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Abstract: We present different methods like order 

recurrence plot and mean conditional probability of 

recurrence and other measures to visualize behaviour of 

two dynamical system using recurrence quantification 

analysis for measurement of coupling strength with 

robustness against noise, non-linear distortion and low 

frequency trend. This has application for the identification 

of boundaries of the onset and loss of coupling in between 

identical and non- identical biomedical signals. 

Comparison of these methods i.e. order recurrence plot 

and mean conditional probability of recurrence is 

performed with other techniques in detection of the 

direction of the coupling in weakly as well as strongly 

coupled systems. 
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1. Introduction: 

Recurrence is a fundamental characteristic of many dynamical 

systems. This recurrence property is exploited to characterise 

the system’s behaviour in phase space. The concept of 

recurrence is used for the analysis of data and to study 

dynamical systems. It is a powerful tool for the visualisation 

of dynamical systems and analysis which was introduced by 

Poincare in 1890 [1]. Thus recurrences contain all relevant 

information about the system’s behaviour. The method of 

Recurrence Plots (RPs) is extended to the CRPs. The method 

of CRPs enables us the study of synchronization or time 

differences between two different time series and this is 

emphasized in a distorted main diagonal in the CRP called the 

LOS. Thus, first we introduce the definition of Recurrence 

plot and Cross Recurrence plot and then LOS and its 

applications to the biomedical signals. Complexity measures 

based on CRPs are introduced in the thesis and their 

applications to biomedical signals is studied. In this manner 

we are able to distinguish biomedical signals based on the 

CRP plots and complexity measures values. Next, 

synchronization analysis is also done on driven oscillators and 

it is used to know whether the oscillators are in Phase 

Synchronization (PS) or in non-Phase Synchronization (non-

PS). The application of the PS is done on biomedical signals 

and how the biomedical signals can be distinguished based on 

PS is studied. Synchronization analysis also includes 

Generalized Synchronization (GS) based on recurrences and 

its application to driven oscillators and biomedical signals is 

observed. 

Cross Recurrence plots enables us for the study of 

synchronization or time differences between the given two 

time series. This is emphasized in a distorted main diagonal in 

the cross recurrence plot called the LOS. From the method of 

CRPs, we have found an interesting feature of it. Besides the 

possibility of the application of the recurrence quantification 

analysis [2], there is a more fundamental relation between the 

structures in the CRP and the considered systems. Finally, this 

feature can be used for the task of the synchronization of data 

sets. Before any time series analysis can be started, the data 

series have to be synchronized to the same time scale. Usually, 

this is done by comparing and correlating both the data sets. 

Some techniques for this kind of correlation and adjustment 

have been suggested [5]. 

 

The recurrence plot exhibits characteristic patterns for typical 

dynamical behaviour [1,6]. A collection of single recurrence 

points, homogeneously and irregularly distributed over the 

whole plot, reveals a stochastic process. Longer, parallel 

diagonals formed by recurrence points and with the same 

distance between the diagonals are caused by periodic 

processes. A paling of the RP away from the main diagonal to 

the corners reveals a drift in the amplitude of the system. 

Vertical and horizontal white bands in the RP result from 

states which occur rarely or represent extreme states. Extended 

horizontal and vertical black lines or areas occur if a state does 

not change for some time, e.g. laminar states. All these 

structures were formed by using the property of recurrence of 

states. It is said that the states are only the “same” and 

recurrence is determined by the distance ε. 

 

2. Related Work: 

The study of coupled systems goes back to the 17th century 

and begins with the analysis of synchronization of nonlinear 

periodic systems. Well known examples are the 

synchronization of two pendulum clocks that hang on the 

same beam (it was through this system, that Huygens 

discovered synchronization), the synchronized flashing of 

fireflies, or the peculiarities of adjacent organ pipes which can 

almost annihilate each other or speak in unison. But the 

research of chaotic synchronization does not begin until the 

eighties where it was shown that two chaotic systems can 

become completely coupled, i. e. their time evolution becomes 

identical. This finding has had very important consequences 

for the design of secure communication devices. The 

synchronized chaotic trajectories can be used to mask 

messages and prevent their interception. In the notion of 

complete synchronization of chaotic systems was generalized, 

allowing the non identity between the coupled systems. And 

some time later, Rosenblum et al. [1] considered a rather weak 

degree of synchronization between chaotic oscillators, of 

which their associated phases become locked, whereas their 

amplitudes remain almost uncorrelated. Hence, they called this 

kind of synchronization, phase synchronization. Not only 

laboratory experiments have demonstrated phase 

synchronization of chaotic oscillators, such as electronic 

circuits, lasers and electrochemical oscillators, but also natural 

systems can exhibit phase synchronization. For example, the 

dynamics of the cardio respiratory system, an extended 

ecological system, and the electroencephalographic activity of 

Parkinson patients display synchronization features. 

On one hand it is important to investigate the conditions under 
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which coupling of chaotic systems occurs, and on the other 

hand, to develop tests for the detection of coupling. In this 

work, it has been concentrated on the second task for the cases 

of phase synchronization (PS) and generalized 

synchronization (GS). Several measures have been proposed 

so far for the detection of PS and GS. However, difficulties 

arise with the detection of coupling in systems subjected to 

rather large amounts of noise and/or non-stationarity, which 

are common when analyzing experimental data. The new 

measures that will be proposed in the course of this report are 

rather robust with respect to these effects. They hence allow to 

be applied to data, which have evaded coupling analysis so 

far. The proposed tests for synchronization in this work are 

based on the fundamental property of recurrences using order 

patterns. 

The planned structure of whole project work starts with 

concept given by Andreas Groth from his paper named as 

Visualization of coupling in time series by order recurrence 

plots [34]. Previous to this work in the analysis of coupled 

systems various techniques have been developed to detect 

cooperative behaviour from observed time series in the 

following literatures:  

Depending on the nature of the systems, there are different 

requirements to the above methods. While linear methods 

based on correlations are not sufficient to deal with nonlinear 

dependencies, most nonlinear methods require sufficiently 

long stationary time series. For the case that stationarity holds 

only for short observation time, cross recurrence plots CRPs 

were introduced in following literatures: 

However, the method of CRP is based on taking distances of 

trajectories, which is conceptually difficult on physically 

different systems. A general problem in studying multivariate 

data from natural systems, for instance electroencephalogram 

EEG data, is that measurement conditions change with time. 

Among others offset and amplitude range can vary differently 

within the channels. 

To overcome this problem we consider a special symbolic 

dynamics of the system, where the time series is encoded by 

order patterns. This yields further symbol sequences, which 

are invariant with respect to certain distortions in amplitude.  

The concept of symbolic dynamics was proposed by Bandt 

and Pompe [11], they suggested that the symbol sequence 

should come naturally from the time series, without further 

model assumptions, and that one should therefore take 

partitions as given by comparisons of neighbouring values of 

the series. With this symbolic dynamics Bandt and Pompe 

suggested a method of complexity measure and successfully 

applied to epileptic seizure detection in paper given below: 

Following the idea of CRPs Andreas Groth introduce a 

visualization tool based on the recurrence of order patterns. 

Thomas Schreiber in his paper, Measuring Information 

Transfer [21], describes a method based on transfer entropy 

approach using the Markov property. The purpose of this 

paper is to motivate and derive an alternative information 

theoretic measure, to be called transfer entropy, which shares 

some of the desired properties of mutual information but takes 

the dynamics of information transport into account. With 

minimal assumptions about the dynamics of the system and 

the nature of their coupling one will be able to quantify the 

exchange of information between two systems, separately for 

both directions, and, if desired, conditional to common input 

signals. The concept of this is used in our work to generate a 

modified form of ORP and RP based on Markov property. 

 

3. Methodology: 

A major task in bivariate or multivariate data analysis is to 

compare or to find interrelations in different time series. These 

data are obtained from natural systems, which show generally 

non-stationary and complex behaviour providing short data 

series. Linear approaches of time series analysis are not 

sufficient to analyze this kind of data. So, a variety of 

nonlinear techniques has been developed to analyze data of 

complex systems [7,8]. Most popular are methods to estimate 

fractal dimensions, Lyapunov exponents [8-11]. However, 

most of these methods need long data series. To overcome the 

difficulties with non-stationary and short data series, the 

method of recurrence plots has been introduced [12-14]. An 

extension of the method of recurrence plots to cross recurrence 

plots enables us to observe the time dependent behaviour of 

two processes which are both recorded in a single time series 

[15,16]. The basic idea of this non-linear approach is to 

compare the phase space trajectories of two processes in the 

same phase space. This section deals with the measures of 

complexity based on cross recurrence plots. 

 

3.1 Complexity Measures Based On Cross Recurrence 

Plots 

We define some Recurrence Quantification Analysis (RQA) 

measures for quantifying the similarity between the phase 

space trajectories. Since we use the occurrence of the more or 

less discontinuous main diagonal as a measure for similarity, 

the RQA measures will be determined for each diagonal line 

parallel to the main diagonal, hence, as functions of the 

distance from the main diagonal. Therefore, it is possible to 

assess the similarity in the dynamics depending on a certain 

delay. 

 

We analyze the distributions of the diagonal line lengths Pt(l) 
for each diagonal parallel to the main diagonal. The index t 

∈[−T, . . .,T ] marks the number of the diagonal line, where t = 

0 marks the main diagonal, t > 0 the diagonals above and t < 0 

the diagonals below the main diagonal, which represent 

positive and negative time delays, respectively. 

 

The Recurrence Rate (RR) is now defined as: 

 

RR(t)=
1

N−t
∑ lPt(l)
N−t
l=1                                                           (1) 

 

and reveals the probability of occurrence of similar states in 

both systems with a given delay t . A high density of 

recurrence points in a diagonal results in a high value of RR. 

This is the case for systems whose trajectories often visit the 

same phase space regions. 

The Determinism (DET) is defined as: 

 

DET(t)=
∑ lPt(l)
N−t
l=lmin

∑ lPt(l)
N−t
l=1

                                                          (2) 

 

is the proportion of recurrence points forming long diagonal 

structures of all recurrence points. Stochastic as well as 

heavily fluctuating data cause none or only short diagonals, 

whereas deterministic systems cause longer diagonals. If both 

deterministic systems have the same or similar phase space 

behaviour, i.e., parts of the phase space trajectories meet the 

same phase space regions during certain times, the amount of 

longer diagonals increases and the amount of smaller 

diagonals decreases. 
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The average diagonal line length (L) is defined as: 

 

L(t) =
∑ lPt(l)
N−t
l=lmin

∑ Pt(l)
N−t
l=lmin

                                                           (3) 

                                                     

reports the duration of such a similarity in the dynamics. A 

high coincidence of both systems increases the length of these 

diagonals. 

        

High values of RR represent high probabilities of the 

occurrence of the same state in both systems, high values of 

DET and L represent a long time span of the occurrence of a 

similar dynamics in both systems. Here DET and L are 

sensitive to fastly and highly fluctuating data, whereas RR 

measures the probabilities of the occurrence of the same states 

inspite of these high fluctuations. 

 

4. Result and Discussion: 

A CRP is plotted between a sine wave and a noisy sine wave 

which is corrupted by a white Gaussian noise. The CRP is 

plotted with an embedding of m=3, τ=2 and ∈=1.5. 

 

 
Fig: 1. Sine wave plot 

 

 
Fig: 2. Noisy sine wave 

  

Fig: 2 shows the plot of noisy sine wave corrupted by the 

white Gaussian noise. 

 

 
 

Fig: 3. CRP for sine and noisy sine wave 

 

Fig: 3 shows the CRP between sine wave and noisy sine wave 

shown in figures 3.1,3.2 by taking the values of embedding 

parameters dimension=3,delay=2 and threshold=1.5. 

The CRP shows diagonal structures separated by gaps. These 

gaps are the result of the high fluctuation of the noisy sine 

function. Due to the periodicity of these functions, the 

diagonals have a constant distance to each other. Due to the 

noisy data, the trajectories strongly fluctuate in the phase 

space and thus short diagonal lines in the CRP occur and the 

diagonal structures are interrupted. 

 

 
Fig: 4. Forced auto regressive process 

 

Fig: 4 shows the first order auto regressive process driven by a 

squared x-component of the Lorenz system. 
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Fig. 5. Lorenz system 

              

Fig: 5 shows the forcing function (x-component of the Lorenz 

system). And as we know that every dynamical system can be 

represented by an attractor, which is as follows: 

                                              

 
Fig: 6. Attractor plot 

 

Fig: 6 shows the attractor plot for the dynamical system i.e. 

Lorenz system. Here x and y axis represents the number of 

samples. 

The CRP between y(t) and x(t) is as follows: 

 

  

 
Fig: 7. CRP for y(t) and x(t) 

  

Fig: 7 shows the CRP between the forced auto regressive 

process and the forcing function (x-component of the Lorenz 

system) by taking the values of dimension=5, delay=10 and 

threshold=2. The CRP of the driven AR-process with the x-

component of the Lorenz system(m = 5, τ = 10,ε = 2) contains 

a lot of longer diagonal lines, which represent time ranges in 

which both systems have a similar phase space dynamics. 

 

5. Conclusion: 

The objective of present work is to study various non linear 

processing techniques used for detection of index coupling 

between two interacting systems. In the initial stage properties 

of phase relations and recurrences are used to find there 

dependencies on strength of coupling using the phase obtained 

from analytic signal and from curvature of analytic signal. 

Then we used order recurrence plot for developing a method 

of visualizing cooperative behaviour between two coupled 

dynamical systems. So we can conclude that this method of 

order patterns based on Markov property can also be used over 

biomedical signals for finding short time dynamics and they 

can be more accurate in diagnosis of pathological condition 

that can be detected from strength of interactions between 

recorded signals obtained from two structurally different 

systems like ECG and heart rate variability, breathing patterns 

and EMG or in between different EEG channels for the 

patients of Parkinson disease or to analyze sleep disorders by 

studying EEG during various sleep stages. 
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