On a special type of Operator Called (5,2) Jection

Dhananjay Kumar

Research Scholar, J. P. University, Chapra Bihar-841301

ABSTRACT

In this article we introduce a new type of operator called (5,2) jection in a linear space. We investigate such operators in C^2 , C being the set of all complex numbers.

Key words: (5,2) jection, projection, trijection, tetrajetion.

1. INTRODUCTION

We are already familiar with the idea of projection. A trijection operator E has been defined by Dr. P. Chandra in his Ph.D. thesis (P.U. 1977) titled "Investigation into the theory of operators and linear spaces" by the relation $E^3 = E$ where E is a linear operator on a linear space L. It is a generalisation of projection operator, in the sense that every projection is a trijection but not conversely. Dr. Rajiv Kumar Mishra in his Ph.D. thesis (J.P.U., Chapra 2010) titled 'Study of linear operators and related topic in Functional Analysis" has defined an operator E on a Linear space to be a tetrajection if $E^4 = E$. This also generalises projection These concepts have led me to define E to be a (5,2)-jection if $E^5 = E^2$. Clearly it operator. generalises both idea of projection as well as a tetrajection

Main results

Theorem 1

Let z = (x, y) be an element in C² where $x, y \in C$. Let E(z) = (ax + by, cx+dy), a, b, c, d being scalars. We find out conditions for E to be a (5, 2)-jection.

Proof :

By calculation, we find that

$$E^{2}z = E(E(z) = \{ (a^{2} + bc)x + (ab + bd) y, (ac + cd) x + (bc + d^{2}) y \}$$

= (Ax + By, Cx + Dy)

where $A = a^2 + bc$, B = ab + bd, C = ac + cd, $D = bc + d^2$

Replacing E by E^2 , we see that

$$A_1 = A^2 + BC, B_1 = B (A+D), C_1 (A+D), D_1 = BC + D^2$$

Hence,

$$E^{5}_{Z=E} (E^{4}z) = [a (A_{1}x + B_{1}y) + b(C_{1}x + D_{1}y), c(A_{1}x + B_{1}y) + d(C_{1}x + D_{1}y)]$$

=[(aA_{1}+bC_{1})x + (aB_{1}+bD_{1})y, (cA_{1}+dC_{1})x + (cB_{1}+dD_{1})y]

Hence if $E^5 = E^2$, then $E^5 z = E^2 z$ and comparing R.H.S of both,

$$aA_1 + bC_1 = A$$
, $aB_1 + bD_1 = B$, $cA_1 + dC_1 = C$, $cB_1 + dD_1 = D$.

Now

Theorem 2

Let ad = bc.Show that E is a (5,2)-jection if $A = a^2 + bc$ is either 0 or a or $a\omega$ or $a\omega^2$, ω being a cube root of unity.

Proof:-

Since ad=bc, we have
$$d = \frac{bc}{a}$$
 (assume $a \neq 0$)

Then
$$A = a^2 + bc = a^2 + ad = a(a+d)$$
. so $a+d = \frac{A}{a}$

$$B = b(a+d) = \frac{bA}{a}, C = c(a+d) = \frac{cA}{a}$$

$$D = bc + d^2 = ad + d = d(a+d) = \frac{dA}{a}$$

then $A_1 = A^2 + BC = A^2 + \frac{bcA^2}{a^2} = A^2(\frac{a^2 + bc}{a^2}) = \frac{A^3}{a^2}.$

$${}^{B}{}_{1} = B(A+D) = \frac{bA}{a}(A+\frac{dA}{a}) = \frac{bA}{a^{2}}(aA+dA) = \frac{bA^{2}}{a^{2}} \cdot \frac{A}{a} = \frac{bA^{3}}{a^{3}}$$
$${}^{C}{}_{1} = C(A+D) = \frac{cA}{a}(A+\frac{dA}{a}) = \frac{ca^{2}}{a^{2}} \cdot \frac{A}{a} = \frac{cA^{3}}{a^{3}}$$

$$D_1 = BC + D^2 = bc\frac{A^2}{a^2} + \frac{d^2A^2}{a^2} = \frac{A^2}{a^2}(bc + d^2) = \frac{A^2}{a^2} \cdot \frac{dA}{a} = \frac{dA^3}{a^3}$$

so due to (1),

$$\frac{aA^3}{a^2} + bc\frac{A^3}{a^3} = A \Rightarrow \frac{A^3}{a^3}(a^2 + bc) = A$$
$$\Rightarrow \frac{A^3}{a^3} \cdot A = A \Rightarrow A(1 - \frac{A^3}{a^3}) = 0$$
$$\Rightarrow A = 0 \text{ or } A^3 = a^3$$

 $\Rightarrow A = 0$ or a or ωa or $\omega^2 a$

due to (2)

$$ab\frac{A^{3}}{a^{3}} + bd\frac{A^{3}}{a^{3}} = \frac{bA}{a} \Rightarrow ab A^{3} + bd A^{3} = ba^{2}A$$
$$bA(aA^{2} + dA^{2}) = bA^{2} \Rightarrow bA[(a+d)A^{2} - a^{2}] = 0$$
$$\Rightarrow b=0 \text{ or } A=0 \text{ or } (a+d)A^{2} = a^{2} \text{ i.e } \frac{A^{3}}{a^{3}} = 1$$
$$\Rightarrow b=0 \text{ or } A = 0, a, \omega a, \omega^{2}a.$$

due to (3)

$$c\frac{A^{3}}{a^{2}}+dc\frac{A^{3}}{a^{3}}=\frac{cA}{a}\Rightarrow acA^{3}+cdA^{3}=cAa^{2}$$

Hence as in (2),c=0 or A=0 ,a, ωa , $\omega^2 a$.

due to (4)

$$\operatorname{cb}\frac{A^3}{a^3} + \operatorname{d}^2\frac{A^3}{a^3} = \frac{dA}{a} \Rightarrow (\operatorname{bc} + \operatorname{d}^2)A^3 = \operatorname{da}^2A$$

$$\Rightarrow \frac{dA}{a} \bullet A^3 = da^2 A \Rightarrow dA(A^3 - a^3) = 0$$
$$\Rightarrow d = 0 \text{ or } A = 0, a, \omega a, \omega^2 a.$$

Hence considering all 4 equations, common solution is

A =0, a, ωa,
$$ω^2$$
a.

<u>Theorem 3</u>

Let ad = bc and A=0.we show that $E^2 = 0$ and we give a few examples of E in this case.

<u>Proof :-</u>

we are given that A = 0

so
$$a^2 + bc = 0 \Rightarrow d = \frac{bc}{a} = -a \Rightarrow a + d = 0.$$

Also
$$c = -\frac{-a^2}{b}$$
 (b \neq 0) and $b = -\frac{-a^2}{c}$ (c \neq 0)

Then B = b(a+d) = 0, C = c(a+d) = 0

$$D = bc + d^2 = ad + d^2 = d(a+d)=0.$$

so in this case,

$$E(x,y) = (ax+by, -\frac{-a^2x}{b} - ay) \text{ if } b \neq 0$$

and
$$E(x,y) = (ax - \frac{a^2y}{c}, cx - ay)$$
 $(c \neq 0)$

Also
$$E^2(x,y) = (Ax+By,Cx+Dy) = (0,0)$$
.

Thus
$$E^2 = 0$$
. clearly $E^5 = 0 = E^2$

We consider some examples in this case

Let
$$a=0$$
, then $E(x,y)=(by,0)$.

Let a=1,then E(x,y)=(x+by, $\frac{-x}{b}$ - y) (b \neq 0)

$$=(x-\frac{y}{c}, cx-y) \quad (c \neq 0)$$

Further if c = 1 then E(x,y) = (x-y,x-y).

Let
$$a = 1, b = 1$$
 then $E(x,y) = (x+y, -x-y)$.

when
$$b=1$$
, then $E(x,y) = (ax+y, -a^2x-ay)$

when
$$b=\omega, E(x,y) = (ax+\omega y, -a^2\omega^2 x - ay)$$

if also a=1,E(x,y)=($x+\omega y,-\omega^2 x-y$)

when $b = \omega^2 E(x,y) = (ax + \omega^2 y, -a^2 \omega x - ay)$

similarly we may get some further examples.

Theorem 4

Let ad = bc and $A = a(\neq 0)$. We show that E is a projection and discuss a few examples in this case.

Proof:-

In this case $a^2 + bc = a \Rightarrow bc = a - a^2$ $d = \frac{bc}{a} = \frac{a - a^2}{a} = 1$ -a.Hence a + d = 1. so $E(x,y) = (ax + by, \frac{a - a^2}{b}x + (1 - a)y) (b \neq 0)$ $(ax + \frac{a - a^2}{c}y, cx + (1 - a)y) (c \neq 0)$ Also A = a, B = b(a + d) = b, C = c(a + d) = c $D = bc + d^2 = ad + d^2 = d(a + d) = d$. Hence $E^2(x,y) = (Ax + By, Cx + Dy) = (ax + by, cx + dy) = E(x,y)$

i.e. $E^2 = E$ or E is a projection.

we consider a few examples in this case.

Let
$$a=1$$
, then $E(x, y) = (x+by,0)$

if b=0 then E(x,y)=(x,0)

if
$$a+b = 1$$
 then $b=1-a=d$

since $bc = a - a^2 = a(1-a) = ab$, we have c = a if $b \neq 0$.

Hence $E(x,y) = (ax+by, ax+by), (b \neq 0)$.

in particular if $a=b=\frac{1}{2}$, then $E(x,y)=(\frac{x+y}{2},\frac{x+y}{2})$

<u>Theorem 5</u>

let ad=bc and A= ω a. We show that E²= ω E and consider a few examples.

proof:-

Here $a^2 + bc = \omega a \Rightarrow \omega a - a^2$

$$d = \frac{bc}{a} = \frac{\omega a - a^2}{a} = \omega - a \Rightarrow a + d = \omega \quad (a \neq 0)$$

so, E(x,y)=(ax+by,
$$\frac{\omega a-a^2}{b}x+(\omega -a)y)$$
 (b≠0)

$$(ax + \frac{\omega a - a^2}{c}y, cx + (\omega - a)y)$$
 (c≠0)

Also $B=b(a+d)=b\omega$, $C=c(a+d)=c\omega$

$$D=d(a+d)=d\omega$$
.

Hence $E^2(x, y) = (\omega ax + \omega by, \omega cx + \omega dy) = \omega (ax + by, cx + dy) = \omega E(x, y)$

- So $E^2 = \omega E$ and E is not a projection.
- Hence $E^3 = \omega E^2 = \omega^2 E$

$$E^4 = \omega . \omega^2 E = E \Rightarrow E^5 = E^2$$

so E is a tetrajection also.Now we discuss some examples

Let a=0 then E(x,y)=(by,
$$\omega$$
y)
Let a= ω then E(x,y)=(ω x+by,0)
Let a= ω^2 then E(x,y)=(ω^2 x+by, $\frac{1-\omega}{b}$ x+(ω - ω^2)y)
Let a= ω =b thenE(x,y)=(ω x+ ω y,0)
Let a= ω ,b= ω^2 then E(x,y)=(ω x+ ω^2 y,0)
Let a= ω ,b=0 then E(x,y)=(ω x,cx)

Theorem 6

Let ad = bc and $A = \omega^2 a$. We show that $E^2 = \omega^2 E$ and consider a few examples.

Proof:-

In this case
$$a^2 + bc = \omega^2 a \Rightarrow bc = \omega^2 a - a^2 \Rightarrow c = \frac{\omega^2 a - a^2}{b}$$
 (b≠0)

Also b = $\frac{\omega^2 a - a^2}{c}$ (c \neq 0).

Also $d = \frac{bc}{a} = \frac{\omega^2 a - a^2}{a} = \omega^2 - a \Rightarrow a + d = \omega^2$.

Hence $E(x,y) = (ax+by, \frac{\omega^2 a - a^2}{b}x + (\omega^2 - a)y) \quad (b \neq 0)$

$$(ax + (\frac{\omega^2 a - a^2}{c}, cx + (\omega^2 - a)y) \quad (c \neq 0)$$

In this case
$$B=b(a+d)=b\omega^2$$
, $c = c \omega^2$,

$$D = bc + d^{2} = \omega^{2}a - a^{2} + (\omega^{2} - a)^{2} = \omega^{2}a - a^{2} + \omega - 2\omega^{2}a + a^{2}$$
$$= \omega - \omega^{2}a = \omega^{2}(\omega^{2} - a) = \omega^{2}d$$

Hence $E^2(x,y) = (\omega^2 a x + \omega^2 b y, \omega^2 c x + \omega^2 d y) = \omega^2 E(x, y)$

$$\Rightarrow E^2 = \omega^2 E.$$

clearly E is not a projection

Also
$$E^{3} = \omega^{2}E^{2} = \omega E$$
, $E^{4} = \omega E^{2} = E$, $E^{5} = E^{2}$

Thus E is a tetrajection, as well as a(5,2)-jection.

Let us consider a few examples

let
$$a = \omega^2$$
 then $E(x, y) = (\omega^2 x + by, 0)$ ($b \neq 0$)
= $(\omega^2 x, cx)$ ($c \neq 0$)

let
$$a = \omega$$
 then $E(x,y) = (\omega x + by, \frac{1-\omega^2}{b}x + (\omega^2 - \omega)y)$ (b≠0)

If further b =
$$\omega$$
 then E(x,y) = ($\omega x + \omega y$, $(\omega^2 - \omega)x + (\omega^2 - \omega)y$)

$$= (\omega(x+y), (\omega^2 - \omega)(x+y)), = (x+y) (\omega, \omega^2 - \omega).$$

Theorem 7

Let bc = ad, then

we come to the case when b=0 or c=0. we also consider same examples

Proof:-

Since bc = ad we have ad=0.so at least one of a,d is 0or both are 0.Take the case of b=0.

So we consider two cases (i) b=0, a=0 or (ii) b=0,d=0

Let a = 0, b = 0 then

Let A=0, B=0, C=cd, $D=d^2$.

in theorem (1),(1) and (2) are obvious.

Due to (3), $cd^4 - cd = 0 \Rightarrow cd(d^3 - 1) = 0$

 \Rightarrow c=0, d=0, 1, ω , ω^2

If we take a=b=c=d=0,we get E=0,zero operator.

Taking a=b=c=0, d=1 we get E(x,y) = (0,y), a projection.

If a=b=c=0, $d=\omega$ we get $E(x,y)=(0,\omega y)$, a tetrajection.

If a=b=c=0, $d=\omega^2$ we get $E(x,y)=(0,\omega^2 y)$, a tetrajection.

If a=b=0, $c\neq 0$, d=1,we get E(x,y)=(0,cx),for which $E^2=0$.

If a=b=0, $c\neq 0$, d=o, we get E(x,y) = (0,cx+y), a projection.

If a=b=0, $c\neq 0$, $d=\omega$, we get $E(x,y) = (0, cx+\omega y)$, a tetrajection.

If a=b=0, $c\neq 0$, $d = \omega^2$, then $E(x,y) = (0, cx+\omega^2 y)$

Now come to the case when b=d=0.

Hence $A = a^2, B = 0, C = ac, D = 0$.

Due to (1), $a^5 = a^2 \Rightarrow a=0,1,\omega,\omega^2$

(2) gives
$$0 = 0$$
 .(3) gives $ca^4 = ac \Rightarrow ca(a^3 - 1) = 0$

$$\Rightarrow$$
 c=0,a=0, 1, ω , ω^{2} .

Due to (4), 0 = 0.

If b=c=d=0,then E(x,y)=(ax,0) where $a=0,1,\omega,\omega^2$

Thus E(x,y) = (0,0) or (x,0), a projection.

or $E(x,y) = (\omega x, 0)$, a tetrajection.

or $E(x,y) = (\omega^2 x, 0)$, a tetrajection.

Let b=d=0 but $c\neq 0$ then $a=0, 1, \omega, \omega^2$

So we have E(x,y) = (o,cx). Then $E^2 = 0$.

We also have E(x,y) = (x,cx), a projection.

also $E(x,y) = (\omega x,cx)$

and $E(x,y) = (\omega^2 x, cx)$, a tetrajection.

Case with c=0 can be similarly dealt with.

References

- (1) Chandra, P. Investigation into the theory of operators and linear spaces ph. D Thesis,Patna University,1977
- (2) Chandra, P. and Tripathy, B.C. "On generalised Kothe-Toeplitz duals of some sequence spaces ", Indian J. of pure and applied Math. 33(8) (2002),1301-1306.
- (3) Mishra, R. K." study of linear operators and related topics in Functional Analysis" Ph.D Thesis, J. P. University, chapra, 2010.
- (4) Singh, L. B." Some Advancements in the theory of Linear Spaces and Linear Operators", Ph.D Thesis, Patna University, 1989
- (5) Rath, D. and Tripathy, B.C.," Characterisation of certain Matrix Operators ", J. orissa Math soc.8(1989),121-134
- (6) Chandra, P.:"On dual spaces of some sequence spaces", International Journal of Mathematical Sciences, BHU, Varanasi. Vol .IV ,No. 1,117-121(June 2005).

