 𝑁 —  1}, where for a given element 𝑋 ∈ 𝛴, we write 𝑥 =  𝑥1𝑥2𝑥3𝑥4 … 

There are infinitely many ordered entries 𝑥𝑖 (chosen among 𝑁 symbols) for each 𝑥. 

On the code space the expression 𝑑(𝑥, 𝑦) = ∑
|𝑥𝑖−𝑦𝑖|

(𝑁+1)𝑖
∞
𝑖=1    for all   𝑥, 𝑦 ∈ 𝛴, which is easy to show that it is a metric.  

So, (Σ, 𝑑) is a metric space. 

 

Definition 3. 

On the metric space  (Σ, 𝑑), we define a transformation 𝛵: 𝛴 → 𝛴  

by    𝑇(𝑥) =  𝑇(𝑥1𝑥2𝑥3𝑥4. . . ) =  𝑥2𝑥3𝑥4𝑥5 …for every    𝑥 = 𝑥1𝑥2𝑥3𝑥4. . . ∈ Σ, which is called Shift Operator.  

Then {𝛴; 𝛵} is a dynamical system. 

 

Definition 4. 

A dynamical system is a transformation 𝑓 ∶  𝑋 →  𝑋 on a metric space (𝑋, 𝑑) which is denoted by {𝑋; 𝑓}. 

 

Definition 5. 

The orbit of a point 𝑥 ∈ 𝑋 is the sequence {𝑓∘𝑛(𝑥)}𝑛=0
∞ . 

 

Definition 6. 

A periodic point of 𝑓 is a point 𝑥 ∈ 𝑋 such that 
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𝑓∘𝑛(𝑥) = 𝑥 , for some 𝑛 ∈  {1,2,3, . . . }. 

If 𝑥 is a periodic point of 𝑓, then an integer 𝑛 such that 𝑓∘𝑛(𝑥) = 𝑥 , 𝑛 ∈  {1,2,3, . . . } is called a period of 𝑥. 

The least such integer is called the minimal period of the periodic point 𝑥. 

The orbit of a periodic point of  𝑓 is called a cycle of  𝑓. 

The minimal period of a cycle is the number of distinct points it contains. A period of a cycle of f is a period of a point in the 

cycle. 

 

Definition 7. 

Let (𝑋, 𝑑) be a metric space. A sequence {𝑥𝑛}𝑛=0
∞  of points of 𝑋 is said to be dense in 𝑋 if, for each point 𝑎 ∈ 𝑋, there is a 

subsequence {𝑥𝜎𝑛
}

𝑛=0

∞
 that converges to 𝑎 ∈ 𝑋. In particular, an orbit {𝑥𝑛}𝑛=0

∞  of a dynamical system {𝑋; 𝑓} is said to be dense 

in 𝑋  if the sequence {𝑥𝜎𝑛
}

𝑛=0

∞
  is dense in 𝛸. 

 

Let (𝑋, 𝑑) be a metric space. 

 

Definition 8. 

A dynamical system {𝑋; 𝑓} is transitive if, whenever 𝑈 and 𝑉 are open subsets of the metric space (𝑋, 𝑑), there exists a finite 

integer 𝑛 such that 𝑈 ∩ 𝑓∘𝑛(𝑉) ≠ ∅. 

 

Definition 9. 

The dynamical system {𝑋; 𝑓} is sensitive to initial conditions if there exists 𝜹 >  0 such that, for any 𝑥 ∈ 𝑋 and any ball 𝐵(𝑥, 휀) 

with radius 휀 >  0, there is 𝑦 ∈ 𝐵(𝑥, 휀) and an integer 𝑛 > 0 such that 𝑑(𝑓∘𝑛(𝑥), 𝑓∘𝑛(𝑦)) > 𝛿. 

 

Definition 10. 

A dynamical system {𝑋; 𝑓} is chaotic if 

1) it is transitive 
2) it is sensitive to initial conditions 

3) the set of periodic orbits of 𝑓 is dense in 𝑋. 

 

Theorem 3.  

Let 𝛴 be the metric code space on 𝑁 symbols (alphabet) with metric  𝑑(𝑥, 𝑦) = ∑
|𝑥𝑖−𝑦𝑖|

(𝑁+1)𝑖
∞
𝑖=1    for all   𝑥, 𝑦 ∈ 𝛴 and let 𝑇 be the 

swift operator 𝑇: 𝛴 → 𝛴 defined by 𝑇(𝜎) = 𝛵(𝜎1𝜎2𝜎3𝜎4 … ) = 𝜎2𝜎3𝜎4𝜎5 … for all = 𝜎1𝜎2𝜎3𝜎4 … ∈ 𝛴 .  

Then the shift dynamical system {𝛴; 𝛵} is chaotic. 

 

IV. ASSOCIATION BETWEEN CODE SPACE AND SHIFT DYNAMICAL SYSTEMS 

Let {𝛸;· 𝑤𝑛 , 𝑛 = 1,2, . . . , 𝑁} be a totally disconnected IFS with attractor. 

 

Definition 11. 

The associated shift transformation on 𝐴 is the transformation 𝑆: 𝐴 →  𝐴 defined by 𝑆(𝑎) = 𝑤𝑛
−1(𝑎), for 𝑎 ∈ 𝑤𝑛(𝐴), where 𝑤𝑛 is 

viewed as a transformation on attractor 𝐴. 

 

Definition 12. 

The dynamical system {𝐴;  𝑆} is called the shift dynamical system associated with the IFS. 

 

Definition 13. 

The code space associated with the IFS, (𝛴, 𝑑𝑐), is defined to be the code space on 𝑁 symbols {1,2,3, … , 𝑁}, with the metric 𝑑𝑐  

given by: 

𝑑𝑐 = ∑
|𝜏𝑛−𝜎𝑛|

(𝑁+1)𝑛
∞
𝑛=1 , for all 𝜏, 𝜎 ∈ 𝛴. 

This association between the code space and shift dynamical system is basic for the following theorem.  

 

Lemma 4. 

Let {𝑋; 𝑤𝑛: 𝑛 = 1,2, … , 𝑁} be a hyperbolic IFS, where (𝑋, 𝑑) is a complete metric space. Let 𝐾 ∈ 𝐻(𝑋). Then there exists �̃� ∈

𝐻(𝑋) such that 𝐾 ⊂ �̃� and 𝑤𝑛: �̃� → �̃� for 𝑛 = 1,2, … , 𝑁. In other words {�̃�; 𝑤𝑛: 𝑛 = 1,2, … , 𝑁} is a hyperbolic IFS, where the 

underlining space is compact. 

 

Lemma 5. 

Let {𝑋; 𝑤𝑛: 𝑛 = 1,2, … , 𝑁} be a hyperbolic IFS of contractivity 𝑠, where (𝑋, 𝑑) is a complete metric space. Let (𝛴, 𝑑𝑐) denote the 
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code space associated with the IFS. For each ∈ 𝛴, 𝑛 ∈ ℕ and 𝑥 ∈ 𝑋 let  𝛷(𝜎, 𝑛, 𝑥) = 𝑤𝜎1
∘ 𝑤𝜎2

∘ 𝑤𝜎3
… ∘ 𝑤𝜎𝑛

(𝑥). As 𝐾 is denoted 

a compact non-empty subset of 𝑋. Then there is a real constant 𝐷 such that 𝑑(𝜙(𝜎, 𝑚, 𝑥1), 𝜙(𝜎, 𝑛, 𝑥2)) ≤ 𝐷𝑠𝑚⋀𝑛 for all ∈  Σ , all 

𝑚, 𝑛 ∈ ℕ, and all 𝑥1, 𝑥2 ∈ 𝐾.  

 

Theorem 4. 

Let (𝑋, 𝑑) be a complete metric space. Let  {𝛸; 𝑤𝑛: 𝑛 = 1,2, . . . , 𝑁} be an IFS. Let, also, (𝛴, 𝑑𝑐) denote the code space associated 

with the IFS. For each ∈ 𝛴 , 𝑛 ∈ ℕ and 𝑥 ∈ 𝑋 let  𝛷(𝜎, 𝑛, 𝑥) = 𝑤𝜎1
∘ 𝑤𝜎2

∘ 𝑤𝜎3
… ∘ 𝑤𝜎𝑛

(𝑥). 

Then 𝛷(𝜎) = lim
𝑛→∞

𝛷(𝜎, 𝑛, 𝑥)  

i) exists 

ii) belongs to 𝐴 

iii) is independent of 𝑥 ∈ 𝑋  

If 𝐾 is a compact subset of 𝑋, then the convergence is uniform over 𝑥 ∈ 𝐾. The function 𝛷: 𝛴 → 𝐴 thus provided is continuous 

and onto. 

Proof: 

Let 𝑥 ∈ 𝑋 and 𝐾 ∈ 𝐻(𝑋), such that 𝑥 ∈ 𝐾.  

We construct �̃� as in Lemma 4. We also define 𝑊: 𝑋 → 𝑋 contraction mapping on metric space (𝐻(𝑋), ℎ(𝑑)) and we have 𝐴 =

lim
𝑛→∞

{𝑊°𝑛(𝐾)}, where 𝑊°𝑛(𝐾) is a Cauchy sequence in (𝐻(𝑋), ℎ(𝑑)). 

As well as,  𝛷(𝜎, 𝑛, 𝑥) ∈ 𝑊°𝑛(𝐾) and it is easy to prove, that if lim
𝑛→∞

𝛷(𝜎, 𝑛, 𝑥)  exists, then it belongs to 𝐴 (since for fixed 𝜎 ∈ 𝛴 

the sequence {𝛷(𝜎, 𝑛, 𝑥)}𝑛=1
∞  is a Cauchy one) due to Lemma 5, it is conducted 𝑑(𝛷(𝜎, 𝑚, 𝑥), 𝛷(𝜎, 𝑛, 𝑥)) ≤ 𝐷𝑠𝑚⋀𝑛 , for all 𝑥 ∈

𝐾, and the right-hand tends to zero as 𝑚, 𝑛 → ∞.  

The uniformity of the convergence follows from the fact that the constant D is not dependent of ∈ 𝐾 . 

Φ: 𝛴 → 𝛢 is continuous. Indeed, let 휀 > 0 is given, and we choose 𝑛 so that 𝑠𝑛𝐷 < 휀, 𝜎, 𝑤 ∈ 𝛴, such that 𝑑𝑐(𝜎, 𝑤) <

∑
𝑁

(𝑁+1)𝑚 =
1

(𝑁+1)𝑛+1
∞
𝑚=𝑛+2 . 

Then we can verify that 𝜎 must agree with 𝑤 through 𝑛 terms, specifically, that is 𝜎1, = 𝑤1 , 𝜎2, = 𝑤2 , … , 𝜎𝑛 , = 𝑤𝑛 . 

So, for each 𝑚 ≥ 𝑛 we can write  

𝑑(Φ(𝜎, 𝑚, 𝑥), Φ(𝜎, 𝑚, 𝑥)) = 𝑑(Φ(𝜎, 𝑛, 𝑥1), Φ(𝜎, 𝑛, 𝑥2)) , for some pair 𝑥1, 𝑥2 ∈ �̃�. 

By Lemma 5 the right-hand is smaller than 𝑠𝑛𝐷 which is smaller than 휀. Taking the limit as 𝑚 → ∞, we find 𝑑(Φ(𝜎), Φ(𝑤)) < 휀. 

To prove, that Φ is onto, we take 𝑎 ∈ 𝐴, then there is a sequence 

{𝑤(𝑛) ∈ 𝛴: 𝑛 = 1,2, … } 

such that lim
𝑛→∞

Φ(𝑤(𝑛), 𝑛, 𝑥) = 𝑎. Since (𝛴, 𝑑𝑐) is compact it follows that the sequence {𝑤(𝑛) ∈ 𝛴: 𝑛 = 1,2, … } has a convergence 

subsequence with limit 𝑤 ∈ 𝛴. 

Without loss of generality assume that lim
𝑛→∞

𝑤(𝑛) = 𝑤. 

If 𝑎(𝑛) = the amount of elements of {𝑗 ∈ 𝑁: 𝑤(𝑛) = 𝑤𝑘 , 𝑓𝑜𝑟 1 ≤ 𝑘 ≤ 𝑗}, where 𝑁 = {1,2, … }, then lim
𝑛→∞

𝑎(𝑛) = ∞. 

Therefore, 𝑑 (𝛷(𝑤, 𝑛, 𝑥), 𝛷(𝑤(𝑛), 𝑛, 𝑥)) ≤ 𝐷𝑠𝑎(𝑛), and by taking the limit on both sides as 𝑛 → ∞, we find 𝑑(Φ(𝑤),   α) = 0, 

which implies Φ(𝑤) = 𝑎, and for that reason Φ: 𝛴 → 𝛢 is onto. 

 

Theorem 5. 

Let {𝛸; 𝑤𝑛: 𝑛 = 1,2, . . . , 𝑁} be a totally disconnected IFS and let {𝐴, 𝑆} be the associated shift dynamical system.  

Let 𝛴 be the associated code space of 𝑁 symbols and let 𝑇: 𝛴 → 𝛴 be defined by 𝑇(𝜎) = 𝛵(𝜎1𝜎2𝜎3𝜎4 … ) = 𝜎2𝜎3𝜎4𝜎5 … for all 

𝜎 = 𝜎1𝜎2𝜎3𝜎4 … ∈ 𝛴. 

Then the two dynamical systems {𝐴; 𝑆} and {𝛴; 𝑇} are equivalent. Therefore the Julia set considered as a dynamical system with 

the Newton- Raphson transformation is chaotic. 

 

We remind the reader that two dynamical systems {𝛸1; 𝑓1} and {𝑋2; 𝑓2} are called equivalent or topologically conjugate, if there is 

a homomorphism  𝜃: 𝑋1 → 𝑋2 such that: 

𝑓1(𝑥1) = 𝜃−1  ∘ 𝑓2  ∘ 𝜃(𝑥1), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥1 ∈ 𝑋1, and  

𝑓2(𝑥2) = 𝜃 ∘ 𝑓1  ∘ 𝜃−1(𝑥2), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥2 ∈ 𝑋2 

 

All the above analysis leads to Theorem 6. 

 

Theorem 6. 

The dynamical system {𝑱; 𝒇}, where 𝑱 is the Julia set and 𝒇 is the complex Newton-Raphson transformation, is a chaotic 

dynamical system. 
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V. ALGORITHM FORMULATION 

We now proceed to examine the N-R algorithm behavior at convergence/divergence regions as well as qualitative and 

quantitive behavior near the Julia Set. In addition, we propose an improved algorithm for constructing equipotential (or contour) 

lines. 

Steps of the iterative algorithm: 

 Take three points 𝑧0
(𝑛−3)

, 𝑧0
(𝑛−2)

, 𝑧0
(𝑛−1)

 for the initialization. Each one considered as an initial point of the Newton-

Raphson algorithm.  

 Assume, inductively that each of three 𝑧0
(𝑖)

 converges after k iterations to the same root p (i.e. to one of the three roots of 

our example). 

 Construct a parabola passing through these 3 points.  

 Define 𝑎 (𝑛30°) the point where the parabola intersects the line passing from p and forms an angle of, say, 30°, 

clockwise with the straight line [𝑝, 𝑧0
(𝑛−1)

]. 

 Iteratively, the point 𝑎 (𝑛30°) is an initial point for finding the next initial point of N-R 𝑧0
(𝑛)

 converging after k iterations. 

This can be found simply by a linear estimation on the line [𝑝, 𝑎(𝑛30°)].  

 Continuing iteratively, we get  𝑧0
(𝑛+1)

, 𝑧0
(𝑛+2)

 etc, this way obtaining the equipotential line corresponding to k steps of 

convergence. 

It is standard to use different colors corresponding to different roots. Also, to use progressively heavier colors as you get 

closer to the root (which entails, of course, an increasing smaller number of steps for convergence). Monotonicity here is obvious. 

It is worth noticing that due to quadratic convergence of Newton-Raphson (when roots are simple), the intensity of each color of 

the equipotential line “accelerates” as it approaches the root p. 

If 𝑎(𝑛30°), as initialization, is not “close enough” to 𝑧0
(𝑛)

, we use a smaller angle than 30°, and/or we interpolate the points 

𝑧0
(𝑖)

 using cubic splines instead of parabolas. It is helpful to choose angles e.g. 30° which divide 360°. 

In more general situations, the complex plane is partitioned into 𝑆 ∪ 𝐴 ∪  𝐽, where 𝑆 is the set of the initial points that 

converge to some root of the Newton-Raphson algorithm, 𝐴 is the set of initial points that diverge (to infinity), and 𝐽 the Julia set 

(chaotic). In the above example, 𝐴 is empty. However, the same algorithm can be easily modified to include the general case, 

𝐴 ≠ ∅, simply by counting at each equipotential the number of iterations that exceed a given sphere of radius 𝑅. 
 

VI. CONCLUSIONS 

In this paper, it was proven that the Julia set which derives from the complex Newton-Raphson method implementation is a 

chaotic dynamical system embedded with the N-R transformation. This is because its topological equivalence with the chaotic 

shift dynamical system of the Code Space is associated with a shift transformation. The article then presents an iterative 

algorithmic procedure which defines the Julia set and its graphical representation. 
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