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Abstract  

 In this paper, we consider generalized G-Saddle point. Different generalizations of G-Wolfe 

duality with respective generalized univexity will be derived in the context of Antczak. Strong and 

weak duality theorems will be derived in this context. 
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1. Introduction  

 Early in the development of game theory, it was observed that matrix games were 

equivalent to a dual pain of linear programs (Karlin [17], Charnes [11] and Cottle [12]) Recently, 

Kawaguchi and Mayurama [18] were formulated dual linear program.  

Recently, Corley considered a two-person bi-matrix vector-valued game in which strategy 

spaces are mixed and introduced the concept of solution of this game. He has also established the 

necessary and sufficient optimality conditions for the solution of such a game. Chandra and Durga 

Prasad [10] considered a constrained two-person zero-sum game with vector pay-off and discussed 

its relation with a pair of multiobjective programming problems. More recently, Singh and Rueda 

[26] generalized the work of Chandra and Durga Prasad [10] replacing differentiability by sub-

differentiability. Also, they were investigated the connection between an equilibrium point of a 

vector-valued constrained game and a generalized saddle point. 

 They had shown the relationship between certain convex-concave vector valued games and 

a pair of nonlinear multiobjective programming problems. Recently, Khan and Hanson [19], has 

given a new treatment on ratio invexity for a mathematical programming problem. They 
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established sufficient optimality conditions and duality results for an invex fractional programming 

problem. 

2.  Notations and Definitions:  

 In section 2, will discuss basic definitions and notarises, which will needed in the sequel. 

 Any function f : R R  is known as strictly increasing if, for all x, y, , R, x < y, implies 

   1f x f , y  

 Definitions 2.2 [1] Let S be a non-empty, open subset of Rn and the function f : X R  be a 

differentiable function defined on X. If  a differentiable real-valued strictly increasing function on 

G: If : f X R  and a vector-valued function 
n: X X R     for  X X x n ,   we have  

            TG f x G f u G f u f x x,u     then the function f is called  

G-invex at u X  on X w.r.t.  .  

We will define 1d v univexity as follows.   

Definition 2.3 [1] Let S be a non-empty, open subset of Rn and the function f : X R  be a 

differentiable function defined on X. If  a differentiable real-valued strictly increasing function on 

G: If : f X R  and a vector-valued function 
n: X X R     for  X X x n .   Then the function 

is said to be 1d v univexity if. 

               T T 2b x,u G f x G f u G f x f x x,u x, y       

3.  Problem formulation  

 In this section, we consider the following nonlinear mathematical programming problem.  

(NP)  min       1 nf x f x ,............f x  

subject to    jg x 0, j J 1,2,.......,m    
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 where S is a non-empty open subject of Rn and if :S R,  j J, i I   are in general 

continuously differentiable function.  

 In general, set of all feasible solutions is denoted by 

   1 JF x S:g x 0, j J     

 In the sequel, the set of indices of the set of active constraints is denoted by 

    1 jJ u j T : g u 0   .  

 Let us consider a suitable definition of the so-called G-Lagrangian function for the chosen 

nonlinear multi objective mathematical programming problem as: 

     G 1 1 1 fi iL x; , G f x      
j

m

j g j

J 1

G g x


   

where  
if fG : I S R  and  

i if gG : I S R  are generally differentiable real valued strictly 

increasing functions.  

Let us introduce a generalized definition of a G-Saddle point for the genralized G-

Lagrangian function for the nonlinear multi objective mathematical programming problem.  

Definition 3.1: Suppose   mx, ,µ D R R     is a point is called a Generalized G-Saddle point for 

the nonlinear multi objective mathematical programming problem if the following hold: 

i)     G G 1L x, ,µ L x, ,µ ,     

and (ii)    G 1 1 G 1 1L x, ,µ L x, ,µ ,    

 Let us recall the following Fritz-John necessary optimality conditions for a given 

mathematical programming problem.  

Theorem 3.1 (Necessary optimality conditions According to Antczak[1] 

 Let x S  be an optimal point in a mathematical programming problem (MP). Then, the 

following G-Fritz-John necessary optimality condition are satisfied:  

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                          www.jetir.org (ISSN-2349-5162) 

JETIR1906F70 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 454 
 

         
j

m
T T

1 f g j gj
j 1

,G f x f x µ,G g x x 0


         (3.2)    

     
j j1 g j g jµ G g x G g x 0, j J, x S     

 
    (3.3)

    

 

and    1 1 1 10,µ 0, ,µ 0,0    
      

 (3.4) 

Here Gj is a differentiable real-valued strictly increasing function defined on If (S), and 

jgG
1j J , is also a differentiable real-valued strictly increasing function defined on  

jgI S .   

Definition 3.2 : Suppose the equilibrium the point   n

1x, ,µ S R R     satisfies the above G-Fritz-

John necessary optimality condition (3.2) – (3.4), then the equilibrium point is known as G-Fritz-

John equilibrium fort the nonlinear multi objective mathematical programming problem (MP).  

 Let us consider the Antczak [1] G-type constraint qualification known as generalized G-

type constraint qualification.  

Definition 3.3: 

 The nonlinear multi objective mathematical programming (MP) is said to satisfy the G-type 

constraint qualification at x S  if  jg , j J x ,  are 
jgG univex w.r. to the same   and  at x  and 

S and more over x S     

        
j jg j g jG g x G g x , J J x   

According to Antczak [1] we use the following the men in the sequel.  

Theorem 3.1 

 Suppose x S  is an optimal point in a nonlinear multi objective mathematical problem (MP) 

and the generalized G-type constraint qualification is to be satisfied at x . Then, the following 

generalized G-K-KK-Tucker necessary optimality conditions are fulfilled.  

           
j

m
T T 2 T

f i g j

j 1

G f x f x x, x x, x µ,G g x


      jg x 0    (4.5)
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j j

1

1 g j g j 1b x, x µ G g x G g x 0 j J , x S    
 

   (4.6) 

and 
1µ 0           (4.7) 

hence Gf is a differentiable real – valmel strictly increasing function, which is defined an 

 
jf gI S , G , j J  defined on  

jgI S  and  
 

j

2

T

g j

i J x

G g x 0


  
  . 

We will establish the equivalence between the optimal point x  and the generalized G-

equivalence point.  x, ,µ  mS R R    in a nonlinear multi objective programming problem (MP).  

Theorem 3.2: 

 Suppose   mx, ,µ S R R      is a generalized saddle point of the generalized Lagrangian 

function for the multi objective mathematical programming problem (MP) and the corresponding 

generalized G-type constraint qualification satisfied at the point x .  

        Further, assume that Gf and 
jgG  are real-valued strictly increasing function an  fI S  and 

   
j jg gI S ,G 0 0  for some 

1j J ,  and   
 

j

2
T

g j

j J g

G g x 0


  
  .  Then x  is optimal solution in problem 

(MP).  

 

Proof: This result can be proved by contradiction.  

Let us assume that  x, ,µ  
mS R R     be a saddle point for the chosen problem (MP).  

 By definition, we have, for any m

1µ R     G 1 G 1L x, ,µ L x, ,µ    

But, by the definition of the generalized G – Lagrangian function, we set  

     
j

m

1 f i 1 g j

j 1

,G f x G g x
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j

m

1 f i 1 g j

j 1

G f x G g x


          

which implies that  

     
j

m m
1

1 j j 1 g j

j 1 j 1

G g x µ G g x
 

     

Let us assume that 1 0   in the above,  

we set 

  
j

m

1 g j

j 1

µ G g x 0


        (3.8) 

By the feasibility of x  in the chosen problem (mp), that follows  j 1g x 0, j J   But, by 

assumption, 
jg 1G , j J  is a differentiable real-valued strictly (monotonic) functions defined the set 

 
jgI S ,  and  0 0

jgG   for some 
1j J .   

For any j J  we have  

     
j jg j gG g x G 0 0   

But, by m

1µ , R ,  we set  

  
j

m

1 g j

i 1

µ G g x 0


         (3.9) 

Let us compare equations (3.8) and (3.9),  

  
j

m

1 g j

i 1

µ G g x 0


         (3.10) 

On the contrary, let x  is not optimal in (mp) i.e., x S   

    i if x f x i 1,2,....., n. 
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4.  Duality Results  

 Here, we discuss a generalized type duality for the chosen multi objective nonlinear 

programming. Denoting it as a generalized form as  

    G 1 GL u,µ L u, ,µ    

Let us consider the corresponding Wolfe type dual is as  

(G-MWD) max    
iG 1 f iL u,µ G f / u   

j

m

g j

j 1

µ, G g u


  

subject to:  

         1 T 2

j iG f u f u x,u x,u   

 

    
j

m
1

g j j

j 1

µ, G g u g u 0


   

and  u S,µ 0   

Here 
if

G  and 
jg 1G , j J  have their usual meanings. 

Let us denote the set of feasible solutions as: 

             
i j

m
m 1 T

1 1 f i g j j 1

j 1

W u,µ , S R : G f u f u x,u µ,G g u , g u 0,µ


 
        
 

  

Consequently   1 1 1u S: u,µ W .    .  

Theorem 4.1 (G-Wolfe weak duality),  

Let x and  1u,µ  be any feasible solutions in (MFP) and (G-MWD), respectively, moreover, 

assume that the and fixed 
1

1 0,   then generalized  

G-Lagrangian function is 1    d v  univexity at u on FUY w.r. to   and ,  
jgG 0 0 , for 

1j J . Then,      
i if i f iG f x G f u    

j

m

1 g j

j 1

µ G g u


 .  
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Proof: 

 Let us assume that x and  1x,µ  be any two feasible solutions in problem (MP) and (G-

MWD), respectively.  

By using the assumption that the Langrangian function and by the definition of is 

1d v p    univexity at the point u on SUY with respect to   and , and also, by using definition 

2.2, we obtain 

      
m

T T

i i 1 j j

j 1

G f f x µ G g g x


      
i

m

f i 1 j j

i 1

G f u µ G g g n


   

             
i

m
T T T 2

f i 1 g j j j

j 1

G f u f u G g g u g u x, u x,u


  
         
   

  

But from the feasibility of  1u,  in the above problem, we get  

             
i i j

m m
T

f i 1 gj j f i 1 g j

i 1 i 1

G f x G G x G f u G g u x,u
 

        

   2x,u         (4.17)
   

According to 

the feasibility of x in the chosen problem (MP), it follows that  j 1g x 0, j J .   

Since 
jg 1G , j J  is a strictly increasing (monotonic) function, which is defined on  

jgI S  and 

 0 0,
jgG   for 

1j J ,  then, we have  

     
j jg j gG g x G 0 0   

  by µ 0,  j T,  we have  

      
j

m
T 2

j g j

j 1

µ G g x x, y x, y 0


     

From (4.17) and (4.18) one can obtain  

        
i if i f ib x, y G f x G f n       

j

m
T 2

j g j

j 1

µ G g u x, y x, y
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Hence the result is proved. 

Theorem 4.2 (G-Wolfe Strong Dual) 

Suppose µ  is an optimal solution problem (MP) and the generalized  

G-type constraint qualification is satisfied at 1µ . Now,  m

j jµ R x,µ    is feasible for (G-MWD) 

and the corresponding objective functions of the two problem (MP) and (G-MWD) are equal at 

these points, also, by hypothesis,  jx,µ  is optimal in (G-MWD). 

Proof:  Since x  is an optimal solution in (MP) and the generalized G-type constraint 

qualifications is also satisfied at x  then the corresponding (above stated) generalized G-KT 

necessary optimality conditions are satisfied at x .  

 Then, the corresponding feasibility  jx,µ  in the above generalized  

(G-MWD) follows on from the generalized G-KKT optimality (necessary) condition (3.5) – (3.7) 

By using the previous weak duality theorem (4.1), we obtain 

             
m

2T

i fi i j g j

j 1

b x,u G f x G f u µ G g u x,u x,u


 
     

 
   

which holds for all  ju,µ w  

Since x  is an optimal solution in the considered problem (MP) and 
jgG  (0)=0 for some 

1j J ,  and by applying generalized G-KKT-optimality conditions, one can obtain  

         
i

m
T 2

f i j j j

j 1

G f x µ G g x x,u x,u


     

         
i i

m
T 2

f i f i

j 1

G f u G f u x,u x,u


      

which holds for all  j 1u,µ w  

Hence,  jx,µ  is an optimal in Generalized (G-MWD). 
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Conclusion  

 Here we derived different duality theorems for G-Saddle points with respect to generalized 

d1-v--univexity of Antczak type. 
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