New techniques for solving $2^{\text {nd }}$ order ordinary differential equations

${ }^{1}$ Chintan L. Trada, ${ }^{2}$ Harsh M. Savaliya, ${ }^{3}$ Tushar J. Bhatt
${ }^{1}$ Student of Computer Engineering, ${ }^{2}$ Student of Computer Engineering, ${ }^{3}$ Assistant Professor in Mathematics ${ }^{1}$ Computer Engineering,
${ }^{1}$ Atmiya Instituted of Technology and Science, Rajkot(Gujarat),India.

Abstract: Differential Equation $f(D) y=R(x)$ where $f(D)=(D+m)^{2} m \in R$ and we assume that $R(x)$ is $\cos n x$ OR $\sin n x$ where $n \in R$. The general solution of above D.E. like $(D+m)^{2}=\cos n x$ and $(\mathrm{D}+\mathrm{m})^{2}=\sin \mathrm{nx}$ is of the form G.S. $=$ C.F. + P.I. Where C.F. is obtain from usual way and
(i) P. I. $=\left[\frac{2 m n \sin n x-\left[n^{2}-m^{2}\right] \cos n x}{(2 m n)^{2}+\left[n^{2}-m^{2}\right]}\right]$ for cosine function and (ii) P. I. $=-\left[\frac{2 m n \cos n x+\left[n^{2}-m^{2}\right] \sin n x}{(2 m n)^{2}+\left[n^{2}-m^{2}\right]}\right]$ for sine function.

Index Terms - Differential Equation, Order \& Degree of differential equation, General Solution, Particular Solution, Complementary Function, Particular Integral.

I. Introduction

Differential Equation (D.E.):
An equation involving differential equation and independent and dependent variable is called a differential equation. If a differential involves ordinary coefficients only, it is called ordinary differential equation and if it involves partial derivatives it is called partial Differential Equation.

Order \& Degree of D.E.:

The order of differential equation is the order of highest derivative in given differential equation.
Degree of differential equation is the degree of highest derivative after removing fractions \& radicals.

General Solution (G.S.):

"If $y_{1} \& y_{2}$ are two solution of the differential equation $\frac{d^{n} y}{d x^{n}}+a_{1} \frac{d^{n-1} y}{d^{n}-1}+a_{2} \frac{d^{n-2} y}{d^{n-2}}+\ldots+a_{n} y=0$
Then $c_{1} y_{1}+c_{2} y_{2}$ is also its solution where c_{1} and c_{2} are arbitrary constant." In general, the general solution differential equation of order n will have n arbitrary constants, therefore it follow that if $\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}$ are n independent solution of the $\mathrm{eq}^{\mathrm{n}}(1)$ then $u=c_{1} y_{1}+c_{2} y_{2}+\ldots+c_{n} y_{n}$
is the complete General Solution of $\mathrm{eq}^{\mathrm{n}}(1)$.

Particular Solution:

The solution obtained from the General Solution by giving particular values to the arbitrary constant is called Particular Solution.

Complementary Function (C.F.):

 operator form, is $\boldsymbol{f}(\boldsymbol{D}) \boldsymbol{y}=\mathbf{0}$. Sinice $f(D)$ is a polynomial in D of degree n and D behaves the same as an algebraic quantity we can, in general, factorize $f(D)$ into n linear factors and $\boldsymbol{f}(\boldsymbol{D}) \boldsymbol{y}=\mathbf{0}$ can be written as $\left(D-m_{1}\right)\left(D-m_{2}\right) \ldots\left(D-m_{n}\right) y=0$ Where $m_{1}, m_{2}, \ldots, m_{n}$ are the root of the Auxiliary Equation(A.E.) $f(m)=0$.

Particular Integral (P.I.):

Before discussing ways to find Particular
Integral (P.I.) we have to introduce inverse operator $\frac{1}{\mathrm{f}(\mathrm{D})}$.
$\frac{1}{\mathrm{f}(\mathrm{D})} X(x)$ is that function of x which when operated upon by $f(D)$ gives $X(x)$ only. Therefore $\frac{1}{\mathrm{f}(\mathrm{D})} X$ satisfies the equation $f(D) y=X$ and hence it is the Particular Integral (P.I.) of equation $f(D) y=X$
and is symbolically written as $Y p=\frac{1}{f(D)} X$. For the Above definition General Solution (G.S.), Complementary Function (C.F.), Particular Solution (P.I.) is relation of G.S. $=\boldsymbol{C} . \boldsymbol{F} .+\boldsymbol{P} . \boldsymbol{I}$.

2. Known Results:-

(A) $\quad(D+3)^{2}=\cos 3 x$

By General Method:-

$$
\begin{aligned}
\text { P.I. } & =\frac{1}{f(D)} R(x) \\
& =\frac{1}{(D+3)^{2}} \cos (3 x) \\
& =\frac{1}{(D+3)(D+3)} \cos (3 x) \\
& =\frac{1}{(D)+3)}\left[\frac{1}{(D+3)} \cos (3 x)\right]
\end{aligned}
$$

$$
=\frac{1}{(D+3)}\left[e^{-3 x} \int e^{3 x} \cos (3 x) d x\right]
$$

$$
=\frac{1}{D+3}\left[\left[e^{-3 x} * \frac{e^{3 x}}{18}[3 \cos (3 x)+3 \sin (3 x)]\right]\right.
$$

$$
=\frac{1}{D+3}\left[\frac{1}{6}[\sin (3 x)+\cos (3 x)]\right]
$$

$$
=\frac{1}{6}\left[\frac{1}{D+3} \sin (3 x)+\frac{1}{D+3} \cos (3 x)\right]
$$

$$
=\frac{1}{6}\left[e^{-3 x} \int e^{3 x} \sin (3 x) d x+e^{-3 x} \int e^{3 x} \cos (3 x) d x\right]
$$

$$
=\frac{1}{6}\left[\frac{1}{18}[3 \sin (3 x)-3 \cos (3 x)]+\frac{1}{18}[3 \cos (3 x)+3 \sin (3 x)]\right]
$$

$$
=\frac{1}{36}[\sin (3 x)-\cos (3 x)+\cos (3 x)+\sin (3 x)]
$$

$$
=\frac{2 \sin (3 x)}{36}
$$

$$
=\frac{\sin (3 x)}{18}
$$

By Shortcut Method:-

$$
\begin{aligned}
\text { P.I } & =\frac{1}{f(D)} R(x) \\
& =\frac{1}{(D+3)^{2}} \cos (3 x) \\
& =\frac{1}{D^{2}+6 D+9} \cos (3 x) \\
& =\frac{1}{6 D} \cos (3 x)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{6} \int \cos (3 x) \\
& =\frac{1}{6} \frac{\sin (3 x)}{3} \\
& =\frac{\sin (3 x)}{18}
\end{aligned}
$$

(B) $\quad(D+3)^{2}=\sin (3 x)$

By General Method:-

$$
\text { P.I. } \begin{aligned}
& =\frac{1}{f(D)} R(x) \\
& =\frac{1}{(D+3)(D+3)} \sin (3 x) \\
& =\frac{1}{D+3}\left[\frac{1}{D+3} \sin (3 x)\right] \\
& =\frac{1}{D+3}\left[e^{-3 x} \int e^{3 x} \sin (3 x) d x\right] \\
& =\frac{1}{D+3}\left[\frac{e^{-3 x} e^{3 x}}{18}[3 \sin (3 x)-3 \cos (3 x)]\right] \\
& =\frac{1}{6} \frac{1}{D+3}[\sin (3 x)-\cos (3 x)] \\
& =\frac{1}{6}\left[\frac{1}{D+3} \sin (3 x)-\frac{1}{D+3} \cos (3 x)\right] \\
& =\frac{1}{6}\left[e^{-3 x} \int e^{3 x} \sin (3 x) d x-e^{-3 x} \int e^{3 x} \cos (3 x) d x\right] \\
& =\frac{1}{6}\left[\frac{1}{18}[5 \sin (3 x) 3 \cos (3 x)]-\frac{1}{18}[3 \cos (3 x)+3 \sin (3 x)]\right] \\
& =\frac{1}{36}[\sin (3 x)-\cos (3 x)-\cos (3 x)-\sin (3 x)] \\
& =\frac{1}{36}[-2 \cos (3 x)] \\
& =-\frac{\cos 3 x}{18}
\end{aligned}
$$

By Shortcut Method:-

$$
\begin{aligned}
\text { P.I } & =\frac{1}{f(D)} R(x) \\
& =\frac{1}{(D+3)^{3}} \sin (3 x) \\
& =\frac{1}{D^{2}+6 D+9} \sin (3 x) \\
& =\frac{1}{6 D} \sin (3 x) \\
& =\frac{1}{6} \int \sin (3 x) d x \\
& =-\frac{\cos (3 x)}{18}
\end{aligned}
$$

4. Main Result

1.) $(D+m)^{2}=\cos n x \quad$ where $m, n \in R$

$$
\text { P.I }=\frac{2 m n s i n n x-\left(\mathbf{n}^{2}-\mathbf{m}^{2}\right) \cos n \mathrm{x}}{(2 \mathrm{mn})^{2}+\left(\mathbf{n}^{2}-\mathbf{m}^{2}\right)^{2}}
$$

2.) $(\mathrm{D}+\mathrm{m})^{2}=\operatorname{sinn} x \quad$ where $m, n \in R$

$$
\text { P.I }=-\left[\frac{2 m n \operatorname{cosnx}-\left(\mathbf{n}^{2}-\mathbf{m}^{2}\right) \operatorname{sinnx}}{(2 m n)^{2}+\left(\mathbf{n}^{2}-\mathbf{m}^{2}\right)^{2}}\right]
$$

* Examples:-

1.) $(D+2)^{2}=\cos 3 x$

$>$ By Shortcut Method:

$$
\begin{aligned}
\text { P.I } & =\frac{1}{f(D)} R(x) \\
& =\frac{1}{D^{2}+4 D+4} \cos (3 x) \\
& =\frac{1}{4 D-5} \cos (3 x) \\
& =\frac{4 D+5}{16 D^{2}-25} \cos (3 x) \\
& =\frac{4 D+5}{-169} \cos (3 x) \\
& =\frac{12 \sin (3 x)}{169}-\frac{5 \cos (3 x)}{169}
\end{aligned}
$$

2.) $(D+2)^{2}=\cos (-3) x$
> By Shortcut Method:

$$
\begin{aligned}
\text { P.I } & =\frac{1}{f(D)} R(x) \\
& =\frac{1}{D^{2}+4 D+4} \cos (-3 x) \\
& =\frac{1}{4 D-5} \cos (3 x) \\
& =\frac{4 D+5}{16 D^{2}-25} \cos (3 x) \\
& =\frac{4 D+5}{-169} \cos (3 x) \\
& =\frac{12 \sin (3 x)}{169}-\frac{5 \cos (3 x)}{169}
\end{aligned}
$$

By New Derived Results:

$$
\mathrm{m}=2 \text { and } \mathrm{n}=3
$$

P.I $=\frac{2(2)(3) \sin (3 x)-\left[(3)^{2}-(2)^{2}\right] \cos (3 x)}{[2(2)(3)]^{2}+\left[(3)^{2}-(2)^{2}\right]}$

$$
=\frac{12 \sin (3 x)-5 \cos (3 x)}{169}
$$

$$
=\frac{12 \sin (3 x)}{169}-\frac{5 \cos (3 x)}{169}
$$

By New Derived Results:

$\mathrm{m}=2$ and $\mathrm{n}=-3$
P.I $=\frac{2(2)(-3) \sin (-3 x)-\left[(-3)^{2}-(2)^{2}\right] \cos (-3 x)}{[2(2)(-3)]^{2}+\left[(-3)^{2}-(2)^{2}\right]}$
$=\frac{12 \sin (3 x)-5 \cos (3 x)}{169}$
$=\frac{12 \sin (3 x)}{169}-\frac{5 \cos (3 x)}{169}$

By New Derived Results:

$$
\mathrm{m}=-2 \text { and } \mathrm{n}=3
$$

P.I $=\frac{2(-2)(3) \sin (3 x)-\left[(3)^{2}-(-2)^{2}\right] \cos (3 x)}{[2(2)(3)]^{2}+\left[(3)^{2}-(2)^{2}\right]}$
$=\frac{-12 \sin (3 x)-5 \cos (3 x)}{169}$

$$
\begin{array}{ll}
=-\frac{4 D-5}{16 D^{2}-25} \cos (3 x) & =-\frac{12 \sin (3 x)}{169}-\frac{5 \cos (3 x)}{169} \\
=-\frac{4 D+5}{-169} \cos (3 x) & \\
=-\frac{12 \sin (3 x)}{169}-\frac{5 \cos (3 x)}{169} &
\end{array}
$$

4.) $(D-2)^{2}=\cos (-3) x$

By Shortcut Method:

$$
\begin{aligned}
\text { P.I } & =\frac{1}{f(D)} R(x) \\
& =\frac{1}{D^{2}-4 D+4} \cos (-3 x) \\
& =\frac{1}{-4 D-5} \cos (3 x) \\
& =-\frac{4 D-5}{16 D^{2}-25} \cos (3 x) \\
& =-\frac{4 D+5}{-169} \cos (3 x) \\
& =-\frac{12 \sin (3 x)}{169}-\frac{5 \cos (3 x)}{169}
\end{aligned}
$$

5.) $(D+2)^{2}=\sin 3 x$

By Shortcut Method:

$$
\begin{aligned}
P . I & =\frac{1}{f(D)} R(x) \\
& =\frac{1}{D^{2}+4 D+4} \sin (3 x) \\
& =\frac{1}{4 D-5} \sin (3 x) \\
& =\frac{4 D+5}{16 D^{2}-25} \sin (3 x) \\
& =\frac{4 D+5}{-169} \sin (3 x) \\
& =-\left[\frac{12 \cos (3 x)}{169}+\frac{5 \sin (3 x)}{169}\right]
\end{aligned}
$$

By New Derived Results:

$m=-2$ and $n=-3$
P.I $=\frac{2(-2)(-3) \sin (-3 x)-\left[(-3)^{2}-(-2)^{2}\right] \cos (-3 x)}{[2(2)(3)]^{2}+\left[(3)^{2}-(2)^{2}\right]}$
$=\frac{12 \sin (-3 x)-5 \cos (-3 x)}{169}$
$=-\frac{12 \sin (3 x)}{169}-\frac{5 \cos (3 x)}{169}$

By New Derived Results:
$\mathrm{m}=2$ and $\mathrm{n}=3$
P.I $=-\left[\frac{2(2)(3) \cos (3 \mathrm{x})+\left[(3)^{2}-(2)^{2}\right] \sin (3 \mathrm{x})}{[2(2)(3)]^{2}+\left[(3)^{2}-(2)^{2}\right]}\right]$
$=-\left[\frac{12 \cos (3 x)+5 \sin (3 x)}{169}\right]$
$=-\left[\frac{12 \cos (3 \mathrm{x})}{169}+\frac{5 \sin (3 \mathrm{x})}{169}\right]$
6.) $(D+2)^{2}=\sin (-3) x$
$>$ By Shortcut Method:

$$
\begin{aligned}
P . I & =\frac{1}{f(D)} R(x) \\
& =\frac{1}{D^{2}+4 D+4} \sin (-3 x) \\
& =\frac{1}{4 D-5} \sin (-3 x) \\
& =\frac{4 D+5}{16 D^{2}-25} \sin (-3 x)
\end{aligned}
$$

By New Derived Results:

$m=2$ and $n=-3$
P.I $=-\left[\frac{2(2)(-3) \cos (-3 x)+\left[(-3)^{2}-(2)^{2}\right] \sin (-3 x)}{[2(2)(-3)]^{2}+\left[(-3)^{2}-(2)^{2}\right]}\right]$
$=-\left[\frac{-12 \cos (-3 \mathrm{x})+5 \sin (-3 \mathrm{x})}{169}\right]$
$=\frac{12 \cos (3 x)}{169}+\frac{5 \sin (3 x)}{169}$

$$
\begin{aligned}
& =\frac{4 \mathrm{D}+5}{-169} \sin (-3 x) \\
& =\frac{12 \cos (3 x)}{169}+\frac{5 \sin (3 x)}{169}
\end{aligned}
$$

7.) $(D-2)^{2}=\sin 3 x$
$>$ By Shortcut Method:

$$
\begin{aligned}
\text { P.I } & =\frac{1}{f(D)} R(x) \\
& =\frac{1}{D^{2}-4 D+4} \sin (3 x) \\
& =\frac{1}{-4 D-5} \sin (3 x) \\
& =\frac{-4 D+5}{16 D^{2}-25} \sin (3 x) \\
& =\frac{-4 D+5}{-169} \sin (3 x) \\
& =\frac{12 \cos (3 x)}{169}-\frac{5 \sin (3 x)}{169}
\end{aligned}
$$

8.) $(D-2)^{2}=\sin (-3) x$

> By Shortcut Method:

$$
\begin{aligned}
\text { P.I } & =\frac{1}{f(D)} R(x) \\
& =\frac{1}{D^{2}-4 D+4} \sin (-3 x) \\
& =\frac{1}{-4 D-5} \sin (-3 x) \\
& =\frac{-4 D+5}{16 D^{2}-25} \sin (-3 x) \\
& =\frac{-4 D+5}{-169} \sin (-3 x) \\
& =-\frac{12 \cos (3 x)}{169}+\frac{5 \sin (3 x)}{169}
\end{aligned}
$$

By New Derived Results:

$$
\mathrm{m}=-2 \text { and } \mathrm{n}=3
$$

P.I $=-\left[\frac{2(-2)(3) \cos (3 x)+\left[(3)^{2}-(-2)^{2}\right] \sin (3 x)}{[2(-2)(3)]^{2}+\left[(3)^{2}-(-2)^{2}\right]}\right]$
$=-\left[\frac{-12 \cos (3 \mathrm{x})+5 \sin (3 \mathrm{x})}{169}\right]$
$=\frac{12 \cos (3 x)}{169}-\frac{5 \sin (3 x)}{169}$

By New Derived Results:
$m=-2$ and $n=-3$

$$
\begin{aligned}
\text { P.I } & =-\left[\frac{2(-2)(-3) \cos (-3 x)+\left[(-3)^{2}-(-2)^{2}\right] \sin (-3 x)}{[2(-2)(3)]^{2}+\left[(3)^{2}-(-2)^{2}\right]}\right] \\
& =-\left[\frac{12 \cos (3 x)-5 \sin (3 x)}{169}\right] \\
& =\frac{-12 \cos (3 x)}{169}+\frac{5 \sin (3 x)}{169}
\end{aligned}
$$

5. Mathematical Derivation
 \rightarrow For COSINE

$$
\begin{gathered}
(D+m)^{2}=\cos n x \\
\text { P.I. }=\frac{2 m n \sin n x-\left[n^{2}-m^{2}\right] \cos n x}{(2 m n)^{2}-\left(n^{2}-m^{2}\right)^{2}}
\end{gathered}
$$

Step 1:- $\mathrm{n}=1=\mathrm{m}$

$$
(D+1)^{2}=\cos x
$$

By Shortcut Method:

P. $I=\frac{1}{f(D)} R(x)$

By New Derived Results:
$\mathrm{m}=1$ and $\mathrm{n}=1$

$$
\left.\begin{array}{lr}
\hline=\frac{1}{\mathrm{D}^{2}+2 \mathrm{D}+1} \cos (\mathrm{x}) & \text { P.I }=\frac{2(1)(1) \sin (\mathrm{x})-\left[(1)^{2}-(1)^{2}\right] \cos (\mathrm{x})}{[2(1)(1)]^{2}+\left[(1)^{2}-(1)^{2}\right]} \\
=\frac{1}{2 \mathrm{D}} \cos (\mathrm{x}) & \\
=\frac{2 \sin (\mathrm{x})}{4} \\
=\frac{1}{2} \sin (\mathrm{x}) &
\end{array}\right) \frac{1}{2} \sin (\mathrm{x})
$$

Step 2:- $\quad \mathrm{m}=\mathrm{k}=\mathrm{n}$
To suppose $(\mathrm{D}+\mathrm{k})^{2}=\cos \mathrm{kx}$

> By Shortcut Method:

$$
\begin{aligned}
\text { P.I } & =\frac{1}{f(\mathrm{D})} \mathrm{R}(\mathrm{x}) \\
& =\frac{1}{\mathrm{D}^{2}+2 \mathrm{kD}+\mathrm{k}^{2}} \cos (\mathrm{kx}) \\
& =\frac{1}{2 \mathrm{kD}} \cos (\mathrm{kx}) \\
& =\frac{1}{2 \mathrm{k}^{2}} \sin (\mathrm{kx})
\end{aligned}
$$

By New Derived Results:

$\mathrm{m}=1$ and $\mathrm{n}=1$
P.I $=\frac{2(\mathrm{k})(\mathrm{k}) \sin (\mathrm{kx})-\left[(\mathrm{k})^{2}-(\mathrm{k})^{2}\right] \cos (\mathrm{kx})}{[2(\mathrm{k})(\mathrm{k})]^{2}+\left[(\mathrm{k})^{2}-(\mathrm{k})^{2}\right]}$
$=\frac{2 \mathrm{k}^{2} \sin (\mathrm{kx})}{4\left(\mathrm{k}^{2}\right)^{2}}$
$=\frac{1}{2 \mathrm{k}^{2}} \sin (\mathrm{kx})$

Step 3:- To Prove $m=k+1=n$
$(\mathrm{D}+\mathrm{k}+1)^{2}=\cos (\mathrm{k}+1) \mathrm{x}$
Suppose $k+1=t$

$$
\mathrm{k}=\mathrm{t}-1
$$

So, $(\mathrm{D}+\mathrm{t})^{2}=\cos \mathrm{tx}$

$$
\begin{aligned}
\text { P.I } & =\frac{2(\mathrm{t})(\mathrm{t}) \sin (\mathrm{tx})-\left[(\mathrm{t})^{2}-(\mathrm{t})^{2}\right] \cos (\mathrm{tx})}{[2(\mathrm{t})(\mathrm{t})]^{2}+\left[(\mathrm{t})^{2}-(\mathrm{t})^{2}\right]} \\
& =\frac{2(\mathrm{t})^{2} \sin (\mathrm{tx})}{4\left(\mathrm{t}^{2}\right)^{2}} \\
& =\frac{\sin t \mathrm{x}}{2 \mathrm{t}^{2}} \\
& =\frac{\sin (\mathrm{k}+1) \mathrm{x}}{2(\mathrm{k}+1)^{2}}
\end{aligned}
$$

\rightarrow For SINE:-

$$
\begin{aligned}
& (D+\mathbf{m})^{2}=\sin \mathbf{n x} \\
& \text { P.I. }=-\left[\frac{2 m n \cos n x-\left[\mathbf{n}^{2}-\mathbf{m}^{2}\right] \sin \mathrm{nx}}{(2 \mathrm{mn})^{2}-\left(\mathbf{n}^{2}-\mathbf{m}^{2}\right)^{2}}\right]
\end{aligned}
$$

Step 1:- $\mathrm{n}=1=\mathrm{m}$

$$
(D+1)^{2}=\sin x
$$

By Shortcut Method:

$$
\begin{aligned}
\text { P.I } & =\frac{1}{f(D)} R(x) \\
& =\frac{1}{D^{2}+2 D+1} \sin (x)
\end{aligned}
$$

By New Derived Results:
$\mathrm{m}=1$ and $\mathrm{n}=1$
P. $I=-\left[\frac{2(1)(1) \cos (\mathrm{x})+\left[(1)^{2}-(1)^{2}\right] \sin (\mathrm{x})}{[2(1)(1)]^{2}+\left[(1)^{2}-(1)^{2}\right]}\right]$

$$
\begin{array}{ll}
=\frac{1}{2 D} \sin (x) & =-\frac{2 \cos (x)}{4} \\
=-\frac{1}{2} \cos (x) & =-\frac{1}{2} \cos (x)
\end{array}
$$

Step 2:- $\quad \mathrm{m}=\mathrm{k}=\mathrm{n}$
To suppose $(D+k)^{2}=\sin k x$

By Shortcut Method:

$$
\begin{aligned}
\text { P.I } & =\frac{1}{f(D)} R(x) \\
& =\frac{1}{D^{2}+2 \mathrm{kD}+\mathrm{k}^{2}} \sin (\mathrm{x}) \\
& =\frac{1}{2 \mathrm{kD}} \sin (\mathrm{x}) \\
& =-\frac{1}{2 \mathrm{k}} \cos (\mathrm{x})
\end{aligned}
$$

By New Derived Results:

$$
\mathrm{m}=1 \text { and } \mathrm{n}=1
$$

$$
\text { P.I }=-\left[\frac{2(\mathrm{k})(\mathrm{k}) \cos (\mathrm{kx})+\left[(\mathrm{k})^{2}-(\mathrm{k})^{2}\right] \sin (\mathrm{kx})}{[2(\mathrm{k})(\mathrm{k})]^{2}+\left[(\mathrm{k})^{2}-(\mathrm{k})^{2}\right]}\right]
$$

$$
=-\frac{2 \mathrm{k}^{2} \cos (\mathrm{x})}{4\left(\mathrm{k}^{2}\right)^{2}}
$$

$$
\begin{equation*}
=-\frac{1}{2} \cos (x) \tag{2}
\end{equation*}
$$

Step 3:- To Prove $m=k+1=n$

$$
(\mathrm{D}+\mathrm{k}+1)^{2}=\sin (\mathrm{k}+1) \mathrm{x}
$$

Suppose $\mathrm{k}+1=\mathrm{t}$

$$
\mathrm{k}=\mathrm{t}-1
$$

So, $(D+t)^{2}=\sin t x$

$$
\text { P.I }=-\left[\frac{2(\mathrm{t})(\mathrm{t}) \cos (\mathrm{tx})+\left[(\mathrm{t})^{2}-(\mathrm{t})^{2}\right] \sin (\mathrm{tx})}{[2(\mathrm{t})(\mathrm{t})]^{2}+\left[(\mathrm{t})^{2}-(\mathrm{t})^{2}\right]}\right]
$$

$$
=-\left[\frac{2(\mathrm{t})^{2} \cos (\mathrm{tx})}{4\left(\mathrm{t}^{2}\right)^{2}}\right]
$$

$$
=-\left[\frac{\cos \mathrm{tx}}{2 \mathrm{t}^{2}}\right]
$$

$$
=-\left[\frac{\cos (\mathrm{k}+1) \mathrm{x}}{2(\mathrm{k}+1)^{2}}\right]
$$

6. Conclusion

In this paper we are able to derive the general formulae for finding P.I., By using mathematical induction method are given below,

For Cosine Formula:-

P.I. $=\left[\frac{2 \mathrm{mn} \sin \mathrm{nx}-\left[\mathrm{n}^{2}-\mathrm{m}^{2}\right] \cos \mathrm{nx}}{(2 \mathrm{mn})^{2}+\left[\mathbf{n}^{2}-\mathrm{m}^{2}\right]}\right]$

For Sine Formula:-

P.I. $=-\left[\frac{2 \mathrm{mnsin} \mathrm{nx}+\left[\mathrm{n}^{2}-\mathrm{m}^{2}\right] \cos \mathrm{nx}}{(2 \mathrm{mn})^{2}+\left[\mathrm{n}^{2}-\mathrm{m}^{2}\right]}\right]$

References :

[1] Erwin Kreyszig, Herbert Kreysig and Edward J. Norminton, Advance Engineering Mathematics,
Laurie Rosatone, $10^{\text {th }} \mathrm{Ed}, 2011$
[2] Steven Holzner, Differential Equetions for Dummies, Wiley Publishing, 2008
[3] Elementary differential equations and boundary value problems by Boyce \& DiPrima, John Wiley \& Sons, Inc., Seventh Edition, 2001.

