On a special type of Operator Called $(5,2)$ Jection
 Dhananjay Kumar

Research Scholar,
J. P. University, Chapra

Bihar-841301

ABSTRACT

In this article we introduce a new type of operator called $(5,2)$ jection in a linear space. We investigate such operators in $\mathrm{C}^{2}, \mathrm{C}$ being the set of all complex numbers.

Key words : $(5,2)$ jection, projection, trijection, tetrajetion.

1. INTRODUCTION

We are already familiar with the idea of projection. A trijection operator E has been defined by Dr. P. Chandra in his Ph.D. thesis (P.U. 1977) titled "Investigation into the theory of operators and linear spaces" by the relation $\mathrm{E}^{3}=\mathrm{E}$ where E is a linear operator on a linear space L. It is a generalisation of projection operator, in the sense that every projection is a trijection but not conversely. Dr. Rajiv Kumar Mishra in his Ph.D. thesis (J.P.U., Chapra 2010) titled 'Study of linear operators and related topic in Functional Analysis" has defined an operator E on a Linear space to be a tetrajection if $\mathrm{E}^{4}=\mathrm{E}$. This also generalises projection operator. These concepts have led me to define E to be a $(5,2)$-jection if $\mathrm{E}^{5}=\mathrm{E}^{2}$. Clearly it generalises both idea of projection as well as a tetrajection

Main results

Theorem 1

Let $\mathrm{z}=(\mathrm{x}, \mathrm{y})$ be an element in C^{2} where $\mathrm{x}, \mathrm{y} \in \mathrm{C}$. Let $\mathrm{E}(\mathrm{z})=(\mathrm{ax}+\mathrm{by}, \mathrm{cx}+\mathrm{dy}), \mathrm{a}, \mathrm{b}, \mathrm{c}$, d being scalars. We find out conditions for E to be $\mathrm{a}(5,2)$-jection.

Proof:

By calculation, we find that

$$
\begin{aligned}
& E^{2} z=E\left(E(z)=\left\{\left(a^{2}+b c\right) x+(a b+b d) y,(a c+c d) x+\left(b c+d^{2}\right) y\right\}\right. \\
& =(A x+B y, C x+D y)
\end{aligned}
$$

where $\mathrm{A}=\mathrm{a}^{2}+\mathrm{bc}, \mathrm{B}=\mathrm{ab}+\mathrm{bd}, \mathrm{C}=\mathrm{ac}+\mathrm{cd}, \mathrm{D}=\mathrm{bc}+\mathrm{d}^{2}$
Replacing E by E^{2}, we see that

$$
E^{4} z=\left(A_{1} x+B_{1} y, C_{1} x+D_{1} y\right) \text { where }
$$

$$
\mathrm{A}_{1}=\mathrm{A}^{2}+\mathrm{BC}, \mathrm{~B}_{1}=\mathrm{B}(\mathrm{~A}+\mathrm{D}), \mathrm{C}_{1}(\mathrm{~A}+\mathrm{D}), \mathrm{D}_{1}=\mathrm{BC}+\mathrm{D}^{2}
$$

Hence,

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{z}}^{5}=\mathrm{E}\left(\mathrm{E}^{4} \mathrm{z}\right)=\left[\mathrm{a}\left(\mathrm{~A}_{1} \mathrm{x}+\mathrm{B}_{1} \mathrm{y}\right)+\mathrm{b}\left(\mathrm{C}_{1} \mathrm{x}+\mathrm{D}_{1} \mathrm{y}\right), \mathrm{c}\left(\mathrm{~A}_{1} \mathrm{x}+\mathrm{B}_{1} \mathrm{y}\right)+\mathrm{d}\left(\mathrm{C}_{1} \mathrm{x}+\mathrm{D}_{1} \mathrm{y}\right)\right] \\
& =\left[\left(\mathrm{aA}_{1}+\mathrm{bC} \mathrm{C}_{1}\right) \mathrm{x}+\left(\mathrm{aB}_{1}+\mathrm{bD} \mathrm{D}_{1}\right) \mathrm{y},\left(\mathrm{cA}_{1}+\mathrm{dC}_{1}\right) \mathrm{x}+\left(\mathrm{cB}_{1}+\mathrm{dD}_{1}\right) \mathrm{y}\right]
\end{aligned}
$$

Hence if $E^{5}=E^{2}$, then $E^{5} z=E^{2} z$ and comparing R.H.S of both,
$\mathrm{aA}_{1}+\mathrm{bC}_{1}=\mathrm{A}, \mathrm{aB}_{1}+\mathrm{bD}_{1}=\mathrm{B}, \mathrm{cA}_{1}+\mathrm{dC}_{1}=\mathrm{C}, \mathrm{cB}_{1}+\mathrm{dD}_{1}=\mathrm{D}$.
Now

$$
\begin{align*}
& \mathrm{aA}_{1}+\mathrm{bC}_{1}=\mathrm{A} \Rightarrow \mathrm{a}\left(\mathrm{~A}^{2}+\mathrm{BC}\right)+\mathrm{bC}(\mathrm{~A}+\mathrm{D})=\mathrm{A} \tag{1}\\
& \mathrm{aB}_{1}+\mathrm{bD}_{1}=\mathrm{B} \Rightarrow \mathrm{aB}(\mathrm{~A}+\mathrm{D})+\mathrm{b}\left(\mathrm{BC}+\mathrm{D}^{2}\right)=\mathrm{B} \tag{2}\\
& \mathrm{cA}_{1}+\mathrm{dC}_{1}=\mathrm{C} \Rightarrow \mathrm{c}\left(\mathrm{~A}^{2}+\mathrm{BC}\right)+\mathrm{dC}(\mathrm{~A}+\mathrm{D})=\mathrm{C} \tag{3}\\
& \mathrm{cB}_{1}+\mathrm{dD}_{1}=\mathrm{D} \Rightarrow \mathrm{cB}(\mathrm{~A}+\mathrm{D})+\mathrm{d}\left(\mathrm{BC}+\mathrm{D}^{2}\right)=\mathrm{D} \tag{4}
\end{align*}
$$

Equations (1) to (4) are required conditions.

Theorem 2

Let $\mathrm{ad}=\mathrm{bc}$. Show that E is a $(5,2)$-jection if $\mathrm{A}=\mathrm{a}^{2}+\mathrm{bc}$ is either 0 or a or $\mathrm{a} \omega$ or $\mathrm{a} \omega^{2}, \omega$ being a cube root of unity.

Proof:-

Since $a d=b c$, we have $d=\frac{b c}{\mathbf{a}}$ (assume $a \neq 0$)
Then $A=a^{2}+b c=a^{2}+a d=a(a+d)$. so $a+d=\frac{A}{a}$

$$
\begin{aligned}
& B=b(a+d)=\frac{b \mathbf{A}}{\mathbf{a}}, C=c(a+d)=\frac{c \boldsymbol{A}}{\mathbf{a}} \\
& D=b c+d^{2}=a d+d=d(a+d)=\frac{d A}{a}
\end{aligned}
$$

then $\mathrm{A}_{1}=\mathrm{A}^{2}+\mathrm{BC}=\mathrm{A}^{2}+\frac{b c A^{2}}{a^{2}}=\mathrm{A}^{2}\left(\frac{a^{2}+b c}{a^{2}}\right)=\frac{A^{3}}{a^{2}}$.

$$
\begin{aligned}
& \mathrm{B}_{1}=\mathrm{B}(\mathrm{~A}+\mathrm{D})=\frac{b A}{a}\left(\mathrm{~A}+\frac{d A}{a}\right)=\frac{b A}{a^{2}}(\mathrm{a} \mathrm{~A}+\mathrm{dA})=\frac{b A^{2}}{a^{2}} \cdot \frac{A}{a}=\frac{b A^{3}}{a^{3}} \\
& \mathrm{C}_{1}=\mathrm{C}(\mathrm{~A}+\mathrm{D})=\frac{c A}{a}\left(\mathrm{~A}+\frac{d A}{a}\right)=\frac{c a^{2}}{a^{2}} \cdot \frac{A}{a}=\frac{c A^{3}}{a^{3}}
\end{aligned}
$$

$$
\mathrm{D}_{1}=\mathrm{BC}+\mathrm{D}^{2}=\mathrm{bc} \frac{A^{2}}{a^{2}}+\frac{d^{2} A^{2}}{a^{2}}=\frac{A^{2}}{a^{2}}\left(\mathrm{bc}+\mathrm{d}^{2}\right)=\frac{A^{2}}{a^{2}} \bullet \frac{d A}{a}=\frac{d A^{3}}{a^{3}}
$$

so due to (1),

$$
\begin{aligned}
& \frac{a A^{3}}{a^{2}}+\mathrm{bc} \frac{A^{3}}{a^{3}}=\mathrm{A} \Rightarrow \frac{A^{3}}{a^{3}}\left(\mathrm{a}^{2}+\mathrm{bc}\right)=\mathrm{A} \\
\Rightarrow & \frac{A^{3}}{a^{3}} \cdot \mathrm{~A}=\mathrm{A} \Rightarrow \mathrm{~A}\left(1-\frac{A^{3}}{a^{3}}\right)=0 \\
\Rightarrow & \mathrm{~A}=0 \text { or } \mathrm{A}^{3}=\mathrm{a}^{3} \\
\Rightarrow & \mathrm{~A}=0 \text { or } \mathrm{a} \text { or } \omega \mathrm{a} \text { or } \omega^{2} \mathrm{a}
\end{aligned}
$$

due to (2)

$$
\begin{aligned}
& \mathrm{ab} \frac{A^{3}}{a^{3}}+\mathrm{bd} \frac{A^{3}}{a^{3}}=\frac{b A}{a} \Rightarrow \mathrm{ab} \mathrm{~A}^{3}+\mathrm{bd} \mathrm{~A}^{3}=\mathrm{ba}^{2} \mathrm{~A} \\
& \mathrm{bA}\left(\mathrm{aA}^{2}+\mathrm{dA}^{2}\right)=\mathrm{bA}^{2} \Rightarrow \mathrm{bA}\left[(\mathrm{a}+\mathrm{d}) \mathrm{A}^{2}-\mathrm{a}^{2}\right]=0 \\
& \Rightarrow \mathrm{~b}=0 \text { or } \mathrm{A}=0 \text { or }(\mathrm{a}+\mathrm{d}) \mathrm{A}^{2}=\mathrm{a}^{2} \text { i.e } \frac{A^{3}}{a^{3}}=1 \\
& \Rightarrow \mathrm{~b}=0 \text { or } \mathrm{A}=0, \mathrm{a}, \omega \mathrm{a}, \omega^{2} \mathrm{a} .
\end{aligned}
$$

due to (3)

$$
\mathrm{c} \frac{A^{3}}{a^{2}}+\mathrm{dc} \frac{A^{3}}{a^{3}}=\frac{c A}{a} \Rightarrow \mathrm{acA}^{3}+\mathrm{cdA}^{3}=\mathrm{cAa}^{2}
$$

Hence as in (2), $c=0$ or $A=0, a, \omega a, \omega^{2} a$.
due to (4)

$$
\begin{aligned}
& \operatorname{cb} \frac{A^{3}}{a^{3}}+\mathrm{d}^{2} \frac{A^{3}}{a^{3}}=\frac{d A}{a} \Rightarrow\left(\mathrm{bc}+\mathrm{d}^{2}\right) \mathrm{A}^{3}=\mathrm{da}^{2} \mathrm{~A} \\
& \Rightarrow \frac{d A}{a} \cdot \mathrm{~A}^{3}=\mathrm{da}^{2} \mathrm{~A} \Rightarrow \mathrm{dA}\left(\mathrm{~A}^{3}-\mathrm{a}^{3}\right)=0 \\
& \Rightarrow \mathrm{~d}=0 \text { or } \mathrm{A}=0, \mathrm{a}, \omega \mathrm{a}, \omega^{2} \mathrm{a}
\end{aligned}
$$

Hence considering all 4 equations, common solution is

$$
\mathrm{A}=0, \mathrm{a}, \omega \mathrm{a}, \omega^{2} \mathrm{a} .
$$

Theorem 3

Let $a d=b c$ and $A=0$.we show that $E^{2}=0$ and we give a few examples of E in this case.

Proof:-

we are given that $A=0$
so $\mathrm{a}^{2}+\mathrm{bc}=0 \Rightarrow \mathrm{~d}=\frac{b c}{a}=-\mathrm{a} \Rightarrow \mathrm{a}+\mathrm{d}=0$.
Also $\mathrm{c}=-\frac{-a^{2}}{b}(\mathrm{~b} \neq 0)$ and $\mathrm{b}=-\frac{-a^{2}}{c} \quad(\mathrm{c} \neq 0)$
Then $B=b(a+d)=0, C=c(a+d)=0$

$$
\mathrm{D}=\mathrm{bc}+\mathrm{d}^{2}=\mathrm{ad}+\mathrm{d}^{2}=\mathrm{d}(\mathrm{a}+\mathrm{d})=0 .
$$

so in this case,

$$
\begin{aligned}
& \quad \mathrm{E}(\mathrm{x}, \mathrm{y})=\left(\mathrm{ax}+\mathrm{by},-\frac{-a^{2} x}{b}-\mathrm{ay}\right) \text { if } \mathrm{b} \neq 0 \\
& \text { and } \mathrm{E}(\mathrm{x}, \mathrm{y})=\left(\mathrm{ax}-\frac{a^{2} y}{c}, \mathrm{cx}-\mathrm{ay}\right) \quad(\mathrm{c}=0) \\
& \text { Also } \mathrm{E}^{2}(\mathrm{x}, \mathrm{y})=(\mathrm{Ax}+\mathrm{By}, \mathrm{Cx}+\mathrm{Dy})=(0,0) . \\
& \text { Thus } \mathrm{E}^{2}=0 \text {. clearly } \mathrm{E}^{5}=0=\mathrm{E}^{2}
\end{aligned}
$$

We consider some examples in this case
Let $\mathrm{a}=0$, then $\mathrm{E}(\mathrm{x}, \mathrm{y})=(\mathrm{by}, 0)$.
Let $\mathrm{a}=1$, then $\mathrm{E}(\mathrm{x}, \mathrm{y})=\left(\mathrm{x}+\mathrm{by}, \frac{-x}{b}-\mathrm{y}\right)(\mathrm{b} \neq 0)$

$$
=\left(\mathrm{x}-\frac{y}{c}, \mathrm{cx}-\mathrm{y}\right) \quad(\mathrm{c} \neq 0)
$$

Further if $\mathrm{c}=1$ then $\mathrm{E}(\mathrm{x}, \mathrm{y})=(\mathrm{x}-\mathrm{y}, \mathrm{x}-\mathrm{y})$.
Let $\mathrm{a}=1, \mathrm{~b}=1$ then $\mathrm{E}(\mathrm{x}, \mathrm{y})=(\mathrm{x}+\mathrm{y},-\mathrm{x}-\mathrm{y})$.
when $b=1$, then $E(x, y)=\left(a x+y,-a^{2} x-a y\right)$
when $\mathrm{b}=\omega, \mathrm{E}(\mathrm{x}, \mathrm{y})=\left(\mathrm{ax}+\omega \mathrm{y},-\mathrm{a}^{2} \omega^{2} \mathrm{x}-\mathrm{ay}\right)$
if also $a=1, E(x, y)=\left(x+\omega y,-\omega^{2} x-y\right)$
when $\mathrm{b}=\omega^{2}, \mathrm{E}(\mathrm{x}, \mathrm{y})=\left(\mathrm{ax}+\omega^{2} \mathrm{y},-\mathrm{a}^{2} \omega \mathrm{x}-\mathrm{ay}\right)$
similarly we may get some further examples.

Theorem 4

Let $\mathrm{ad}=\mathrm{bc}$ and $\mathrm{A}=\mathrm{a}(\neq 0)$. We show that E is a projection and discuss a few examples in this case.

Proof:-
In this case $\mathrm{a}^{2}+\mathrm{bc}=\mathrm{a} \Rightarrow \mathrm{bc}=\mathrm{a}-\mathrm{a}^{2}$

$$
\mathrm{d}=\frac{b c}{a}=\frac{a-a^{2}}{a}=1-\mathrm{a} . \text { Hence } \mathrm{a}+\mathrm{d}=1 .
$$

so $\mathrm{E}(\mathrm{x}, \mathrm{y})=\left(\mathrm{ax}+\mathrm{by}, \frac{a-a^{2}}{b} \mathrm{x}+(1-\mathrm{a}) \mathrm{y}\right)(\mathrm{b} \neq 0)$

$$
\left(a x+\frac{a-a^{2}}{c} y, c x+(1-a) y\right) \quad(c \neq 0)
$$

Also $\mathrm{A}=\mathrm{a}, \mathrm{B}=\mathrm{b}(\mathrm{a}+\mathrm{d})=\mathrm{b}, \mathrm{C}=\mathrm{c}(\mathrm{a}+\mathrm{d})=\mathrm{c}$

$$
\mathrm{D}=\mathrm{bc}+\mathrm{d}^{2}=\mathrm{ad}+\mathrm{d}^{2}=\mathrm{d}(\mathrm{a}+\mathrm{d})=\mathrm{d} .
$$

Hence $E^{2}(x, y)=(A x+B y, C x+D y)=(a x+b y, c x+d y)=E(x, y)$
i.e. $\mathrm{E}^{2}=\mathrm{E}$ or E is a projection.
we consider a few examples in this case.
Let $\mathrm{a}=1$, then $\mathrm{E}(\mathrm{x}, \mathrm{y})=(\mathrm{x}+\mathrm{by}, 0)$
if $b=0$ then $E(x, y)=(x, 0)$
if $\mathrm{a}+\mathrm{b}=1$ then $\mathrm{b}=1-\mathrm{a}=\mathrm{d}$
since $b c=a-a^{2}=a(1-a)=a b$, we have $c=a$ if $b \neq 0$.
Hence $E(x, y)=(a x+b y, a x+b y),(b \neq 0)$.
in particular if $\mathrm{a}=\mathrm{b}=\frac{1}{2}$, then $\mathrm{E}(\mathrm{x}, \mathrm{y})=\left(\frac{x+y}{2}, \frac{x+y}{2}\right)$

Theorem 5

let $\mathrm{ad}=\mathrm{bc}$ and $\mathrm{A}=\omega \mathrm{a}$. We show that $\mathrm{E}^{2}=\omega \mathrm{E}$ and consider a few examples.

proof:-

Here $\mathrm{a}^{2}+\mathrm{bc}=\omega \mathrm{a} \Rightarrow \omega \mathrm{a}-\mathrm{a}^{2}$

$$
\mathrm{d}=\frac{b c}{a}=\frac{\omega \mathrm{a}-\mathrm{a}^{2}}{a}=\omega-\mathrm{a} \Rightarrow \mathrm{a}+\mathrm{d}=\omega \quad(\mathrm{a} \neq 0)
$$

so, $\mathrm{E}(\mathrm{x}, \mathrm{y})=\left(\mathrm{ax}+\mathrm{by}, \frac{\omega \mathrm{a}-\mathrm{a}^{2}}{b} \mathrm{x}+(\omega-\mathrm{a}) \mathrm{y}\right) \quad(\mathrm{b} \neq 0)$

$$
\left(\mathrm{ax}+\frac{\omega \mathrm{a}-\mathrm{a}^{2}}{c} \mathrm{y}, \mathrm{cx}+(\omega-\mathrm{a}) \mathrm{y}\right)
$$

Also $B=b(a+d)=b \omega, C=c(a+d)=c \omega$

$$
\mathrm{D}=\mathrm{d}(\mathrm{a}+\mathrm{d})=\mathrm{d} \omega
$$

Hence $E^{2}(x, y)=(\omega a x+\omega b y, \omega c x+\omega d y)=\omega(a x+b y, c x+d y)=\omega E(x, y)$
So $E^{2}=\omega E$ and E is not a projection.
Hence $E^{3}=\omega E^{2}=\omega^{2} E$

$$
\mathrm{E}^{4}=\omega \cdot \omega^{2} \mathrm{E}=\mathrm{E} \Rightarrow \mathrm{E}^{5}=\mathrm{E}^{2}
$$

so E is a tetrajection also.Now we discuss some examples
Let $a=0$ then $E(x, y)=(b y, \omega y)$
Let $a=\omega$ then $E(x, y)=(\omega x+b y, 0)$
Let $a=\omega^{2}$ then $E(x, y)=\left(\omega^{2} x+b y, \frac{1-\omega}{b} x+\left(\omega-\omega^{2}\right) y\right)$
Let $a=\omega=b$ then $E(x, y)=(\omega x+\omega y, 0)$
Let $a=\omega, b=\omega^{2}$ then $E(x, y)=\left(\omega x+\omega^{2} y, 0\right)$
Let $a=\omega, b=0$ then $E(x, y)=(\omega x, c x)$

Theorem 6

Let $a d=b c$ and $A=\omega^{2}$ a.We show that $E^{2}=\omega^{2} E$ and consider a few examples.

Proof:-

In this case $a^{2}+b c=\omega^{2} a \Rightarrow b c=\omega^{2} a-a^{2} \Rightarrow c=\frac{\omega^{2} a-a^{2}}{b} \quad(b \neq 0)$
Also $b=\frac{\omega^{2} a-a^{2}}{c} \quad(c \neq 0)$.
Also $\mathrm{d}=\frac{b c}{a}=\frac{\omega^{2} a-a^{2}}{a}=\omega^{2}-\mathrm{a} \Rightarrow \mathrm{a}+\mathrm{d}=\omega^{2}$.
Hence $E(x, y)=\left(a x+b y, \frac{\omega^{2} a-a^{2}}{b} x+\left(\omega^{2}-a\right) y\right) \quad(b \neq 0)$

$$
\left(\mathrm{ax}+\left(\frac{\omega^{2} a-a^{2}}{c}, \mathrm{cx}+\left(\omega^{2}-\mathrm{a}\right) \mathrm{y}\right) \quad(\mathrm{c} \neq 0)\right.
$$

In this case $B=b(a+d)=b \omega^{2}, c=c \omega^{2}$,

$$
\begin{aligned}
D= & b c+d^{2}=\omega^{2} a-a^{2}+\left(\omega^{2}-a\right)^{2}=\omega^{2} a-a^{2}+\omega-2 \omega^{2} a+a^{2} \\
& =\omega-\omega^{2} a=\omega^{2}\left(\omega^{2}-a\right)=\omega^{2} d
\end{aligned}
$$

Hence $E^{2}(x, y)=\left(\omega^{2} a x+\omega^{2} b y, \omega^{2} c x+\omega^{2} d y\right)=\omega^{2} E(x, y)$

$$
\Rightarrow E^{2}=\omega^{2} E
$$

clearly E is not a projection
Also $\mathrm{E}^{3}=\omega^{2} \mathrm{E}^{2}=\omega \mathrm{E}, \mathrm{E}^{4}=\omega \mathrm{E}^{2}=\mathrm{E}, \mathrm{E}^{5}=\mathrm{E}^{2}$
Thus E is a tetrajection, as well as a(5,2)-jection.
Let us consider a few examples

$$
\begin{aligned}
\text { let } \mathrm{a}=\omega^{2} \text { then } \mathrm{E}(\mathrm{x}, \mathrm{y}) & =\left(\omega^{2} \mathrm{x}+\mathrm{by}, 0\right) \quad(\mathrm{b} \neq 0) \\
& =\left(\omega^{2} \mathrm{x}, \mathrm{cx}\right) \quad(\mathrm{c}=0)
\end{aligned}
$$

let $a=\omega$ then $E(x, y)=\left(\omega x+b y, \frac{1-\omega^{2}}{b} x+\left(\omega^{2}-\omega\right) y\right) \quad(b \neq 0)$
If further $b=\omega$ then $E(x, y)=\left(\omega x+\omega y,\left(\omega^{2}-\omega\right) x+\left(\omega^{2}-\omega\right) y\right)$

$$
=\left(\omega(x+y),\left(\omega^{2}-\omega\right)(x+y)\right),=(x+y)\left(\omega, \omega^{2}-\omega\right)
$$

Theorem 7

Let $b c=a d$, then
we come to the case when $b=0$ or $c=0$. we also consider same examples

Proof:-

Since $b c=$ ad we have $a d=0$. so at least one of a, d is 0 or both are 0. Take the case of $\mathrm{b}=0$.

So we consider two cases (i) $b=0, a=0$ or (ii) $b=0, d=0$
Let $\mathrm{a}=0, \mathrm{~b}=0$ then
Let $A=0, B=0, C=c d, D=d^{2}$.
in theorem (1),(1) and (2) are obvious.
Due to (3), $\mathrm{cd}^{4}-\mathrm{cd}=0 \Rightarrow \operatorname{cd}\left(\mathrm{~d}^{3}-1\right)=0$
$\Rightarrow \mathrm{c}=0, \mathrm{~d}=0,1, \omega, \omega^{2}$
If we take $a=b=c=d=0$, we get $E=0$, zero operator.
Taking $\mathrm{a}=\mathrm{b}=\mathrm{c}=0, \mathrm{~d}=1$ we get $\mathrm{E}(\mathrm{x}, \mathrm{y})=(0, \mathrm{y})$, a projection.
If $\mathrm{a}=\mathrm{b}=\mathrm{c}=0, \mathrm{~d}=\omega$ we get $\mathrm{E}(\mathrm{x}, \mathrm{y})=(0, \omega \mathrm{y}), \mathrm{a}$ tetrajection.
If $\mathrm{a}=\mathrm{b}=\mathrm{c}=0, \mathrm{~d}=\omega^{2}$ we get $\mathrm{E}(\mathrm{x}, \mathrm{y})=\left(0, \omega^{2} \mathrm{y}\right)$, a tetrajection.
If $\mathrm{a}=\mathrm{b}=0, \mathrm{c} \neq 0, \mathrm{~d}=1$, we get $\mathrm{E}(\mathrm{x}, \mathrm{y})=(0, \mathrm{cx})$,for which $\mathrm{E}^{2}=0$.
If $a=b=0, c \neq 0, d=0$, we get $E(x, y)=(0, c x+y)$, a projection.
If $a=b=0, c \neq 0, d=\omega, w e$ get $E(x, y)=(0, c x+\omega y)$, a tetrajection.
If $\mathrm{a}=\mathrm{b}=0, \mathrm{c} \neq 0, \mathrm{~d}=\omega^{2}$, then $\mathrm{E}(\mathrm{x}, \mathrm{y})=\left(0, \mathrm{cx}+\omega^{2} \mathrm{y}\right)$
Now come to the case when $\mathrm{b}=\mathrm{d}=0$.
Hence $\mathrm{A}=\mathrm{a}^{2}, \mathrm{~B}=0, \mathrm{C}=\mathrm{ac}, \mathrm{D}=0$.
Due to (1), $\mathrm{a}^{5}=\mathrm{a}^{2} \Rightarrow \mathrm{a}=0,1, \omega, \omega^{2}$
(2) gives $0=0$.(3) gives $\mathrm{ca}^{4}=\mathrm{ac} \Rightarrow \mathrm{ca}\left(\mathrm{a}^{3}-1\right)=0$

$$
\Rightarrow c=0, a=0,1, \omega, \omega^{2} .
$$

Due to (4), $0=0$.
If $b=c=d=0$, then $E(x, y)=(a x, 0)$ where $a=0,1, \omega, \omega^{2}$
Thus $E(x, y)=(0,0)$ or $(x, 0)$, a projection.
or $E(x, y)=(\omega x, 0)$, a tetrajection.
or $E(x, y)=\left(\omega^{2} x, 0\right)$, a tetrajection.
Let $\mathrm{b}=\mathrm{d}=0$ but $\mathrm{c} \neq 0$ then $\mathrm{a}=0,1, \omega, \omega^{2}$
So we have $\mathrm{E}(\mathrm{x}, \mathrm{y})=(\mathrm{o}, \mathrm{cx}) \cdot$ Then $\mathrm{E}^{2}=0$.
We also have $\mathrm{E}(\mathrm{x}, \mathrm{y})=(\mathrm{x}, \mathrm{cx})$, a projection.

$$
\begin{aligned}
& \text { also } E(x, y)=(\omega x, c x) \\
& \text { and } E(x, y)=\left(\omega^{2} x, c x\right) \text {, a tetrajection. }
\end{aligned}
$$

Case with $\mathrm{c}=0$ can be similarly dealt with.

References

(1) Chandra, P. Investigation into the theory of operators and linear spaces ph. D Thesis,Patna University,1977
(2) Chandra, P. and Tripathy, B.C. "On generalised Kothe-Toeplitz duals of some sequence spaces " , Indian J. of pure and applied Math. 33(8) (2002),13011306.
(3) Mishra, R. K." study of linear operators and related topics in Functional Analysis" Ph.D Thesis, J. P . University, chapra, 2010.
(4) Singh, L. B." Some Advancements in the theory of Linear Spaces and Linear Operators", Ph.D Thesis, Patna University, 1989
(5) Rath, D. and Tripathy, B.C.," Characterisation of certain Matrix Operators " , J. orissa Math soc.8(1989),121-134
(6) Chandra, P.:"On dual spaces of some sequence spaces", International Journal of Mathematical Sciences, BHU, Varanasi. Vol .IV ,No. 1,117-121(June 2005).

