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ABSTRACT

In this article we introduce a new type of operator called (5,2) jection in a linear space.
We investigate such operators in C?, C being the set of all complex numbers.
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1. INTRODUCTION

We are already familiar with the idea of projection. A trijection operator E has been defined
by Dr. P. Chandra in his Ph.D. thesis (P.U. 1977) titled “Investigation into the theory of
operators and linear spaces” by the relation E3= E where E is a linear operator on a linear
space L. It is a generalisation of projection operator, in the sense that every projection is a
trijection but not conversely. Dr. Rajiv Kumar Mishra in his Ph.D. thesis (J.P.U., Chapra
2010) titled ‘Study of linear operators and related topic in Functional Analysis” has defined an
operator E on a Linear space to be a tetrajection if E* = E. This also generalises projection
operator.  These concepts have led me to define E to be a (5,2)-jection if E®> = E2. Clearly it
generalises both idea of projection as well as a tetrajection

Main results

Theorem 1

Let z = (X, y) be an element in C2 where x, y € C. Let E (z) = (ax + by, cx+dy), a, b, c,
d being scalars. We find out conditions for E to be a (5, 2)-jection.

Proof :
By calculation, we find that
E?z=E (E(z) = { (a® + bc)x + (ab + bd) y, (ac + cd) x + (bc + d?) y}
= (Ax + By, Cx + Dy)

where A =a*+bc, B=ab +bd, C=ac +cd, D = bc + d?

Replacing E by E?, we see that

E%z = (A1x + By Cy X + Dyy) where
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A; = A2+ BC, B, = B (A+D), C; (A+D), D; = BC + D?

Hence,
E>,-E (E*2) = [a (A1x + B1y) +b(C1 X + D1y),c(A1 X + B1y) + d(Cix+Dyy) ]
=[(aA; +bC;)x +(aB; + bD;)y,(cA; +dC;)x +(cB; +dD; )y ]
Hence if E® = E? ,then E°z = E?z and comparing R.H.S of both,
aA;+bCi=A, aB;+bD1=B, cA;+dC,;=C, cB;+ dD;=D.

Now
aA1+bCi=A = a(A2 + BC)+bC(A+ D) =A .. (1)
aB;+bD;=B = aB(A+D)+b(BC+D?)=B ... (2)
CA1+dC;=C = c(A2+BC) + dC(A+D)=C oo (3)
cB;+dD;=D = cB(A+D)+ d(BC+D?) =D .. (4)

Equations (1) to (4) are required conditions.
Theorem 2

Let ad = bc.Show that E is a (5,2)-jection if A=a? + bc is either 0 or a or
am or aw?, o being a cube root of unity.

Proof:-

Since ad=bc, we have d =? (assume a+0)

Then A= a? +bc = a? + ad =a(a+d). so a+d=§
B =b(a+d)="",C = c(a+d)="=
dA
D=bc +d? =ad+ d =d(a+d)= —
hen A= A2 _ Az bcA? o @2tbey A3
then Ai=A? + BC= A2+ = = (-9 ==
B, — _ba a4y _ba _bata_ bA®
1= B(A+D) ==(A+ ) = Z(aA+ dA)= "2 = =0

2 3
¢ = C(A+D)= Z(A+ D)=L 2 =2

a2 a a3
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4242 42 A% dA  dA3
c+d?) = =

a2 a?

2
D1 = BC+D? = bes +
a

so due to (1),

ad3
a?

3 3
+bck = A5 (a2+ be) = A
A3 A3
= —3*A=A =>A(1—;)=0
>A =0o0rA3=ad

= A =0oraormwaor w?a

due to (2)
ab + bd% = 24 = ab A3 + bd A? =ba?A
a a a
bA(aA?+ dA?)=bA%= bA[(a+d)A? - a?]=0
= b=0orA=0or (a+d)A2=a?ie A—Z =1
a

=b=0 or A =0,3, wa, w2a.

due to (3)
3 3
cA—2+ ch—3=ﬁ =acA3 + cdA3 = cAa?
a a a

Hence as in (2),c=0 or A=0 ,a, wa, w2a.

due to (4)

3 3
b2 + d2E = 2 5 (be + d2)A® = da?A
a a a

> A= da?A = dA(A® - 2%)= 0
= d=0o0rA =0, a, wa, w2a.
Hence considering all 4 equations, common solution is

A =0, a, wa, w2a.
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Theorem 3

Let ad = bc and A=0.we show that E2 = 0 and we give a few examples of E in this
case.

Proof :-

we are given that A=0

soa2+bc=0:>d=%=-a=> a+d =0.

Also ¢ === (b#0) and b= -~ (c0)
Then B =b(a+d) =0,C = c(a+d)=0
D=bc + d? = ad + d? = d(a+d)=0.

so in this case,
—a?x
E(xy)= (ax+by,-T - ay) if b #0

and E(xy)= (ax- 22, cx-ay) (c#0)

Also E2(x,y)=(Ax+By,Cx+Dy)=(0,0).
Thus E2 = 0. clearly E> = 0=E?
We consider some examples in this case
Let a=0,then E(x,y)=(by,0).
Let a=1,then E(x,y)=(x+by, _Tx -y) (b#0)

=(x-%, cx-y) (c#0)

Further if c =1 then E(x,y)=(x-y,x-y).
Leta =1,b=1 then E(x,y) =(x+y,-x-y).
when b=1,then E(x,y) = ( ax+y,-a%x-ay)
when b=w,E(xy) =(ax+wy,-a2w?x - ay)
ifalso a=1,E(x,y)=( x+wy,-0w?X-y)

when b = w2 E(xy)=(ax+w?y,-a?wx-ay)
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similarly we may get some further examples.
Theorem 4

Let ad= bc and A=a(#0). We show that E is a projection and discuss a few examples
in this case.

Proof:-
In this case a2 +bc=a=>bc=a - a2
2
d= % =2 aa =1-a.Hence a+d = 1.

50 E(x,y)=(ax+by,=x +(1-a)y) (b#0)

(ax+ a_TaZy,cx+(1-a)y) (c#0)
Also A=a, B=b(a+d) =b, C=c(a+d)=c
D=bc+d? = ad + d?= d(a+d)=d.
Hence E?(x,y)=(Ax+By,Cx+Dy)=(ax+by,cx+dy)=E(x,y)
i.e. E2=E or E is a projection.
we consider a few examples in this case.
Let a=1, then E(%, y)= (x+by,0)
if b=0 then E(x,y)=(x,0)
ifa+b =1 then b= 1-a=d
since bc = a-a? = a(1-a) =ab, we have c=a if b+#0.

Hence E(x,y)=(ax+by, ax+by), (b#0).

x+y x+y
2’2

in particular if a=b=%,then E(xy)=(
Theorem 5

let ad=bc and A=wa. We show that E2=wE and consider a few examples.
proof:-

Here a2+ bc =wa = wa - a2
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a2
=X =2"2_ jasatd=ow (a#0)

a a

032 | (w-a)y) (b#0)

so, E(x,y)=(ax+Dby, .

wa—

(ax+22y cx+ (w-a)y)  (c#0)

c
Also B=b(a+d)=bw, C=c(a+d)=cw
D=d(a+d)=dw.

Hence E? (x,y) = (wax + wby, wcx + wdy) = w (ax + by, cx+ dy) = wE(X, y)
So E2=wE and E is not a projection.
Hence E3=wE?=w?E

E‘= w.w2E=E= E> = E2
so E is a tetrajection also.Now we discuss some examples
Let a=0 then E(x,y)=(by,wy)

Let a=w then E(x,y)=( wx+by,0)

Let a= w? then E(x,y)=( w?x +by,1_wa+( w- w?)y)
Let a= w=Db thenE(x,y)=( wx+ wy,0)
Let a= w,b= w? then E(x,y)=( wx+ w?2y,0)
Let a= w,b=0 then E(x,y)=( wXx,cx)
Theorem 6

Let ad = bc and A= w?a.We show that E2 = w?E and consider a few examples.

Proof:-
24_p2
In this case a2 +bc = w2a=bc=w2a-a?=c=—— (b#0)
w?a-a?
Alsob = (c#0).
bc w?a-a?
Also d=?= - = w?-a = a+d =w?

w?

Hence E(x,y) = (ax+by,

TC+ (02— a)y) (b#0)
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w?a—a?

(ax +( X +(w?-a)y) (c#0)

In this case B=b(a+d)=bw?, c = c w?,
D =bc + d?= w?a - a2 + (w? -a)? = w?a-a? + w - 2w?a +a?
= w - w?a=w?(w?-a) = wad
Hence E2(x,y)= (w2ax + w?by, w?cx+ w2dy)= w?E (x,y)
= E? = w?E.

clearly E is nota projection

Also E3 = w2E?2 = wE ,E4 = wE?2 =E, E5>=E?2
Thus E is a tetrajection,as well as a(5,2)-jection.
Let us consider a few examples

leta = w? then E(x,y) = (w*x + by, 0) (b#0)

= (w?x, Cx) (c#0)
leta= w then E(xy) =( wx+by,1_Tw2x + (w?-w)y) (b#0)
If further b = w then E(xy) = (wx+ wy ,(w? - w)x+ ( w? - w)y)
= (wx+y), (w? - W) (x+y)), =(x+y) (0, ®?-w).
Theorem 7
Let bc = ad, then

we come to the case when b=0 or c =0 . we also consider same examples
_Proof:-

Since bc = ad we have ad=0.so at least one of a,d is Oor both are 0.Take the case of
b=0.

So we consider two cases (i) b=0, a=0 or (ii) b=0,d=0
Leta =0, b= 0 then

Let A=0, B=0, C=cd, D=d>.
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in theorem (1),(1) and (2) are obvious.
Due to (3), cd*-cd =0 = cd(d3-1)=0
=c¢=0,d=0, 1, w, w?2
If we take a=b=c=d=0,we get E=0,zero operator.
Taking a=b=c=0,d=1 we get E(x,y) =(0,y), a projection.
If a=b=c=0, d=w we get E(x,y)= (0,wy),a tetrajection.
If a=b=c=0, d=w? we get E(x,y)= (0,w2y),a tetrajection.
If a=b=0, c#0, d=1,we get E(x,y)= (0,cx),for which E2=0.
If a=b=0, c#0, d=o0, we get E(x,y) = (0,cx+y), a projection.
If a=b=0, c#0,d=w,we get E(x,y) = (0,cx+wy), a tetrajection.
If a=b=0, c#0,d = w4 then E(x,y) = (0,cx+w?y)
Now come to the case when b=d =0.
Hence A = a2%,B =0,C =ac,D=0.
Due to (1), a®> = a2 = a=0,1,w,w?
(2) gives 0 =0 .(3) gives ca*=ac = ca(a®-1)=0
= ¢=0,a=0, 1,w0,w%
Due to (4),0 =0.
If b=c =d =0,then E(x,y)= (ax,0) where a=0,1,w,w?
Thus E(x,y)= (0,0) or (x,0), a projection.
or E(xy)= (wx,0),a tetrajection.
or E(xy) = (w?x,0), a tetrajection.
Let b=d=0 but c#0 then a =0, 1,0,w?
So we have E(x,y) = (0,cx).Then E2 = 0.
We also have E(x,y)= (x,cx), a projection.
also E(x,y) = (wx,cx)

and E(x,y) = (w?x,cx), a tetrajection.
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Case with c=0 can be similarly dealt with.
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