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Abstract : Particle Swarm Optimization (PSO) is one of the most popular population-based swarm intelligent algorithms inspired 

by the behaviours of birds flocking and fish schooling. This algorithm holds few tuning parameters to obtain the optimum 

solution; however, PSO has maximum possibility to stagnate in local optima due to its simplicity and flexibility. Several 

modified PSO versions are developed to maintain the diversity of the particles and to avoid the local optima struck. In this paper, 

Generic PSO and a novel collection of eight different PSO variants are presented. The collected PSO variants have successful 

balancing capabilities between the local search and global search of optimum solutions. This survey offers good understanding 

on generic particle swarm optimization and its distinct variants.  The particles in each algorithm have unique characteristics on 

converging towards best optimum solutions. The experimentation results of the collected PSO variants are processed using 

MATLAB (version 2013 a). The performance of distinct collection of PSO variants are computed using three different groups of 

benchmark test function viz., unimodal, multimodal and fixed dimension multimodal functions. The performance of each 

algorithm is discussed with the experimentation results. 

IndexTerms - Particle Swarm Optimization (PSO); Swarm Intelligent; unimodal; multimodal; fixed dimension multimodal 

function.      

 

I. INTRODUCTION 

From last two decades, Meta-heuristic algorithms have become more and more popular in solving engineering problems 

in different fields. Further, this algorithm is classified into two categories namely single solution based and population based 

algorithms. In single solution based algorithms, the search process begins with single solution and improves its solution in a 

certain number of iterations. Whereas, population based meta-heuristic starts with a set of solutions and updates its solutions 

in a course of iterations. Population based meta-heuristic have few pros compared to single solution based algorithms: i) Set of 

solutions convey information about search space which aids solution to jump toward the promising part of search space, ii) it 

guides each other to avoid local optimal solutions, iii) provides better diversification than single solution based algorithms 

(Seyedali Mirjalili, et al. 2014). Swarm Intelligence (SI) is one of the interesting subdivision of the population based meta-

heuristic algorithms. (Beni, et al. 1993) introduced these SI concepts in cellular robotic systems in 1993. Swarm intelligent 

algorithms (bonabeau, et al. 1999) are inspired from natural colonies, herds, flock and schools. Thus, many Swarm intelligent 

algorithms such as Particle swarm optimization (PSO) (Kennedy, Eberhart, 1995), Ant colony optimization (ACO) (Dorigo, et 

al. 2006), Artificial Bee Colony Algorithm (ABC) (Basturk, Karaboga, 2006) and etc have emerged.  

      

Particle Swarm Optimization is the best performing algorithm in Swarm Intelligent. This algorithm is inspired by the 

behavior of birds flocking and fish schooling (Kennedy, et al. 1999,). Few tuning parameters are incorporated to identify the 

optimum solutions which makes algorithm very simple and flexible. This feature attracts more researchers to apply PSO in 

different scientific and real-world problems (M. Clerc and J. Kennedy, 2002; R. Mendes et al., 2004). However, PSO 

algorithm suffers from two major problems of trapping in local optima and premature convergence and decreased 

convergence rate in later course of evolution. To overcome those issues, several variants of PSO algorithms were developed in 

the literature. Shi and Eberhart developed an inertia weight with time varying parameter into original PSO algorithm. This 

algorithm proved that modified PSO provides global optimum solution by using divergence capability (Y. Shi and R. 

Eberhart, 2002). Zhan et al. proposed orthogonal learning strategy to guide the particles to move in better search space based 

on best particles experience and neighborhood experience (Zhan et al., 2011).  

      

In (Wang et al., 2003) used special velocity update mechanism to prevent premature convergence problems. Haiping yu et 

al proposed Elite grouped Adaptive PSO (EGAPSO) to differentiate the elite particles and worst particles, later the worst 

particles are replaced stochastically to maintain the swarm diversity (Haiping yu et al., 2013). Author (Suganthan et al., 2012) 

proposed a niching particle swarm optimizer with local search technique to identify local optimum solutions within the local 

basin to premature convergence. (Swagatam et al., 2013) presented distance-based locally Informed particle swarm (LIPS) 

optimizer to improve the global best solution (gbest) by distance measurement and also improves the local search capability 

(Swagatam et al., 2013). The author (Tsoulos et al.,2010) introduced modified velocity update procedure together with 

stopping rule, relationship check and some exploitation methods.  

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                     www.jetir.org (ISSN-2349-5162) 

JETIR1906G36 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 887 
 

      

In (Mendes et al., 2004) presented shared information of the entire neighborhood to assist the particle to move in better 

directions. Particles neighborhood determined using topological structure in (Yue-jiao et al., 2013). Liang et al. proposed a 

new comprehensive learning method to adjust velocity of particles by taking into account of all best particles and as a result 

exploration of particles guides to overcome the premature convergence (Liang et al., 2004) and (Ran Chenga et al., 2015) 

proposed new social learning to update the position of the particles based on their historical information. In (Chun-Feng Wang 

et al., 2016) was introduced three different improvement strategy to avoid local optima and premature convergence. Zahra 

Beheshti et al., a new PSO algorithm with fusion global-local-topology (FGLT-PSO) were introduced to overcome the 

premature convergence and neighboring optimum solutions (Zahra Beheshti et al., 2014).  

      

Many of researchers contributed to improve the inertia weight in PSO; however this operator helps to balance the 

exploration and exploitation but fails in achieving local optimum solutions and premature convergence. Natural exponential 

(G. Chen et al., 2006), Sigmoid (R.F. Malik., 2007), Chaotic (Y. Feng et al., 2008), Logarithm Decreasing (Y. Gao et al., 

2008), linearly decreasing (J. Xin et al., 2009), Oscillating (K. Kentzoglanakis and M. Poole, 2009), Exponent decreasing 

(H.R. Li and Y.L. Gao, 2009) are some of the inertia weight parameters integrated with generic PSO. Other variants of PSO 

are as Cellular PSO (Yang Shi et al., 2011), Example-based learning PSO (Han Huang et al., 2012), accurate sub-swarm PSO 

(Jianxin Liao et al., 2014), Enhanced Leader PSO (A. RezaeeJordehi, 2015) and so on.  

      

Conventional PSO improved through hybridization of various meta-heuristic algorithms in that some of them are as 

Genetic algorithm (Boudjelaba and Chikouche, 2014; Harish Garg, 2016), Gravitational search (GSA) (Seyedali and Siti 

Zaiton, 2010; Shanhe Jiang et al., 2014), bacterial foraging algorithm (BFA) (S.M. Abd-Elazim and E.S. Ali, 2013; 

Padmavathi Kora and Sri Ramakrishna Kalva, 2015), Imperialistic completive algorithm (ICA) (Lhassane Idoumghar et al., 

2013), Swallow Swarm Optimization algorithm (SSO) (A. Kaveh, 2014) and so on incorporated with PSO to improve the 

generic PSO and to apply in different domain problems. In our survey, we collected the PSO variants in which exploration and 

exploitation is considered as the main part to improve the algorithmic nature. 

      

The rest of the paper is organized as follows. In section 2 generic PSO algorithms is presented and in section 3 PSO 

variants are explained. The conducted experiments and results are discussed in section 4. Finally, the paper concluded with 

summary in section 5. 

II. GENERIC PARTICLE SWARM OPTIMIZATION 

Most of the problems such as non-linear combinatorial problems are mainly solve through the various evolutionary 

algorithms. In this evolutionary algorithm, Particle swarm optimization is a major role for solving the problems to identify the 

optimal solutions. PSO is a population-based search algorithm inspired by the flocking of birds foraging for the food, which is 

first introduced by James Kennedy and Russell Eberhart in 1995 (Kennedy J and Eberhart R, 1995). Compared to other 

evolutionary algorithms such as genetic algorithm, Memetic algorithm, PSO is not incorporated with any genetic operators to 

solve the problems. Each and every solution in this algorithm is termed as ‘Particle’, collection of these particles are ‘swarm’. 

PSO works with their own tactics that is, each individual particle adjust their positions based on their surrounding best 

positions and their previous historic best (J. Kennedy, 1999; J. Kennedy, 2002).  

     In PSO, velocity update and particle position update are the two equations are used. In PSO, Velocity update equations are 

classified into three major parts such as (M. Clerc and J. Kennedy, 2002; R. Mendes et al., 2004) 

a) The first part termed as Momentum, where the outcome of new velocity obtained from the previous velocity of the 

particle. 

b) The second part termed as Cognitive part, where the particles learn themselves by their previous best position. 

c) The last part is cognitive part; here the particles are collaborating with each other by the best particle in their 

surroundings. 

𝑉𝑖𝑑
𝑡+1 = 𝜔𝑡 ∗  𝑉𝑖𝑑

𝑡 + 𝐶1 ∗ 𝑟1 ∗ (𝑝𝑖𝑑
𝑡 − 𝑋𝑖𝑑

𝑡 ) + 𝐶2 ∗ 𝑟2 ∗ (𝑝𝑔𝑑 − 𝑋𝑖𝑑
𝑡 )  … (1) 

     Where C1 and C2 are the random learning factors for the adjustment of cognitive and social parameters 𝜔𝑡 represents as the 

inertia weight for slow changes in the velocity for t iterations, 𝑟2, 𝑟2 are the random numbers between (0,1), 𝑉𝑖𝑑
𝑡  Determines 

that the velocity of each particles ‘i’ at the current iteration ‘t’, 𝑃𝑖𝑑
𝑡  represent as the personal best position of particle found so 

far, 𝑝𝑔𝑑 represent as the global best particles position.  

      

After calculating the velocity, the particle’s position is updated using the equation as follows: 

𝑋𝑖𝑑
𝑡+1 = 𝑋𝑖𝑑

𝑡 + 𝑉𝑖𝑑
𝑡+1       … (2) 

     where𝑋𝑖𝑑
𝑡  represent as current position of the particles of current iteration t and 𝑋𝑖𝑑

𝑡+1represents the new position of the 

particles in next iteration t+1. Further, PSO algorithms are modified to improve its exploration and exploitation parameters by 

mathematical computation and hybridization of other meta-heuristics algorithms.  

III. VARIANTS ON PARTICLE SWARM OPTIMIZATION (PSO) 

In conventional PSO, each particles are learns from its own local experience and neighbor best solutions. The particle 

positions are not updated in a certain number generations, whenever the particles select the local optimum solution as the 

global best solution (A. RezaeeJordehi, 2015; F. Yano et al., 2007). To overcome these issues and to provide balance between 
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exploitation and exploration several distinct variants of PSO are introduced in the literature. This section deals with the 

variants of PSO and their modifications with conventional PSO. 

  

3.1. Directionally Driven Self-Regulating Particle Swarm Optimization (DDSRPSO) 

 

M.R. Tanweer et al., proposed a novel algorithm named Directionally Driven Self-Regulating Particle Swarm 

Optimization (DDSRPSO) in 2015 (M.R. Tanweer et al., 2016). This algorithm contributes two new learning approaches 

namely, a directional update strategy and a rotational invariant strategy. However, it is an improved variant of Self-Regulating 

Particle Swarm Optimization (SRPSO) (M.R. Tanweer et al., 2015). DDSRPSO split the size of population particles into three 

groups based on its fitness value such as elite group (best particles); poorly perform particles (worst particle) and remaining 

particles. Elite group particles are follows the same strategy of SRPSO and the improvisation is done by using a group of elite 

particles (best particles) to achieve directional updates. Here, authors consider that all the worst particles follow the global 

search direction and the SPSO velocity is modified as follows.  

𝑉𝑘𝑑
𝑡+1 = 𝜔𝑘 ∗ 𝑉𝑘𝑑

𝑡 + 𝑐1 ∗ 𝑟1 ∗ (𝑙𝑝𝑘𝑑
𝑡 − 𝑋𝑘𝑑

𝑡 ) + 𝑐2 ∗ 𝑟2 ∗ (𝑝𝑔𝑑
𝑡 − 𝑋𝑘𝑑

𝑡 ) … (3) 

     where, 𝜔𝑘  is the SRPSO inertia weight to achieve slow motion in velocity changes,  𝑙𝑝𝑘𝑑
𝑡  represents the median of selected 

three best performing particles from elite group, 𝑝𝑔𝑑
𝑡  represents the global best particles so for achieved in t generations, k is 

the particles from worst particles group.  

     All other remaining particles are performed either SRPSO strategy of self-perception of global search direction or 

rotational invariant strategy to search the rotation variance property of the search space. Rotational invariant strategy is 

defined by the center of gravity calculated by three points such as current position of the particles, point beyond the personal 

best particles and point beyond the global best positions. In SRPSO, the centre of gravity is aid to compute a new posit ion of 

particles which intern lead to unaware of global best positions. In DD-SRPSO, the self-perception of particles for global 

search directions 𝑝𝑖
𝑠𝑜 plays a major role to particles to aware of global search directions.  

𝑝𝑖
𝑡⃗⃗  ⃗ =  𝑋𝑖

𝑡⃗⃗⃗⃗ +  𝑐1 ∗ 𝑟1  ⊗ (𝑝𝑖
𝑡⃗⃗  ⃗ −  𝑋𝑖

𝑡⃗⃗⃗⃗ )   … (4) 

𝑝𝑔
𝑡⃗⃗⃗⃗ =  𝑋𝑖

𝑡⃗⃗⃗⃗ +  𝑐2 ∗ 𝑟2 𝑝𝑖
𝑠𝑜⃗⃗ ⃗⃗ ⃗⃗ (𝑝𝑔

𝑡⃗⃗⃗⃗ −  𝑋𝑖
𝑡⃗⃗⃗⃗ )   … (5) 

𝐺𝑖
𝑡⃗⃗⃗⃗ = {

𝑝𝑖
𝑡⃗⃗ ⃗⃗  +𝑝𝑔

𝑡⃗⃗ ⃗⃗  ⃗+𝑋𝑖
𝑡⃗⃗⃗⃗  ⃗

3
   𝑖𝑓 𝑝𝑖

𝑠𝑜⃗⃗ ⃗⃗ ⃗⃗ = 1

𝑝𝑖
𝑡⃗⃗ ⃗⃗  +𝑋𝑖

𝑡⃗⃗⃗⃗  ⃗

2
              𝑖𝑓 𝑝𝑖

𝑠𝑜⃗⃗ ⃗⃗ ⃗⃗ = 0

   … (6) 

Where, 𝐺𝑖
𝑡⃗⃗⃗⃗  represents the centreof gravity, which is used to select the stochastic point of 𝑋𝑖

𝑡⃗⃗⃗⃗  particles in the hypersphere 

𝐻𝑖 (𝐺𝑖
𝑡⃗⃗⃗⃗ , ‖𝐺𝑖

𝑡⃗⃗⃗⃗ − 𝑋𝑖
𝑡⃗⃗⃗⃗ ‖), 𝑝𝑖

𝑡⃗⃗  ⃗ represents the personal best position of particles i in the t iterations, 𝑝𝑔
𝑡⃗⃗⃗⃗  defines the global best 

position of particles i, 𝑝𝑖
𝑠𝑜⃗⃗ ⃗⃗ ⃗⃗  represents the self-perception of particles with social cognition (ie., 𝑝𝑖

𝑠𝑜⃗⃗ ⃗⃗ ⃗⃗ = 1) and without social 

cognition (ie., 𝑝𝑖
𝑠𝑜⃗⃗ ⃗⃗ ⃗⃗ = 0)  , 𝑟1, 𝑟2 are random numbers between (0,1), symbol ⊗ represents a certain mathematical operation 

between the two opted attributes. Thus the rotational invariant characterictics modified the velocity equationas follows: 

𝑉𝑖𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝜔 ∗ 𝑉𝑖𝑡⃗⃗⃗⃗ + 𝐻𝑖 (𝐺𝑖
𝑡⃗⃗⃗⃗ , ‖𝐺𝑖

𝑡⃗⃗⃗⃗ − 𝑋𝑖
𝑡⃗⃗⃗⃗ ‖) − 𝑋𝑖

𝑡⃗⃗⃗⃗   … (7) 

     where, 𝑉𝑖𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ represents the updation of new position velocity of particles in next iteration (t+1), represents the current 

velocity of the particles. 

3.2. Bisection PSO (BPSO) 

Bin Jiang et al, introduced Bisection PSO (BPSO) to optimize photonic crystal band gap. BPSO divides the search space for 

each dimension with the optimal particle at the center. After initialization, evaluation of fitness and optimal search point are 

processed based on the division of the search space (Bin Jiang et al., 2011). If the search space is halved, then particles are 

divided into multiple generations based on search space division. Otherwise the conventional PSO method will be followed 

without any search space division. 

𝑉𝑖𝑑
𝑡+1 = 𝑊𝐿𝐷𝑊 ∗  𝑉𝑖𝑑

𝑡 + 𝐶1 ∗  𝑟1 ∗  (𝑝𝑖𝑑
𝑡 − 𝑋𝑖𝑑

𝑡 ) + 𝐶2 ∗ 𝑟2 ∗ (𝑝𝑔𝑑
𝑡 − 𝑋𝑖𝑑

𝑡 ) … (8) 

𝑥𝑖𝑑
𝑛𝑒𝑤 = 𝑥𝑖𝑑

𝑜𝑙𝑑 + 𝑉𝑖𝑑
𝑛𝑒𝑤    … (9) 

     where, 𝜔𝐿𝐷𝑊represents the linearly decreasing inertia weight (LDW), 𝑝𝑖𝑑
𝑡  represents the personal best of particle i of d 

dimension in t iterations, 𝑝𝑔𝑑
𝑡  defines the global best position obtained so far in the t iterations, 𝑋𝑖𝑑

𝑡  represents the current 

particle i position. Other features include improvising cognitive and social parameter. Enhancing cognitive parameter to 

emphasize search space exploration and for improvising convergence rate at end of iterations social parameter values were 

been set linearly. 

𝐶1 = 1 + 𝑒
−𝑖

𝑛𝑚𝑎𝑥     … (10) 

𝐶2 = 1 − 𝑒
−𝑖

𝑛𝑚𝑎𝑥     … (11) 

(3.4) 
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     where, 𝑖 is current iteration number and 𝑛𝑚𝑎𝑥 is maximum number of iterations. C1 cognitive parameter gives larger value 

when compared with social parameter at initial stage of iteration. In order to explore search space and over time of iterations 

cognitive parameter decreases its value periodically and concentration of social parameter plays high role in order to exploit 

the solutions. 

3.3. Dispersed PSO (DPSO) 

XingjuanCai proposed Dispersed PSO (Xingjuan Cai et al., 2008), to improve the convergence speed in PSO by deploying 

dispersed co-efficient setting in social parameter instead of being centralized in conventional PSO. Conventional PSO is said 

to be centralized since all particles moves towards a Gbest value and because of this the individual best which holds historical 

best become unnoticed. 

     To improve the conventional PSO, Dispersed PSO introduced with an index which holds performance difference between 

fitness value of the best, worst and current values of particles. The Grade of computed fitness values is represented as  

𝐺𝑟𝑎𝑑𝑒𝑢(𝑡) =
𝑓𝑤𝑜𝑟𝑠𝑡(𝑡)−𝑓(𝑥𝑢(𝑡))

𝑓𝑤𝑜𝑟𝑠𝑡(𝑡)−𝑓𝑏𝑒𝑠𝑡(𝑡)
   … (12) 

     where, 𝐺𝑟𝑎𝑑𝑒𝑢(𝑡)determined as the ratio of fitness difference between the numerator of worst 𝑓𝑤𝑜𝑟𝑠𝑡(𝑡) and current 

particle 𝑓(𝑥𝑢(𝑡))   and denominator of worst particle with the global best particle 𝑓𝑏𝑒𝑠𝑡(𝑡) in t iterations. 

     With the help of Gradeu(t) social parameter is redefined as  

𝐶2(𝑡) = 𝐶𝑙𝑜𝑤 + (𝐶𝑢𝑝 − 𝐶𝑙𝑜𝑤)𝐺𝑟𝑎𝑑𝑒𝑢(𝑡)  … (13) 

     where, Clow and Cup are two constant numbers. This redefined social parameter introduces the concept of exploitation in 

around the neighborhood of best individuals. It also describes about the high rate of exploration, at time of worst individuals 

comes into attack. Then the solutions go under the process of mutation, in order to avoid premature convergence. Individual 

chosen for mutation will be of the uniformly random manner. 

     Mutation strategy is incorporated with the dispersed PSO to improve the local search ability among the particles with the 

conditional parameter value of random number which satisfies the threshold (0.5). Mutation strategy equation is as described 

as follows 

𝑉𝑗𝑘(𝑡) =  {
0.5 𝑋 𝑥𝑚𝑎𝑥  𝑋 𝑟1𝑖𝑓 𝑟2 < 0.5

0.5 𝑋 𝑥𝑚𝑎𝑥 𝑋 𝑟1      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  … (14) 

     where, r1 and r2 are random numbers between ~ (0, 1).  At each step of iterations only one variable participates under 

mutation process. 

3.4. Compact PSO (CPSO) 

Ferrante Neri et al., proposed Compact PSO (cPSO) (Ferrante Neri et al., 2013) which has the tendency to work on memory 

spaces. Minimal memory spaces which expressed as minimal in nature like embedded environments. In cPSO, a Perturbation 

Vector (PV) has been initialized instead of conventional PSO swarm population.  It has binary vectors in its population.  

𝑃𝑉𝑡 =  𝜇𝑡𝜎𝑡     … (15) 

     where µ, 𝜎 are design variable mean and standard deviation which will be built at the iterations of cPSO and t is current 

iteration number. After the initialization of PV, cPSO initializes the µ[i], 𝜎[𝑖] where i is the variable number. Then the 

personal best and global best positions are taken from PV vector. Random generations of particles positions and velocities 

were generated and updated as follows. 

𝑉𝑖𝑑
𝑡+1 = ∅1𝑉

𝑡 + ∅2 𝑈1 (𝑃𝑙𝑑
𝑡 − 𝑥𝑡) +  ∅3 𝑈2 (𝑋𝑔𝑑

𝑡 − 𝑋𝑖𝑑
𝑡 )  … (16) 

𝑋𝑖𝑑
𝑡+1 = 𝛾1𝑋𝑖𝑑

𝑡 + 𝛾2𝑉𝑖𝑑
𝑡+1    … (18) 

     where, Ø1, Ø2, Ø3 are the fine-tuning parameters of meta-optimization of number of particles, U1 and U2 are constants. 𝑋𝑔𝑑
𝑡  

represents the global best solution found so far in t iterations, d dimensions,  𝑋𝑖𝑑
𝑡  represents the current particle position for d 

dimension in t iterations. After these steps, winner and loser (best, worst) particles have been calculated from generated 𝑋𝑖𝑑
𝑡+1 , 

whereas 𝑃𝑙𝑑
𝑡  are updated using Perturbation Vector (PV). Updating the design variables of the next generation as follows 

𝜇𝑡+1[𝑖] = 𝜇𝑡[𝑖] + 
1

𝑁𝑝
 (𝑤𝑖𝑛𝑛𝑒𝑟[𝑖] − 𝑙𝑜𝑠𝑒𝑟[𝑖])  … (19) 

𝜎𝑡+1[𝑖] =  √
(𝑒𝑡[𝑖])2 + (𝜇𝑡[𝑖])2 − (𝜇𝑡+1[𝑖])2 +

1

𝑁𝑝
(𝑤𝑖𝑛𝑛𝑒𝑟2[𝑖] − 𝑙𝑜𝑠𝑒𝑟2[𝑖])  … (20) 

     where, 𝑁𝑝 represents the virtual size population,  𝑒𝑡 determines the exponential value at t iterations, 𝑤𝑖𝑛𝑛𝑒𝑟[𝑖], 𝑙𝑜𝑠𝑒𝑟[𝑖 
represents the winner and loser particles in each iteration helps to current particles to update with the winner of current 

iteration if it holds best value than previous best. 

3.5. Hybrid Imperialist competitive algorithm and Particle Swarm Optimization (ICAPSO) 

Lhassane Idoumghar et. al., proposed a new hybrid algorithm known as hybrid Imperialist competitive algorithm and Particle 

swarm optimization (ICAPSO) (Lhassane Idoumghar et. Al., 2013). This algorithm aims to enhance the diversity of the 

(3.10) 
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solutions viz., crowding distances of a particles and crossover operator (Nitasha Soni and Dr .Tapas Kumar, 2014) also used 

to improve the memory of each individuals of the population. In ICA algorithm all individuals are grouped as an empire and 

the best fitness solutions of the population are grouped as strong empire whereas the worst fitness solutions of the population 

are grouped as weak empire. This algorithm strengthen the strongest empire and suppress the weaken empire. The initial 

grouping in imperialist mechanism is based on the normalized power of individuals. The imperialistic competition has been 

taken place to pick the weakest solution from the weaken empire. ICA algorithm (Bo Xing and Wen-Jing Gao, 2013) 

hybridized with the classical PSO to improvise the exploration and the diversity of the solution in a search space.  

     Initially, all the individuals positions are settled as random and first Nemp individuals are selected as imperialists and Ncol 

are the colonies divided for the each empires with the help of 
𝑁−𝑁𝑒𝑚𝑝

𝑁𝑒𝑚𝑝
 colonies. Computations of each individual’s fitness are 

termed as crowding distance. Based on the crowding distance the worst solutions are removed from the population and the 

best solution among all individuals is stored in global archive and then the individual best are stored in the local archive. The 

velocity of the each individual is termed as colony speed which is modified as the follows: 

𝑉𝑖
𝑡+1 = 𝜔. 𝑣𝑖

𝑡 + 𝑟1𝑐1(𝑃𝑖
𝑡 − 𝑋𝑖

𝑡) + 𝑟2𝑐2(𝐸𝑖
𝑡 − 𝑋𝑖

𝑡)With −𝑉𝑀𝑎𝑥 ≤ 𝑉𝑖
𝑡 ≤ 𝑉𝑚𝑎𝑥   … (21) 

     where 𝜔 is the inertia factor, 𝐸𝑖
𝑡 is the position of the colonies imperialist, 𝑋𝑖

𝑡represents position of the colony, 𝑃𝑖
𝑡is the best 

colony’s position, r1 and r2 are the random numbers between 0 and 1. Local archive is improved with the aid of crossover 

operator by mixing the local archive of the colony and local achieve of the imperialist.  

3.6. Diversity enhanced particle swarm optimization with neighborhood search (DNSPSO) 

In (Hui Wang et. al., 2013) proposed a hybrid mechanism known as diversity enhanced particle swarm optimization 

(DNSPSO), which seek to maintain the intensification and diversification search abilities. Diversity enhanced operator is used 

to overcome the premature convergence and to maintain the diversity in all the individuals.  

     The diversity of the individuals is computed using equation as follows: 

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 =  
1

𝑁
∑ √∑ (𝑥𝑖𝑗(𝑡) − �̅�𝑗(𝑡))2𝐷

𝑗=1
𝑁
𝑖=1  … (22) 

�̅�𝑗(𝑡) =
∑ 𝑥𝑖𝑗(𝑡)

𝑁
𝑖=1

𝑁
     … (23) 

     Neighborhood strategy helps to outfit the premature convergence by identifying the fittest solution within the local search 

space. The neighborhood strategy is classified into categories such as local neighborhood strategy and global neighborhood 

strategy. In the local neighborhood strategy, improves the exploitation with the help of the particle best solution (pbest). 

𝐿𝑋𝑖 = 𝑟1. 𝑥𝑖 + 𝑟2. 𝑝𝑏𝑒𝑠𝑡𝑖 + 𝑟3(𝑥𝑐 − 𝑥𝑑)  … (24) 

𝐿𝑉𝑖 = 𝑉𝑖      … (25) 

     where, 𝑥𝑖 is the current position vector of the ith particle, 𝑝𝑏𝑒𝑠𝑡𝑖 is the previous best particle of 𝑥𝑖, 𝑥𝑐 , 𝑥𝑑 are the position 

vectors of two random particles in the k-neighborhood radius of 𝑥𝑖, 𝑟1, 𝑟2, 𝑟3 are three uniform random numbers within (0,1), 

and 𝑟1 + 𝑟2 + 𝑟3 = 1. 

     Global neighborhood strategy helps to improve the exploration in a global search space. The trial solution is given by G i = 

(GXi, GVi) 

𝐺𝑋𝑖 = 𝑟4. 𝑥𝑖 + 𝑟5. 𝑔𝑏𝑒𝑠𝑡 + 𝑟6. (𝑥𝑒 − 𝑥𝑓)  … (26) 

𝐺𝑉𝑖 = 𝑉𝑖       … (27) 

     where, 𝐺𝑋𝑖 represents the global neighbor position for i particles, 𝑟4, 𝑟5, 𝑟6 are uniform random numbers between (0,1), 

𝑔𝑏𝑒𝑠𝑡  is the global best position found so far, 𝑥𝑒, 𝑥𝑓are selected neighborhood particles 𝑥𝑖,  𝐺𝑉𝑖 is the global neighborhood 

velocity, this strategy helps to solve the multimodal problems.  

3.7. Hybrid Particle Swarm and Swallow Swarm Optimization (HPSSO) 

A. Kavehet. al., proposed a novel mechanism known as hybrid particle swarm and swallow swarm optimizat ion (HPSSO) 

(A. Kaveh et. al., 2014). The main aim of the algorithm is to consider promising particles other than global best particles. 

Here, they consider the swallow swarm optimization to control the high-speed flying which aids to overcome the convergence 

speed affect. Swallow swarm splits the total population into sub colonies such as leader, explorer and aimless particles. Leader 

particles split up into two leaders such as a local leader and head leader, the global best particle are termed as head leader, 

whereas the particle with local best position is notified as local leader. All other particles termed as explorer particles which 

needs to change their positions. The changes in explorer particles is processed by the velocity noted identified by head leader 

and corresponding local leader. The formulation of this algorithm is given by mathematical representation as follows: 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑉𝑖
𝑡+1    … (28) 

𝑉𝑖
𝑡+1 = 𝑉𝐻𝐿𝑖

𝑡+1 + 𝑉𝐿𝐿𝑖
𝑡+1    … (29) 

𝑉𝐻𝐿𝑖
𝑡+1 = 𝑉𝐻𝐿𝑖

𝑡 + 𝛼𝐻𝐿𝑟𝑎𝑛𝑑( )(𝑋𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑋𝑖

𝑡) + 𝛽𝐻𝐿𝑟𝑎𝑛𝑑( )(𝐻𝐿𝑡 − 𝑋𝑖
𝑡)    … (30) 

𝑉𝐿𝐿𝑖
𝑡+1 = 𝑉𝐿𝐿𝑖

𝑡 + 𝛼𝐿𝐿𝑟𝑎𝑛𝑑( )(𝑋𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑋𝑖

𝑡) + 𝛽𝐿𝐿𝑟𝑎𝑛𝑑( )(𝐿𝐿𝑖
𝑡 − 𝑋𝑖

𝑡)    … (31) 
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     where, 𝑉𝐻𝐿𝑖
𝑡 represents the current velocity of the head leader particles, 𝑉𝐿𝐿𝑖

𝑡 represents the current velocity of the local 

leader particles, 𝛼𝐻𝐿 and 𝛽𝐻𝐿  are the random numbers of the head leader particles, 𝛼𝐿𝐿 and 𝛽𝐿𝐿are the random numbers of the 

local leader particles, 𝐻𝐿𝑡 is the current local head leader and 𝐿𝐿𝑖
𝑡 is the local leader of the particles i at the current iteration t. 

3.8. Hybrid PSO with Gravitational Search Algorithm (HPSOGSA) 

In (ShanheJiang, et al., 2014),  proposed a new variant which is a collaboration between conventional PSO and 

Gravitational search algorithm (HPSOGSA). GSA algorithm (Esmat Rashedi et al., 2009) is inspired from the law of gravity 

and cooperation between masses. They have tested the performance of this algorithm with benchmark functions and designed 

it especially for economic emission load dispatch problems. This algorithm introduced to maintain the balance between the 

local search and global search. Generally in PSO, the particle best and global best are measured to adjust the position of the 

particles while GSA uses fitness value to adjust the position of the particle.  

     The hybridization of PSO and GSA modified the velocity based on the adjusting both the velocities of the PSO and GSA. 

The combination of these algorithms new velocity value is computed and these value aids to update the position of the 

particles. 

𝑉𝑖
𝑑(𝑡 + 1)𝐻𝑃𝑆𝑂−𝐺𝑆𝐴 = 𝑐1 ∗  𝑟1 + 𝑣𝑖

𝑑(𝑡 + 1)𝑃𝑆𝑂 + 𝑐2 ∗  (1 − 𝑟1 ) + 𝑣𝑖
𝑑(𝑡 + 1)𝐺𝑆𝐴    … (32) 

     where, 𝑉𝑖
𝑑(𝑡 + 1)𝐻𝑃𝑆𝑂−𝐺𝑆𝐴 represents the new velocity obtained from hybrid HPSO-GSA in iteration t for each dimension 

d,  𝑐1 , 𝑐2 denotes the some constant value to adjust the position of the particles, these constant value linearly decreases from 2 

to 0 whereas 𝑟1 , 𝑟2  determine the random values (0,1). 𝑣𝑖
𝑑(𝑡 + 1)𝑃𝑆𝑂 mention the velocity obtained from the generic PSO in 

each iteration t. The PSO velocity update equation is represented in equation (33), 𝑣𝑖
𝑑(𝑡 + 1)𝐺𝑆𝐴 denotes the velocity update 

of gravitational search algorithm is given below: 

𝑣𝑖
𝑑(𝑡 + 1)𝐺𝑆𝐴 = 𝑟𝑎𝑛𝑑𝑖 ∗ 𝑉𝑖

𝑑(𝑡) + 𝑎𝑖
𝑑(𝑡)  … (33) 

     where,  𝑎𝑖
𝑑(𝑡) presents the acceleration of agent i in the dth dimension at each generation t, 𝑟𝑎𝑛𝑑𝑖 is the uniform stochastic 

variable in the interval (0, 1).  

Table 1    Description of Unimodal function (𝑓1 − 𝑓7) 

 

Function Dim Range 𝑓𝑚𝑖𝑛 

𝑓1(𝑥) =  ∑ 𝑥𝑖
2

𝑛

𝑖=1
 30 [-100, 100] 0 

𝑓2(𝑥) =  ∑ |𝑥𝑖| + ∏ |𝑥𝑖|
𝑛

𝑖=1

𝑛

𝑖=1
 30 [-10,10] 0 

𝑓3(𝑥) = ∑ (∑ 𝑥𝑗

𝑖

𝑗=1
)

2𝑛

𝑖=1
 30 [-100,100] 0 

𝑓4(𝑥) = 𝑚𝑎𝑥𝑖{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛} 30 [-100, 100] 0 

𝑓5(𝑥) = ∑ |100(𝑥𝑖+1 − 𝑥𝑖
2)2

𝑛

𝑖=1

+ (𝑥𝑖 − 1)2| 
30 [-30, 30] 0 

𝑓6(𝑥) = ∑ (|𝑥𝑖 + 0.5|)2
𝑛

𝑖=1
 30 [-100, 100] 0 

𝑓7(𝑥)

= ∑ 𝑖𝑥𝑖
4 + 𝑟𝑎𝑛𝑑𝑜𝑚(0,1)

𝑛

𝑖=1
 

30 [-1.28, 1.28] 0 

 

IV. EXPERIMENTAL RESULTS  

The numerical efficiency of Generic PSO and its variants are tested in twenty three benchmark test functions (K. Tang et 

al., 2007; Momin Jamil and Xin-She Yang, 2013). The collected benchmark functions are classical functions used by many 

researchers. Despite the simplicity, these test functions are chosen to compare our simulated results to those of the current 

meta-heuristics. 

     The three classical benchmark classified into three different groups: Group A holds seven different functions 𝑓1 − 𝑓7 which 

are all unimodal, Group B holds six different functions 𝑓8 − 𝑓13 which are all multimodal and Group C holds remaining set of 

functions 𝑓14 − 𝑓23 which are all fixed dimension functions (Seyedali Mirjalili and Andrew Lewis, 2016). Unimodal test 

functions hold one optimum (either minimum or maximum), so they can benchmark the intensification and convergence of an 

algorithm. Multi-modal test functions hold more than one optimum solution, which formulates these functions more 

challenging than unimodal functions. These functions hold one global optimum solution and many local optima solutions. The 

main motive of all algorithms is to approximate the global optimum and to avoid all the local optima.  

     The multi-modal functions examine to analyze the efficiency of the algorithms in contributing exploration and local optima 

avoidance. The last group is fixed dimension multi-modal test functions are consists only few local optimum solutions. This 

function does not permit to tune the number of design variables, but they offer peculiar search space. Three group’s 

benchmark functions are listed in Tables 1-3 where Dim represents the dimension of the function 𝑓𝑚𝑖𝑛 represents the optimum 
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value and Range is the boundary of the functions search space. Typical 2D plots of the benchmark functions are illustrated in 

Figure 1-3.  

Table 2 Description of Multimodal Benchmark functions (𝑓8 − 𝑓13) 

Function Dim Range 𝑓𝑚𝑖𝑛 

𝑓8(𝑥) =  ∑ −
𝑛

𝑖=1
𝑥𝑖 sin (√|𝑥𝑖|) 30 [-500, 500] -418.9829 × 5 

𝑓9(𝑥) =  ∑ |𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10|

𝑛

𝑖=1
 30 [-5.12, 5.12] 0 

𝑓10(𝑥) =  −20 exp (−0.2√
1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1 ) − 𝑒𝑥𝑝 (

1

𝑛
∑ cos(2𝜋𝑥𝑖)

𝑛
𝑖=1 ) + 20 + 𝑒  30 [-32, 32] 0 

𝑓11(𝑥) =  
1

4000
∑ 𝑥𝑖

2
𝑛

𝑖=1
− ∏ cos (

𝑥𝑖

√𝑖
) + 1

𝑛

𝑖=1
 30 [-600, 600] 0 

𝑓12(𝑥) =  
𝜋

𝑛
{10 sin(𝜋𝑦1) + ∑ (𝑦𝑖 − 1)2[1 + 10𝑠𝑖𝑛2(𝜋𝑦𝑖+1)] + (𝑦𝑛 − 1)2𝑛−1

𝑖=1 } + ∑ 𝑢(𝑥𝑖, 10, 100, 4)𝑛
𝑖=1   30 [-50,50] 0 

𝑦𝑖 = 1 +
𝑥𝑖 + 1

4
𝑢(𝑥𝑖 , 𝑎, 𝑘,𝑚) =  {

𝑘(𝑥𝑖 − 𝑎)𝑚 𝑥𝑖 > 𝑎
0 − 𝑎    <  𝑥𝑖 < 𝑎

𝑘(−𝑥𝑖 − 𝑎)𝑚  𝑥𝑖 <  −𝑎
    

𝑓13(𝑥) =  0.1 {𝑠𝑖𝑛2(3𝜋𝑥1) + ∑
(𝑥𝑖 − 1)2|1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑖 + 1)| + (𝑥𝑛 − 1)2

[1 + 𝑠𝑖𝑛2(2𝜋𝑥𝑛)]
𝑛
𝑖=1 } + ∑ 𝑢(𝑥𝑖 , 5, 100, 4)𝑛

𝑖=1   30 [-50, 50] 0 

Table 3  Description of fixed dimension multimodal functions (𝑓14 − 𝑓23) 

Function 
Di

m 
Range 𝑓𝑚𝑖𝑛 

𝑓14(𝑥) = (
1

500
+ ∑

1

𝑗 + ∑ (𝑥𝑖 − 𝑎𝑖𝑗)62
𝑖=1

25

𝑗=1
)

−1

 2 
[-65, 

65] 
1 

𝑓15(𝑥) = ∑ [𝑎𝑖 −
𝑥1(𝑏𝑖

2 + 𝑏𝑖𝑥2)

𝑏𝑖
2 + 𝑏𝑖𝑥3+𝑥4

]

2
11

𝑖=1
 4 [-5,5] 0.0003 

𝑓16(𝑥) = 4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1

6 + 𝑥1𝑥2 − 4𝑥2
2 + 4𝑥2

4 2 [-5, 5] -1.0316 

𝑓17(𝑥) = (𝑥2 −
5.1

4𝜋2
𝑥1

2 +
5

𝜋
𝑥1 − 6)

2

+ 10 (1 −
1

8𝜋
) 𝑐𝑜𝑠𝑥1 + 10 

2 [-5, 5] 0.398 

𝑓18(𝑥) = [1 + (𝑥1 + 𝑥2 + 1)2(19 − 14𝑥1 + 3𝑥1
2

− 14𝑥2 + 6𝑥1𝑥2 + 3𝑥2
2)] 

× [30 + (2𝑥1 − 3𝑥2)
2

× (18 − 32𝑥1 + 12𝑥1
2

+ 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2
2)] 

 

2 [-2, 2] 3 

𝑓19(𝑥) = −∑ 𝑐𝑖𝑒𝑥𝑝 (−∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
23

𝑗=1
)

4

𝑖=1
 3 [1,3] -3.86 

𝑓20(𝑥) = −∑ 𝑐𝑖𝑒𝑥𝑝 (−∑ 𝑎𝑖𝑗

6

𝑗=1
(𝑥𝑗 − 𝑝𝑖𝑗)

2

)
4

𝑖=1
 6 [0,1] -3.32 

𝑓21(𝑥) = −∑ [(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−1
5

𝑖=1
 4 [0, 10] 

-

10.153

2 

𝑓22(𝑥) = −∑ [(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−1
7

𝑖=1
 4 [0,10] 

-

10.402

8 

𝑓23(𝑥) = −∑ [(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−1
10

𝑖=1
 4 [0, 10] 

-

10.536

3 

 

      All algorithms are implemented in Matlab (Version 2013 a) whereas the population size and maximum generation equal to 

30 and 500 have been utilized and executed in 30 independent runs.  Table 4-5 reports the statistical results of best, mean and 

std (Standard Deviation). The Generic PSO with its variants is compared with the convergence rate and computation time 

required to obtain the best optimum or nearer best optimum solutions. 

     The figure 1 shows 2D representation of the unimodal benchmark functions 𝑓1, … , 𝑓7where as 𝑓1is the sphere function 

whose upper and lower bound in the interval of [-100,100] with 30 dimension set. 𝑓2is Schwefel problem 2.22 with interval of 

[-10,10] along with 30 dimension. 𝑓3, 𝑓4 represents the Schwefel problem 1.2 and 2.21 with lower and upper limit in a range of 

[-100, 100].  𝑓5 named as Rosenbrock function with interval of [-30,30] and 𝑓6, 𝑓7 determines the step function and quartic 

with random noise in the interval  of [-100,100] and [-1.28,1.28]. 
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Figure 1 Typical 2D representation of Unimodal    benchmark mathematical functions 

 

Figure 2 Typical 2D representation of Multimodal benchmark mathematical functions 

 

Figure 3 Typical 2D representation of Fixed-Dimension Multimodal benchmark mathematical functions 
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     The figure 2 displays that 2D representation of the multimodal benchmark functions 𝑓8, … , 𝑓13where as 𝑓8is the Schwefel 

problem 2.26 with upper and lower bound in the interval of [-500,500]. 𝑓9 determines Rastrigin function with interval of [-

5.12,5.12] along with 30 dimension. 𝑓10 , 𝑓11 represents the Ackley and Griewank function with lower and upper limit in a 

range of [-30, 30] and [-600,600] and 𝑓12 , 𝑓13 determines the penalized function 1 and 2 in the interval  of [-50,50]. 

     The 2D representations of fixed dimension multimodal function were shown in figure 3. 𝑓14is the fifth De Jong problem 

(Shekel’s Foxholes) with upper and lower bound in the interval of [-65.536, 65.536] in which the dimension of these function 

is 2 and the global minimum of this function was (−32,−32) ≅ 0.998004 [58]. 𝑓15determines Kowalik function with 

interval of [-5, 5] along with 4 dimension. 𝑓16denotes that the Six-hump Camel function with the range of min and max [-5, 5] 

in 2 dimension set. 𝑓17is the test function of Brainin-Hoo function in the interval of [-5,5] and its global optimum is 0.398. 

𝑓18is the test problem of Goldstein-Price which have [-2, 2] boundary range with 2 dimensional set. Similarly 𝑓19, 𝑓20 

determines the test function of Harmann with 3 and 6 dimensional sets in the interval of [0, 1]. 𝑓21 , 𝑓22, 𝑓23 were the test 

problem of Shekel function 5,7 and 10 with 4 dimension set in the interval range of [0,1]. 

4.1 Evaluation of exploitation/intensification capability for 30-D unimodal functions (𝒇𝟏 − 𝒇𝟕) 

Unimodal functions 𝑓1 − 𝑓7 contain only one global optimum. These functions grant to compute the intensification 

capability of the investigated meta-heuristic algorithms. The experiments of unimodal functions for all algorithms are 

computed and the convergence graph of all these functions are graphically represented in figure 4. Likewise, the results of 

unimodal function which is applied in all the algorithms are shown in table 1 and 2.  

     From the observed results, the sphere function (𝑓1) results says that Generic PSO, DNSPSO, ICAPSO get a solution 

beyond the global minimum, whereas in initial iterations other algorithm performs better but in course of iterations, 

convergence rate are reduced and they are not attained the optimum solutions. In Schwefel problem 2.22 (𝑓2), initially all the 

algorithms converges towards the optimum solutions and later they sustain in the local solutions which in turn its convergence 

rate is reduced. 

     Apart from those algorithms ICAPSO finds the global optimum solution in a less computation time and still it converges 

beyond the optimum solutions. For Schwefel problems 1.2 ( 𝑓3) and 2.21 ( 𝑓4) we observed the results that in initial iteration 

itself the DNSPSO converges nearer to optimum solution and then later it slowly converges to the global optimum solutions 

whereas all other algorithms provides average convergence rate in initial start of iteration but later it reduces their 

convergence towards the optimum over 500 iterations. In Rosenbrock function(𝑓5), the global minimum lies inside a narrow 

long and parabolic shaped flat valley so identifying the minimum is difficult. From initial iteration onwards, DNSPSO 

converges faster for 𝑓5, 𝑓7 compare to all other PSO variants and later ICAPSO converges when it reaches near 100 iterations. 

For step function𝑓6, BPSO and HPSOGSA obtain rare optimal solutions over 30 independent runs, whereas for the same 

function Generic PSO and DNSPSO find good solution close to the global optimizer.  
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Figure 4. Comparison of convergence rate on Generic PSO and eight variant algorithms obtained in Unimodal benchmark 

problems a) Sphere function, (b) Schwefel problem 2.22, (c) Schwefel problem 1.2, (d) Schwefel problem 2.21, (e) 

Rosenbrock function, (f) step function, (g) Quartic function 

 

 

 

Table 4.  Results for the unimodal 30-dimensional functions (𝑓1, … , 𝑓7). The experiments were repeated 30 independent runs and the best, mean and standard 

deviation (std) 

 

 

Table 5.  Results for the Multimodal 30-dimensional functions (𝑓8, … , 𝑓13). The experiments were repeated 30 independent runs and the best, mean and 

standard deviation (std) 
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Table 6.  Results for the fixed dimensional multimodal functions (𝑓14, … , 𝑓23). The experiments were repeated 30 independent runs and the best, mean and 

standard deviation (std) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Evaluation of diversification/exploration capability for 30-D multimodal functions (𝒇𝟖 − 𝒇𝟏𝟒) 

Apart from unimodal functions, multimodal functions have increase in number of design variables; this may lead to massive 

number of local optimum solutions. These kinds of test problems are very useful to evaluate the exploration capability of an 

optimization algorithm. Function 𝑓8 − 𝑓13 (i.e. multi-modal functions) results are stated in table 5 and the convergence rates of 

the same were presented in figure 5. 

     For function 𝑓8 all the algorithms were performs well and in function 𝑓9 ICAPSO and DNSPSO performs better when it 

compares with other variants. ICAPSO perform well in function 𝑓10 whereas other algorithms are gradually finding the 

minimum solution which is shown in figure 5.c. In function𝑓11, all the variants of PSO perform better after a course of 

iterations; apart from that DNSPSO perform well in convergence rate at the initial state of iterations. Beside function 𝑓12 and 

𝑓13, all the algorithms better well interms of convergence rate but generic PSO, BPSO, CPSO and HPSSO performs better 

interms of computation time in figure 7. Overall results of multimodal functions say that every algorithm performs well in 

finding good optimum solutions over 30 independent runs but when compare to convergence rate ICAPSO, DNSPSO, 

Generic PSO, CPSO performs better.   

Figure 5. Convergence rate comparison of Generic PSO and its eight variants obtained in Multiimodal benchmark problems 

(a) Schwefel problem 2.26, (b) Rastrigin function, (c) Ackley function 1.2, (d) Griewank function, (e) penalized function 1, (f) 

penalized function 2 
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4.3 Evaluation of diversification/exploration capability for fixed dimension multimodal functions (𝒇𝟏𝟒 − 𝒇𝟐𝟑) 

According to (Berg et al., 2008), movement of search agents perform abrupt changes over the initial stage of optimization. 

This assists the meta-heuristic to explore broadly within the search space.  At the final stage of optimization these changes 

should be minimized to highlight exploitation. It was noticed that variants of PSO algorithms search particles incline to broad 

search promising areas of objective space and achieved the best one. Search particles adopt sharply towards the best optimal 

point in the early stages of the optimization process and then leisurely converge. Population based algorithm can guarantee 

eventually convergences to a best optimal point in a search space. Fixed dimension multimodal functions  𝑓14 − 𝑓23  have low 

dimensions (2, 4, or 6), in that some of them are difficult to optimize. Based on the convergence graph and results ICAPSO 

not perform well when it compares to other algorithms Function 𝑓14 whereas the same algorithm has moderate convergence in 

a course of iterations for function𝑓15. Similarly BPSO converge slowly in function 𝑓15over the entire iterations. We identifies 

that function 𝑓15is difficult to converge near to optimum solutions, but expect BPSO all other algorithms perform better and 

achieves solutions near to optimum.   

Figure 6. Convergence rate comparison of Generic PSO and its eight variants obtained in fixed dimensional Multimodal 

benchmark problems (a) Shekel’s Foxholes, (b) Kowalik function, (c) Six - hump Camel function, (d) Brainin-Hoo function, 

(e) Goldstein-Price function, (f) 3-dimensional Harmann function, (g) 6-dimensional Harmann function, (h) Shekel function 5, 

(i) Shekel function 7, (j) Shekel function 10 
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     In function 𝑓16 expect BPSO, all other algorithms identifies the optimum solution when it reaches 20th iterations, but the 

BPSO converges slowly to optimum which exploit depth into the local solutions. For 𝑓17 compare to BPSO, ICAPSO 

converge very slowly near to the optimum solutions and remaining all other algorithms perform well to find good optimum 

solutions. The experimentation of function 𝑓18 provides that BPSO fails to identify the optimum within the specified 

iterations. 

     In function f19, we note that DPSO, ICAPSO, HPSSO particles starts its convergence in iteration 20 and withstands in the 

same positions for course iterations and later it moves on converging, Whereas BPSO converges moderately to the best 

positions. Similarly, function f20, f21, all the variants performs well interms of convergence, whereas BSPSO has slower 

convergence rate. Based on our experiments, we identified that the BPSO suits for photo crystal based problems, in some 

cases it fails to attain the convergence rate. However, tuning BPSO parameter may increase its convergence and cope up 

together as other algorithms have been performed.  Finally, we state the function f22, f23 DDSRPSO begins its finding and 

attain the optimum in initial state iterations, whereas other algorithms starts it’s finding process moves towards the optimum 

in course of iterations. 
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Figure 7. Computation time Analysis for PSO variants with benchmark test functions 

 

 

 

Analysis of Computational time 

The performance of discrete variants of PSO algorithms is validated using the statistical analysis of computation time shown 

in figure 7. The CPU clock time is used as the computation time requirements for all the PSO variants. Clearly, it shows that 

the performance of Generic PSO takes minimum computation time than all PSO variants. But, this algorithm may trap in local 

optima and provides similar solution in a certain number of iterations. DD-SRPSO achieves minimum computation time than 

all other discrete variants of PSO in some set of functions and also converges nearer to the optimum solutions. BPSO 

repeatedly provides a better result for both some set of multi-modal and fixed dimension multimodal function in minimum 

computation time. CPSO and HPSSO algorithm provide better results in gradient set of function; whereas for some set of 

benchmark functions it takes more computation time to converge. DPSO and HPSOGSA takes more computation time to get 

converge from local optima to global optimum solutions. Imperialist Competitive Particle Swarm Optimization (ICA-PSO) 

grant better results within less computation time in all set of benchmark functions. In addition with crowding distance is 

incorporated in order to sustain exploration within the archive. From the overall observations, Imperialist Competitive Particle 

swarm Optimization and Diversity Enhanced Particle Swarm optimization provides better results based on the computation 

time for unimodal, multimodal and multidimensional benchmark functions. 

V. CONCLUSIONS 

In this paper, the generic Particle Swarm Optimization (PSO) with its novel variants presented in the literature is 

discussed. The state-of-the-art eight different PSO variants are considered here, in which exploration and exploitation plays a 

vital role to improve the generic PSO. The performance of these algorithms are analyzed using three different group of 

benchmark test functions viz., unimodal, multimodal and fixed dimension multimodal functions. The statistical analyses 

(average, standard deviation and computation time) are measured and observed results shows that each algorithm performs 

better efficiency in different set of benchmark functions. From this survey, we identified that PSO has some disadvantages 

such as minimum convergence, premature, high computational complexity and so forth. Mainly two reasons behind the 

disadvantages of PSO they are: Initially, PSO does not hold any novel operators (like crossover or mutation) as applied in GA 

or DE; hence the sharing of good information between the particles is not at an expected level. Another disadvantage may fall 

within the fact that PSO does not handle the balance between the exploration and exploitation, so it quickly converges to a 

local minimum. The major variants, including Bisection PSO, Chaotic PSO, DDSRPSO, Dispersed PSO, Compact PSO, 

ICAPSO, DNSPSO, HPSSO and HPSOGSA are good in balancing exploration and exploitation capabilities as well as 

overcome the disadvantages of generic PSO. From these variants we evaluated the performance with convergence rate and 

computation time analysis. Based on our experimentation, we conclude that ICAPSO and DNSPSO performed well in 

identifying optimum solution within a reasonable time and has better convergence rate. 
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