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Abstract: ECG is the important data of the human body 

that gives the information measures of the changes in the 

cardiovascular system. These clinical ECG signal is always 

corrupted by the electromagnetic field and power line 

interference which causes misleading results during the 

diagnosis of diseases by advanced software modules .So it is 

important to minimize these data acquisition recording 

errors in the ECG to make the accurate clinical analysis. We 

are developing an algorithm that can break three 

consecutive ECG signal data array into 3 equivalents 

Empirical Mode Decomposition these decomposed data 

matrix are passed through the Independent Component 

Generation algorithm from these components we will select 

and eliminate the noisy components and thereafter reverse 

ICA and EMD will be applied to get error free ECG data. 
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1. Introduction: 

A pair of surface electrodes placed directly on the heart will 

record a repeating pattern of changes in electrical “action  

potential.” As action potentials spread from the atria to the 

ventricles, the voltage measured between these two electrodes  

will vary in a way that provides a “picture” of the electrical 

activity of the heart. The nature of this picture can be varied by 

changing the position of the recording electrodes; different 

positions provide different perspectives, enabling an observer 

to gain a more complete picture of the electrical events. The 

body is a good conductor of electricity because tissue fluids 

contain a high concentration of ions that move (creating a 

current) in response to potential differences. Potential 

differences generated by the heart are thus conducted to the 

body surface where they can be recorded by surface electrodes 

placed on the skin. The recording thus obtained is called an 

electrocardiogram (ECG or EKG). There are two types of ECG 

recording electrodes, or “leads.”The bipolar limb leads record 

the voltage between electrodes placed on the wrists and legs. 

These bipolar leads include lead I (right arm to left arm), lead 

II (right arm to left leg),and lead III (left arm to left leg). In the 

unipolar leads, voltage is recorded between a single 

“exploratory electrode” placed on the body and an electrode 

that is built into the electrocardiograph and maintained at zero 

potential (ground). The unipolar limb leads are placed on the 

right arm, left arm, and left leg; these are abbreviated AVR, 

AVL, and AVF, respectively. The unipolar chest leads are 

labeled one through six, starting from the midline position (see 

below). There are thus a total of twelve 

standard ECG leads that “view” the changing pattern of the 

heart’s electrical activity from different perspectives. This is 

important because certain abnormalities are best seen with 

particular leads and may not be visible at all with other leads. 

The unipolar limb leads are placed on the right arm, left arm, 

and left leg; these are abbreviated AVR, AVL, and AVF, 

respectively. The unipolar chest leads are labeled one through 

six, starting from the midline position (see below). There are 

thus a total of twelve standard ECG leads that “view” the 

changing pattern of the heart’s electrical activity from different 

perspectives. This is important because certain abnormalities 

are best seen with particular leads and may not be visible at all 

with other leads. 

 

2. Related Work: 

Aapo Hyvärinen and Erkki Oja (2000), [1] worked on a 

fundamental problem in neural network research, as well as in 

many other disciplines, is finding a suitable representation of 

multivariate data, i.e. random vectors. For reasons of 

computational and conceptual simplicity, the representation is 

often sought as a linear transformation of the original data. In 

other words, each component of the representation is a linear 

combination of the original variables. Well-known linear 

transformation methods include principal component analysis, 

factor analysis, and projection pursuit. Independent component 

analysis (ICA) is a recently developed method in which the goal 

is to find a linear representation of nongaussian data so that the 

components are statistically independent, or as independent as 

possible. Such a representation seems to capture the essential 

structure of the data in many applications, including feature 

extraction and signal separation. In this work, we present the 

basic theory and applications of ICA, and our recent work on 

the subject. 

ICA is a very general-purpose statistical technique in which 

observed random data are linearly transformed into components 

that are maximally independent from each other, and 

simultaneously have “interesting” distributions. ICA can be 

formulated as the estimation of a latent variable model. The 

intuitive notion of maximum nongaussianity can be used to 

derive different objective functions whose optimization enables 

the estimation of the ICA model. Alternatively, one may use 

more classical notions like maximum likelihood estimation or 

minimization of mutual information to estimate ICA; somewhat 

surprisingly, these approaches are (approximatively) 

equivalent. A computationally very efficient method 

performing the actual estimation is given by the FastICA 

algorithm. Applications of ICA can be found in many different 

areas such as audio processing, biomedical signal processing, 

image processing, telecommunications, and econometrics. 

 

Huang’s data-driven technique of Empirical Mode 

Decomposition (EMD) is presented by Gabriel Rilling et. al., 

(2003), [2], and issues related to its effective implementation 

are discussed. A number of algorithmic variations, including 

new stopping criteria and an on-line version of the algorithm, 

are proposed. Numerical simulations are used for empirically 

assessing performance elements related to tone identification 

and separation. The obtained results support an interpretation of 

the method in terms of adaptive constant-Q filter banks. 

EMD is a promising new addition to existing toolboxes for 

nonstationary and nonlinear signal processing, but it still needs 
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to be better understood. This work discussed algorithmic issues 

aimed at more effective implementations of the method, and it 

proposed some preliminary performance measures. The results 

reported here are believed to provide with new insights on EMD 

and its use, but they are merely of an experimental nature and 

they clearly call for further studies devoted to more theoretical 

approaches.  

 

Arnaud Delorme and Scott Makeig, (2004), [3] have 

developed a toolbox and graphic user interface, EEGLAB, 

running under the cross-platform MATLAB environment (The 

Mathworks, Inc.) for processing collections of single-trial 

and/or averaged EEG data of any number of channels. 

Available functions include EEG data, channel and event 

information importing, data visualization (scrolling, scalp map 

and dipole model plotting, plus multi-trial ERP-image plots), 

preprocessing (including artifact rejection, filtering, epoch 

selection, and averaging), Independent Component Analysis 

(ICA) and time/frequency decompositions including channel 

and component cross-coherence supported by bootstrap 

statistical methods based on data resampling. EEGLAB 

functions are organized into three layers. Top-layer functions 

allow users to interact with the data through the graphic 

interface without needing to use MATLAB syntax. Menu 

options allow users to tune the behavior of EEGLAB to 

available memory. Middle-layer functions allow users to 

customize data processing using command history and 

interactive ‘pop’ functions. Experienced MATLAB users can 

use EEGLAB data structures and stand-alone signal processing 

functions to write custom and/or batch analysis scripts. 

Extensive function help and tutorial information are included. 

A ‘plug-in’ facility allows easy incorporation of new EEG 

modules into the main menu. EEGLAB is freely available 

(http://www.sccn.ucsd.edu/eeglab/) under the GNU public 

license for non commercial use and open source development, 

together with sample data, user tutorial and extensive 

documentation.  

Another relative disadvantage of using Matlab to process high-

density EEG data is that Matlab currently converts all floating-

point numbers to 64-bit doubleprecision, thus requiring large 

amounts of main memory to process large data sets. Though 

hopefully some future Matlab versions may allow the option of 

processing data in 32-bit floating-point format, we 

have taken care to address this issue in EEGLAB by including 

various options to minimize memory usage, such as 

constraining EEGLAB to work on a single dataset, or 

computing the ‘activation’ time courses of independent 

components only as needed. However, this issue remains a 

serious problem for large datasets: parts of the toolbox may 

have to be updated to allow very large (e.g., long 256-channel) 

datasets to be analyzed within the current Linux 2GB/process 

limit. One possibility is to use the Matlab MEX language, an 

interface between C and Matlab that allows a wider variety of 

data types including single precision. Another possibility is to 

have EEGLAB load into main memory only a part of the dataset 

at a time. However, as 64-bit processors become more 

available, the current data space limits of operating systems and 

Matlab should increase, in which case the remaining problem 

would only be the burden of purchasing the necessary RAM. 

Current development of EEGLAB focuses on processing of 

large datasets (>1 Gb), semiautomatically grouping 

independent component across subjects, and component source 

localization. EEGLAB will also be linked to our FMRLAB 

toolbox (http://www.sccn.ucsd.edu/fmrlab) to process 

simultaneously recording EEG and fMRI data (Duann et al., 

2002a). We also have begun working with codevelopers to 

increase the range of EEGLAB functions using the ‘plug-in’ 

facility, whereby contributors may easily contribute optional 

EEGLAB code that is readily incorporated into the EEGLAB 

menu. The plug-in facility is designed so that plug-in functions 

can be used and distributed both within EEGLAB and 

independently. By this mechanism we hope to encourage the 

open source development of comprehensive EEG (and MEG) 

signal processing tools under EEGLAB.  

 

Empirical mode decomposition (EMD) has recently been 

pioneered by Patrick Flandrin, Gabriel Rilling, and Paulo 

Gonçalvés, (2004), [4] for adaptively representing 

nonstationary signals as sums of zero-mean amplitude 

modulation frequency modulation components. In order to 

better understand the way EMD behaves in stochastic situations 

involving broadband noise, we report here on numerical 

experiments based on fractional Gaussian noise. In such a case, 

it turns out that EMD acts essentially as a dyadic filter bank 

resembling those involved in wavelet decompositions. It is also 

pointed out that the hierarchy of the extracted modes may be 

similarly exploited for getting access to the Hurst exponent. 

They reported here on first numerical experiments aimed at 

supporting the claim that, in the case of structured broadband 

stochastic processes such as fractional Gaussian noise, the built-

in adaptivity of EMD makes it behave spontaneously as a 

“wavelet-like” filter bank. An interesting by-product of this 

interpretation is that EMD may offer a new way of analyzing 

self-similar processes. Thorough comparisons (which are 

beyond the scope of this letter) with other existing methods are 

in progress. Let us just mention that benefits very similar to 

those of wavelet-based methods are obtained when using EMD: 

in particular, the technique happens to naturally cope with 

superimposed smooth trends. From a more general perspective, 

the results presented here clearly call for theoretical elements 

which would explain the observed behaviors (e.g., the -

dependence of the filter bank structure), a task which is made 

difficult by the fact that EMD does not admit an analytical 

definition. The purpose of the present experimental study was 

to be a contribution aimed at a better understanding of one 

specific aspect of EMD (the way it decomposes broadband 

noise), filling somehow the gap between a still nonexisting 

theory and the application of an appealing method to real-world 

situations. 

 

An Extended Kalman Filter (EKF) has been proposed by Reza 

Sameni, M.B. Shamsollahi, Christian Jutten, and Massoud 

Babaie-Zadeh (2007), [5] for the filtering of noisy ECG 

signals. The method is based on a modified nonlinear dynamic 

model, previously introduced for the generation of synthetic 

ECG signals. An automatic parameter selection method has also 

been suggested, to adapt the model with a vast variety of normal 

and abnormal ECG signals. The results show that the EKF 

output is able to track the original ECG signal shape even in the 

most noisiest epochs of the ECG signal. The proposed method 

may serve as an efficient filtering procedure for applications 

such as the noninvasive extraction of fetal cardiac signals from 

maternal abdominal signals. 

In this work an Extended Kalman Filter (EKF) was designed 

for the filtering of ECG signals. The EKF’s dynamic model was 

based on a modified three dimensional nonlinear dynamic 

model previously introduced for the generation of synthetic 

ECG signals. This nonlinear model was linearized in order to 
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be used in an EKF. The designed filter was later applied to noisy 

ECG signals, and the results show the filter’s capability in 

tracking and filtering noisy ECG signals. The evaluation of the 

EKF implemented in this work was quite qualitative. In 

practical applications it is necessary to represent more 

quantitative measures, together with issues concerning the 

stability and convergence of the Kalman filter. The filtering 

performance is highly reliant on the underlying dynamics 

assumed for the ECG signal. It was 

shown that by using a flexible nonlinear dynamical model, 

together with the EKF, it is possible to construct a filter which 

can remove environmental noises and artifacts. The proposed 

method can serve as a base for the design of a robust ECG filter, 

with vast applications for low SNR ECG signals such as the 

noninvasive fetal cardiac signal extraction. 

Future works include the combination of the proposed EKF 

model with source separation techniques, for the extraction of 

maternal and fetal cardiac signals from multi-channel surface 

electrode recordings. 

 

3. Methodology: 

The extraction of high resolution ECG signals from noisy 

measurements is among the most tempting open problems of 

biomedical signal processing. Specifically, the extraction of 

ECG signals from low SNR measurements is the state of the art 

in applications such as the noninvasive extraction of fetal ECG 

signals, recorded from an array of electrodes placed on the 

maternal abdomen [27]. 

On the other hand, in recent years some research has been 

conducted towards the generation of synthetic ECG signals. 

Regarding the physiological bases of ECG signals, a true ECG 

model should consider the morphology of the PQRST complex, 

together with the RR-wave timing. In a previous work [12], a 

synthetic model has been proposed which has unified the 

morphology and pulse timing of the ECG signal in a single 

nonlinear dynamic model. Concerning the simplicity and 

flexibility of this model it is believed that it can be easily 

adapted to a broad class of normal and abnormal ECG signals. 

This model may be further used in dynamic adaptive filters, 

such as the Kalman Filter, for ECG filtering applications. 

Meanwhile, the dynamic model of [12] is nonlinear and 

requires the nonlinear counterparts of the conventional Kalman 

Filter. 

In a recent work [13], the authors have developed an Extended 

Kalman Filter (EKF) based on the mentioned dynamic model 

for noisy ECG filtering. In this paper, the synthetic ECG model 

has been further modified to fulfill the requirements of the EKF 

filter. The EKF model 

parameter selection has also been automated in order to adapt 

the method to different normal and abnormal ECG signals. The 

results show that the proposed method can fully track the ECG 

signal even in the noisy epochs, where the observed ECG signal 

is almost lost in noise. 

Electrocardiogram (ECG) signals plays a vital role in clinical 

diagnosis especially for diagnosing heart related diseases and 

disorders such as, cardiovascular disease (CVD), pulmonary 

disease, sudden cardiac arrest (SCA), etc [7]. ECG signal is 

generated by a nerve impulse stimulus to a heart. The current is 

diffused around the surface of the body and build on the voltage 

drop, which is a normally 0.0001 to 0.003volt and the signals 

are within the frequency range of 0.05 to 100 Hz [27] [22]. ECG 

signals are usually recorded at the surface of the body and 

processed to give important information about the electrical 

activity of heart. A typical ECG tracing of a normal heartbeat 

consists of a P wave, a QRS complex and a T wave (Figure 3.1). 

Usually, the signal which is acquired from the human body is 

of very low potential and difficult to analyze the signal 

variance. Hence, necessary amplification is required before 

processing the ECG signal to derive any give useful information 

about the cardiac abnormalities. 

 
Fig 1: The elements of ECG complex 

 

Biomedical signals are observations of physiological activities 

of organisms, ranging from protein sequences, tissue and organ 

images, to neural and cardiac rhythms. Biomedical signals are 

obtained by electrodes that record the variations in electrical 

potential generated by physiological processes. Each 

physiological process is associated with certain types of signals 

that reflect their nature and activities. Observing these signals 

and comparing them to their known norms, diseases or 

disorders can often be detected. When such measurements are 

observed over a period of time, a one dimensional time-series 

is obtained which is called a physiological signal. Arrhythmia 

is a generalized term used to denote any disturbances in the 

heart's rhythm. Cardiac Arrhythmia is an abnormal rate of 

muscle contractions in the heart. These abnormalities of heart 

may cause sudden cardiac arrest or cause damage to heart. 

Proper diagnosis of arrhythmia requires an electrocardiogram. 

The development of the model for the application can be 

divided into the following stages: ECG Signal Pre-processing, 

Feature Detection, Feature Extraction, and Feature 

Classification using BPNN. For the signal pre-processing and 

feature detection, we made use of Pan-Tompkins and Hamilton-

Tompkins algorithms [2], and adapted them to suit our 

application. The algorithms are more popular in QRS detection 

methods. For the feature classification by BPNN, we adopted 

MATLAB in-built Levenberg-Marquardt (LM) algorithm. The 

model accepts and works on already digitally acquired ECG 

signal, and MATLAB software was used to both implement and 

evaluate the application model, using MIT-BIH database. 

Figure 2 shows the block diagram representation of the 

developed ECG beat classifier. 
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Figure 2: Block diagram of the ECG beat classifier. 

 

4. Result and Discussion: 

We have considered an ECG data having length of 50000X1 

samples. It is an ECG data of healthy person having 10 ECG 

cycles. The data plot with respect to time axis is shown in 

figure 3 and magnified view of 1st cycle is shown in figure 4. 

 
Fig 3: ECG waveform of data prior to adding noise. 

 

 
Fig 4: Magnified View of 1st ECG waveform of data prior 

to adding noise. 

 

Since above signal shown in figure 3 consist of 50000 samples 

for only 10 cycles it will take large memory space hence 

processing time. So the number of samples are reduced by 

down sampling by 8 times thus total samples we obtained are 

50000/8=6250 data points. This down sampled signal are 

shown in figure 5. 

 
Fig 5: ECG waveform of data prior to adding noise after 

down sampling by 8 times. 

 

We can see that there are no significant differences in figure 3 

and figure 5 even eliminating the data information by 8 times 

but along with this denoising processing time will become fast. 

The above ECG data is to be passed through Empirical mode 

decomposition (EMD) prior to this we will have to clip multiple 

portions of above signal to make a multiple dimension data. For 

clipping out the ECG data we have pointed the peaks location 

foe the given ECG records as shown in figure 4.From the figure 

6 we have defined the approximated  position of peaks as an 

array x. 

x= [ 409        998        1552        2127        2716        3300        

3896        4520        5075        5659  6250]. 

 
Fig 6: ECG data peak location for all 10 cycles. (x:location 

of peak value, y:value of peak ECG voltage). 

 

Since available database of any biomedical signals are 

contributed by standard research lab hence they are extremely 

high quality instrument based measurements values and taken 

under several precise environment. Due to this these data do not 

consist of any noise. For testing our denoising algorithm we 

require to add noise in these data such that they exhibit 

distortions. We have added noise shows distortions in there 

waveforms. We have added Gaussian noise in the signal having 

noise power 10% of the signal power. The generated noisy 

signal and its magnified view are shown in figure 7 and 8. 
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Figure 7: Noisy ECG data (blue) and original ECG data 

(red). 

 
Figure 8: Magnified View of Noisy ECG data (blue) and 

original ECG data (red). 

5. Conclusion: 

In this work we consider distortion related problem in diagnosis 

based on amplitude of ECG applied in common practice. By 

ECG amplitude analysis we can construct a new set of signals 

from the signal amplitudes at some defined points of the ECG, 

such as R peak or ST amplitudes or from time averages of 

delineated ECG segments. We have developed an algorithm by 

combining ICA and EMD decomposition techniques for error 

minimization in ECG database for improving diagnosis quality. 

ICA has found several applications in signal processing systems 

aimed at aiding in diagnostics. ECG based diagnostics 

applications in which ICA has been utilized in the applications 

of classification of ECG beats, analysis of parameterized ECG 

signals, heart rate variability analysis, arrhythmia estimation 

and atrial fibrillation extraction and analysis. 
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