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Abstract :  In the present manuscript statistics of transverse nonlinear central deflection of elastically supported piezoelectric 

laminated composite sandwich plate (ESPLCSP) subjected to hygro-thermo-mechanical loading using micromechanical approach 

is evaluated. System randomness as micro-level material properties of fiber and matrix, material properties of piezoelectric, 
laminate thickness, lamination angle, foundation parameters, and load intensity are taken as independent random variables. The 

mechanical loading is taken as uniformly distributed and sinusoidal loadings. The secant function based shear deformation theory 

(SFSDT) with von-Karman nonlinearity is used for basic formulation. The elastic and hygrothermal properties of the composite 

material are considered to be dependent on temperature and moisture concentration have been evaluated utilized micromechanical 

modeling. A Newton-Raphson method based on C0 nonlinear finite element method combined with mean centered second order 

perturbation technique (SOPT) proposed by present authors for the composite plate is extended for sandwich composite plate.  

The effect of random system properties with changing the plate geometry, stacking sequences, support conditions, foundation 

parameters, piezoelectric layers, fiber volume fraction and temperature, and moisture distribution on ESPLCSP is presented. The 

performance of proposed approach is validated through comparison with those available in the literatures and independent Monte 

Carlo simulation (MCS). 

 

Keywords: Laminated composite sandwich plate, Nonlinear bending response, Random system properties, Elastic 

foundation, SOPT, secant function based shear deformation theory 

1. INTRODUCTION 

 
The laminates composite sandwich plates in which inner layers are replaced by a core with low stiffness are used to resist in-plane 

and lateral loads while the core material resists transverse shear loads. These materials are being increasingly used in aerospace, 

aeronautical and others modern applications due to high specific modulus and strength, low specific density, high structural 

efficiency and durability with improved fatigue and impact resistance. 

To use them efficiently, it is necessary to develop appropriate model for accurately predicting their structural behaviour in 

terms of linear and/or nonlinear bending and stress distribution.  

These laminated composite structures are often subjected to hygrothermomechanical loadings simultaneously or separately 

under severe environmental conditions during their operational life. The hygrothermal loadings arise due to increased temperature 
and absorbed moisture concentration may cause degradation in strength and stiffness of the structures, and ultimately 

deteriorating the performance of the structures. Aside from this, structures are often subjected to high intensity of mechanical 

loads in terms of sinusoidal and uniform distributed loadings (UDL) that may change the results in linear or nonlinear load 

deflection curve. Due to lower strength of laminated composite in transverse directions compared to isotropic materials, 

knowledge pertaining to transverse deformation is extremely important for optimum and safe design of the structures. 

The micromechanical approach is amongst very popular approach to evaluate the equivalent material properties composite 

material from known constituents’ material properties of matrix and fibre based on their relative volume. It is because of 

equivalent material properties of composite are not known at different ply levels. The main purpose objective of micromechanical 

approach is tailoring the mechanical properties in terms of strength and stiffness in particular positions and directions as per 

requirements.    

In the current scenario, structures should be self-monitoring and self controlling capabilities under the influence of external 
stimuli. This can be achieved by inserting piezoelectric layer as smart layer at different positions of fibre layers. Hence, effect of 

piezoelectric layer at different positions of fibre layers is the one of interesting topic for researchers.   

Any kind of structure is often subjected to elastic foundation to observe shocks and vibrations and provides stability to the 

structures. This objective can be achieved by attaching two parameters Pasternak elastic foundation, It is because of this type of 
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foundation prevent both transverse and lateral deformation and most appropriate for design prospective. Therefore, proper 

examination of elastic foundation on the performance of structure is needed.  

During manufacturing and processing, composite materials pose large number of randomness in material, geometrical and 
external loading which affected the overall response and ultimately affect the final design. For factor of safety point of view, the 

individual or combined effect of randomness on structural response is very interesting topic to the researchers.  

Hence there is a need to study deflection behaviour of laminated composite sandwich plate with system randomness using 

probabilistic approach. Probabilistic approach provides a tool to quantify system uncertainties in the structural responses in terms of 

mean and variance.  Large numbers of literatures are available on the linear and nonlinear static response of sandwich structures with 

various shear deformation theory subjected to hygro-thermo-mechanical loadings acting simultaneously or combined using 

deterministic approach.     

A considerable volume of literatures is available on the linear and nonlinear bending response of composite laminated 

plates/shells based on deterministic approach under various thermal and/or mechanical loads and/or combination of these. Among 

them are Reddy [1], Reddy and Chao [2], Zenkour [3], Houliara and Karamanos [4], Chan and Chung [5], Huang and Tauchert 

[6] and [7], Chandrasekhara and Bhimaraddi [8] and Reddy and Chandrasekhara [9]. Very little number of literatures are 

available for static response of laminated composite plate based on micro-mechanical approach (See for examples [Ram and 
Sinha [10], Shen [11] and Upadhyay et al. [12]). All the literatures mentioned above are based on the assumptions of the complete 

determinacy of the structural parameters which gives only mean response and unaccounted the randomness caused by inherent 

random system parameters.  

Literatures available for analysis of composite structures with random system properties are limited. Zongeen and Suhaun 

[13] presented a method to estimate the standard deviation of eigenvalue and eigenvector of random multiple degree of freedom 

(MODF) system. Naveenth Raj et al. [14] have evaluated the linear static response statistics of graphite-epoxy composite 

laminates with randomness in material properties for different boundary conditions, thickness ratios, aspect ratios and fibre 

orientations to deterministic loading by using combination of finite element analysis (FEM) and Monte Carlo simulation (MCS).  

Salim et al. [15] examined the effect of randomness in material properties on the response statistics of a composite plate subjected 

to static loading using classical plate theory (CLT) in conjunction with first order perturbation techniques (FOPT). Onkar and 

Yadav [16] investigated the non-linear response statistics of composite laminated plate with random material properties subjected 
to transverse random loading based on CLT in conjunction with FOPT. Yang et al. [17] have investigated the stochastic bending 

response of moderately thick compositionally graded plates with random thermo-mechanical properties under lateral load and 

uniform temperature change.  They have utilized a first order perturbation technique (FOPT) to obtain the response statistics, 

while basic formulation of the problem has been developed based on Reddy’s higher order shear deformation theory (HSDT). 

Falsone and Impollonia [18] proposed a method for evaluating the static response of structures with uncertain material properties 

providing results with good level of accuracy, even for high amount of uncertainties. Zhang et al. [19] evaluated the response and 

reliability of the uncertain structures using the stochastic perturbation method to vector-valued and matrix-valued function. Liu et 

al. [20] formulated the probabilistic finite element method (PFEM) for linear and nonlinear continua with homogeneous random 

fields of a one-dimensional elastic plastic wave propagation problems and a two-dimensional plane-stress beam bending problem. 

Zhang and Ellingwood [21] examined the effect of random material field characteristics on the instability of a simply supported 

beam on elastic foundation and a frame using perturbation technique. Noh [22] investigated the effect of multiple uncertain 

material properties on the response variability of in-plane and plate structures with multiple uncertain material parameters using 
stochastic finite element analysis to. In order to incorporate the uncertainties of the physical properties of laminated composite 

structures, a stochastic finite element–based second moment was developed by Park et al. [23]. Lal et al., [24,25] and Singh et al., 

[26] have presented C0 linear and nonlinear finite element method (FEM) in conjunction with a mean centred FOPT to obtain the 

second order response statistics of linear and nonlinear bending response of laminated composite plate resting on elastic 

foundation subjected to thermal and/or lateral loading . Pandit et al. [27] investigated the statistics of deflection of sandwich plate 

under transverse mechanical loading using the improved layer-wise plate theory and C0 stochastic finite element method (SFEM).  

To the best of the authors’ knowledge, there is no literature covering the second order statistics of nonlinear transverse central 

response of laminated composite piezoelectric elastically supported laminated composite sandwich plate with system randomness 

subjected to hygro-thermo-mechanical loadings using micromechanical approach through Newton-Raphson method. This is the 

problems studied in the present paper. 

The mean cantered second order perturbation method (SOPT) using Co nonlinear finite element method through secant 
function based shear deformation theory (SFSDT) is employed to determine the mean and coefficient of variation of nonlinear 

transverse central deflection of laminated composite piezoelectric elastically supported sandwich plate with temperature and 

moisture dependent material properties subjected to uniform constant temperature and moisture concentration. The effect of 

volume fractions of fibres, plate thickness and aspect ratios, load parameters, lamination angle, position of piezoelectric layers, 

foundation parameters, boundary conditions, and temperature and moisture contents with random system properties on mean and 

COV of transverse central deflection response subjected to UDL and sinusoidal loadings are investigated 
 
 

2. FORMULATION 

2.1 GEOMETRY OF PIEZOLAMINATED ELASTICALLY SUPPORTED PLATE  

The piezoelectric multilayered composite plate resting on elastic foundation having length a, width b, thickness h located in 

the three dimensional Cartesian coordinate system ),,( zyx is shown in Fig.1. Where  , ,x y z  are the axial, tangential, and 

normal to the mid plane of the plate respectively. The assumption of perfect bonding exists between fibre and matrix and their 

effect will be considered as separately. The piezoelectric layer is attached at different positions of fibre layers with neglected 

thickness. Plate is supported by most efficient two parameters Pasternak elastic foundation with spring and shear layers by elastic 

foundations as K1 and K2, respectively. Without assuming any separation between plate and supporting foundation, the reaction 

force (P) per unit area can be written as [11-12] 
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In Eq. (1), when shear neglected, the plate will become Winkler foundation model.  

 

2.2 Displacement model  

The displacement field model is based on recently developed secant function based shear deformation theory (SFSDT) given 

by Grovar et al. [35]. The proposed theory involve non-linear shear stress distribution which satisfies the zero transverse shear 

conditions on top and bottom surfaces as a priori and therefore a shear correction factor is not required.  

The main purpose to use SFSDT is to increase the computational accuracy and time at each ply level as compared to higher 

order shear deformation theory (HSDT). In HSDT, number of unknown variables are higher, therefore, computation 
computational time for evaluation of these variables are higher. The SFSDT is based on Taylor series expansion and expansion 

order can be extended more than third order. The constants involved in SFSDT are computed easily as compared to HDST. 

Hence, computational response using SFSDT is more accurate as compared to HSDT.   

The Displacement fields ( u,  v,  w ) at any point along (x, y, z) directions for a composite plate can be expressed as   
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The parameter r is the transverse shear stress parameter and its value is ascertained by the inverse method in post processing 

step 0.1. The parameters Ω is a constant and is evaluated by implementing the transverse shear stress boundary conditions so that 

the transverse shear stresses at the boundary vanish. g(z) is the shear strain functions used in the SFSDT. 

The displacement field model in Eq. (2), C1 continuity occurs in the structural kinematics. The solution of finite element 

problem using C1 continuity requires more computational cost and extra complexity.  The C1 continuity problem may be reduces 

to C0 continuity by including two additional independent field variables as /x w x     and /y w y     in Eq. (2). These 

two additional independent field variables causes’ additional constraints are satisfied by employing the penalty parameter. 
This is circumvented by expressing the displacement field in the following form [21-22, 31-34]  
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                                                                           (4) 

The displacement field vector {q} is expressed as 

 2 1 2 1

T
q u v w                                                                                                                  (5) 

2.3 Strain displacement relations 

The strain-displacement relations are obtained by using large deformation theory with von-Karman nonlinearity. The total strain 

vectors associated with displacement for lamina layers can be expressed as  

       l nl p     
                                                            

(6) 

The linear strain tensor  l based on HSDT can be written as  

    l lT 
                                                                    

(7)
 

where, T is the function of Z and unit step vector defined in appendix A.1 and  l is reference plain linear strain tensor defined 

as 
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T
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(8) 

From Eq. (5), Eq. (8) can be written as  

    l L q 
                                                       

(8a) 

Where L is the strain displacement matrix and defined in Appendix A.2. 

The nonlinear strain vector  nl in von-Karman sense can be written as [31-34] 

    
1
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nl A                                                                          (9) 

Where    

 
, 0 , 0 01

0 , , 0 02

T

x y

x y

w w
A

w w

 
  

                                                                                                  (10) 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                             www.jetir.org (ISSN-2349-5162) 

JETIR1906H54 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 516 
 

and       
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here (,) denotes partial differential. 

The piezoelectric strain vector P  can be represented as 

      0

x y zE E E E T E
                                                     (12) 

Where [TΦ] and [E] is the electric field potential operator and electric field vector, respectively and defined in Appendix A. 3.  

 

2.4 Micromechanical approach 
The effective materials properties of the fibre reinforce composite at given temperature can be evaluated using micromechanical 

model proposed by Chamis and Sinclair (1982). Since, the effect of induced temperature is dominant in matrix material. Hence 

the degradation of the fibre reinforced composite material properties is estimated by degrading the matrix property only. The 
matrix mechanical property retention ratio can be expressed as Chamis and Sinclair (1982). 
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where T=To+ ΔT and T is the temperature at which material property is to be predicted; The parameters Tgw and Tgo are glass 

transition temperature for wet and reference dry conditions, respectively. The glass transition temperature for wet material can be 

determined as (23-27) 

 2

00.005 0.10 1.0gw gT C C T  
                                                     (14) 

where C=Co+ ΔC  and C is the moisture weight at which properties is to be evaluated. For the generated results the values of T0 

and C0 are taken as 210C and C0=0%. 

The elastic constants using micromechanical approach are obtained from the following equations as written as (25, 27, 38-39) 
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Where “V” is the volume fraction and subscripts “f” and “m” are used for fibre and matrix, respectively. The effect of increased 

temperature and moisture concentration on the coefficients of thermal expansion (α) and moisture concentration (β) are opposite 

from the corresponding effect on strength and stiffness. The matrix thermal property retention ratio is approximated as 

1
h

m

F
F

                                                                    (18c) 

 

2.5 Constitutive equation 

The constitutive law of thermo-piezo-elastic constitutive relationship for material under consideration relates the stresses with 
strains in plan-stress state for the kth orthotropic lamina is given as [33] 

       Q e E                                                                                (19) 

Where [Q] is the constitutive elastic stiffness matrix defined in Appendix A.4 

Where [e] is defined as piezoelectric constant and expressed by  

  
14 15

24 25

31 32 36

0 0 0

0 0 0

0 0

T
e e

e e e

e e e

 
 


 
  

                                           (20) 

Here [E] is the electric field vector defined by  
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Where   is electric potential and defined in Appendix A-5.  

 

 

2.6 Strain energy of the piezolaminated composite plates 
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The elastic strain energy of a piezoelectric laminated composite plate is expressed as 

       
1 1

U=
2 2

T T

V V

dV E D dV                                                                                 (22) 

The parameter [D] is the electric field displacement and defined as the elastic strain energy becomes  

        
T

D e k E                                                                                                            (23)  

Where [k] is the dielectric constant matrix and defined in appendix A.6. 
Substituting Eq. (19), (23) and (39) in Eq. (22),   Eq. (22) becomes  
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Substituting Eq. (8) in Eq. (24) once can be written as   
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Using Eq. (25), linear potential energy can be written as  
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Substituting Eq. (8a) and (11) in Eq. (26), Eq. (26) can be rewritten as    
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Where D, D1 and D2, are the elastic stiffness matrix of composite and piezoelectric material, respectively and defined in Appendix 

A. 7(a-c). 

Using Eq. (25), after substituting Eq. (8a) and (9), the nonlinear potential energy of piezoelectric composite plate is written as  
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Where [D3], [D4], [D5] are the nonlinear elastic matrix and [D6], and [D7] are the piezoelectric stiffness matrix, respectively and 

defined in Appendix A.8.  

 

2.7 Strain energy due to elastic foundation 

Using Eq. (1), the strain energy due to elastic foundation using two parameter Pasternak elastic foundation having shear 

deformable layer can be written as [31-3] 
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Eq. (29) can be rewritten as  
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2.8 Potential due to external mechanical loading 

The potential due to external work done by external mechanical load  ,SLq x y is given by 

 ,  M SL
A

V W q x y w dA                                                                                                                                                            (31) 

where, qSL(x, y) is the intensity of distributed transverse and sinusoidal static load which are defined as  
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here Q and q0 are represented as uniform lateral pressure and sinusoidal load respectively. 

                                                                                                                                  

2.9 Finite element model 

In general, a closed form solution is difficult to obtain for buckling problems for complex boundary conditions and shapes. 

Therefore, FEM is the one of powerful tool used for finding an approximate solution of the problem. The displacement field 

vector can be written in terms of shape functions as [31-34] 

Displacement vector  q in equation (5) and Eq (21) can be written in terms of shape functions as  

    
1

,
NN

i i

i

q N q


  and    
1

,
NN

i i

i

N 


                                                                                                          (33) 

 here i represent node number and Ni is shape function at ith node. 
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For an element, displacement field vector, and electric potential vector can be written as  

     
( )( ) ( )ee e

iq N q and    
( ) ( )( ) e ee

N q                                                     (34) 

Substituting Eq. (34) in Eq. (27), and summed over all elements using finite element model Eq. (33), Eq (27) linear strain energy 

of the piezolaminated plate can be rewritten as   

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 2

1

NE
ee e T e e e T e e e T e T e e T e e e T

l t

i

U q K q q K q q K q q K q q F   


                                                                               

(35) 

Where 

( )

( ) ( ) ( )1
,

2 e

e e T e

A

K B DB dA 
( )

( ) ( ) ( )

1 1

1
,

2 e

e e T e

A

K B D B dA  and 
( )

( ) ( ) ( )

2 2

1
,

2 e

e e T e

A

K B D B dA                                                                   (36)      

Here 
( )eK ,

( )

1

eK and 
( )

2

eK are the element bending stiffness matrix, coupling matrix and dielectric matrix, respectively. The 

strain displacement matrix [B] for plate and piezoelectric [Bg] can be written as  

                 
( ) ( )

,
e e

iB L N   and 
( ) ( )

.
e e

B L N  
                                                                     (37)  

with    
( )

1 2 3

e

NNB B B B B    and [Bi] = [L]Ni.         i=1, 2, 3,……NN                                                                  (38) 

Similarly, using Eq. (28) and Eq. (33), the nonlinear strain energy for piezolaminated plate after summing over the entire element 

using finite element analysis can be rewritten as  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 3( )

( ) ( ) ( ) ( ) ( )
1 4 5

{ } { } { } { } } { }

{ } { }

e T e e e T e e e T e eNE
e

nl e T e e e T e e
i

q k q q k q q k q
U

q k q q k q 
  

  
  

      
                                                                                                 (39) 

where 
( ) ( ) ( ) ( )

1 3

1
{ }{ }

2 e

e e T e e

A

k B D A G dxdy  , ( ) ( )

2 4

1
{ } { }

2 e

e e T e T

A

k G A D dxdy    and 

( ) ( ) ( ) ( )

3 5

1
{ } { }

2 e

e e T e T e e

A

k G A D G dxdy     are the element bending stiffness matrix and 

( ) ( ) ( )

4 6

1
{ } { }

2 e

e e T e T

A

k G A D dxdy   and
( ) ( ) ( )

5 7

1
{ }

2 e

e e T e e

A

k B D G dxdy 

     

are the coupling matrix, respectively.  

Similarly, strain energy due to foundation after summing over all the element using Eq. (33), Eq. (30) can be rewritten as  

         
1

TNE
e e e e

f f

i

U q K q


                                                                                                                                                            (40) 

where 
 

( )

( ) ( )1
,

2 e

e e T e

f f f f

A

K B D B dA  is the foundation stiffness matrix and [Bf] is the strain displacement matrix due to 

foundation and defined as  

 
( ) ( )e e

f fB L N                                                                                                                                                                        (41) 

Using finite element model as Eq. (33), potential of work done due to mechanical loading as given Eq. (31) can also be written as  

                                                                          

   
1

NE
Te

e

V V q F


 
                                                                                          (42) 

Where
                                             

 0 0 0 0 0 0
T

SLF q
                                                                                                  

 

Adopting numerical integration, the element bending stiffness matrix consist of linear and nonlinear, coupling matrix, dielectric 

stiffness matrix, foundation stiffness matrix and geometric stiffness matrix can be obtain by transforming expression in (x, y) 

coordinate system to natural coordinate system (ξ, η) using Gauss quadrature. 
 

3. Governing equation 

The governing equation for the nonlinear bending analysis can be derived using Variational principle, which is generalization 

of the principle of virtual displacement [30, 31]. For the bending analysis, the minimization of first variation of total potential 

energy (Π) with respect to displacement vector must be zero. 

0
Tq





                                                                              (43)  

The total potential energy can be expressed as 

                                                               l nl fU U U V   
 (44)  

Substituting Eq. (35), Eq. (39), Eq.(40) and Eq.(42) in Eq. (44), Eq. (44) can be rewritten as  

   *K q F                                                                                   (45) 

where 

1

_ _

T

q q phi phi q phi fK K K K K K   
                                                            (46) 
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here 
( ) ( ) ( )

1 2

1

( )
NE

e e e

q

e

K K K K


   , 
( ) ( )

_ 4

1

( 1 )
NE

e e

q phi

e

K K K


  , 
( )

2

1

NE
e

phi

e

K K


 , 
( )

1

NE
e

e

F F


  and 
( )

1

NE
e

f f

e

K K


   

The parameters
qK ,

_q phiK ,
1

TK ,
phiK and F are the global elastic stiffness matrix, coupling matrix between elastic mechanical 

and electrical effect, dielectric stiffness matrix, force vector and foundation stiffness matrix, respectively.   

 

 

4. Solution Approach 

 Solution approach -A Newton Raphson method 

The nonlinear differential equation (45) can be reduced to set of nonlinear equation as      

     * *K q q F                                                                            (47) 

In order to solve solve the Eq. (47), the Newton–Raphson method is used for the solution of nonlinear governing equations. The 
residue can be written as (Simsek and Kocaturk (2009), Reddy (2004) , William et al. (1992)) 

       * * 0R q K q q F  
                          (48) 

By assuming that the solution

 
 

 1i
q


at the (i-1) iteration is known, the

 
residual

 
vector R can be expanded using Taylor’s series 

about the solution 
 1i

q


  as follows
: 

        
 

 
( 1)

( 1)

. ... 0
i

i

R q
R q R q q

q






 
     

 
                                                                                                         (49) 

Neglecting the terms of order two and higher gives the following equations: 

             
( 1)* 1 1 1* *
ii i i

TK q q R q F K q q
  

   
                                                                                             (50) 

Where 
*

TK  is the tangent stiffness matrix and can be written as  

  
  
 

( 1)

( 1)

i

i

T

R q
K q

q



     
     

                                                                                             (51) 

Incremental displacements  q ,

 

the displacement vector  
i

q for ith iteration can be written as 

         
1

( 1)( 1) ( 1)*
i ii i

Tq q K q R q


   
                                                                                                         (52) 

This procedure is continued until the difference between two successive solution vectors is less than a selected tolerance criterion. 

Once Eq. (55) is solved for the displacements {q} at time t+Δt, the new acceleration vector 
..

q , and the new velocity vector 
.

q  at 

time t+Δt are computed from the Eq. (45) and Eq. (46). For solving the nonlinear equations, the initial solution vector is chosen to 

be zero vector, namely, the first iteration solution corresponds to the linear solution. 

 

 4.2 Solution approach: perturbation technique 

The governing equation (23) can be written in the most general form as:  

    R

ij j i

R RK q F  
 

                                                                   (24)  

where RK 
  ,  

 
R

jq  and R

iF are represented as the random stiffness matrix, the random response vector and the random forcing 

vector respectively and superscript ‘R’ denotes random.  

Any random variable can be expressed as the sum of its mean and the zero mean random variable which is expressed as  

Random variable  RRV =mean  dRV + zero-mean random variable  rRV  

The operating random variables in the present case are defined as [24-27] 

R d rb b b  ;  i i i

R d rK K K ;  i i i

R d rq q q ; 
     

i i i

R d rTH
F F F                                                           (25) 

We can express the above relations in the form: 

R d rb b b  ;  ij ij ij

R d rK K K ;  i i i

R d rq q q ; 
   

i i i

R rdF F F                                              (26) 

where   is a scaling parameter, and is small in magnitude. The superscript‘d’ and ‘r’ denote the mean and zero mean random 

part. Consider a class of problems where the zero-mean random variation is very small as compared to its mean part system 
properties. Using the Taylor series expansion and neglecting the second and higher-order terms since first order approximation is 

sufficient to yield results with desired accuracy having low variability as is the case in most of the sensitive application [24-27, 

31]. Substituting Eq. (26) in Eq. (24) we get: 

      d r

ij ij j j i i

d r d rK K q q F F    
 

;                                                                                                   (27) 

Equating the terms of same order, we obtain the zeroth order perturbation equation and first order perturbation equation as fallows 

[24-27]. 
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Zeroth order perturbation equation  0 :               d

ij j i

d dK q F  
 

                                                             (28) 

First order perturbation equation  1 :                   r

ij j ij j i

d r r dK q K q F      
                                         (29) 

Obviously, zeroth order Eq. (28) is the deterministic and gives the mean response. The first order Eq. (39) on other hand 

represents its random counterpart and solution of this equation provides the statistics of the nonlinear bending response, which 
can be solved using the probabilistic methods like perturbation technique, Monte Carlo simulation, Newman’s expansion 

technique [37,38]. 

Using Taylor’s series expansion the system matrix, the displacement vector and forced vector can be expressed as [25-27] 


   




ij

ij

d
r r

lR
l l

K
K b

b
, 


   




j

j

d
r r

lR
l l

q
q b

b
,  

     
 

  
 i

i

TH
r

lR
l l

TH d
r F

F b
b

                                                   (30) 

Substituting Eq. (30) in Eq. (29) and equating the coefficients of
r

lb . For each l, we get: 

 
  

                          
 

j ij i

ij

THd d
d d

R R R
l l l

d
q K F

K W
b b b

, l = 1, 2…                                                                             (31)                                               

Using Eq. (31) we can solve the only unknown
d

R
l

W

b

  
 
  

, for each l.  

Using Eq. (26), the total deflection response and its variance can be written as [24-27] 

  
   

  

d

jd r

j j lr

l

q
q q b

b
  and var  

2
 
 

  


j

j

d
r

lR
l l

q
q E b

b
                                                                                (32) 

Where E [ ] and var (.) are the expectation and variance respectively. The variance can further be written as [24-27]  

var    ,

     
      


j j

j

T
d dN N

r r
l lR R

l l l l

q q
q diag E b b

b b
                                                                                             (33) 

where, N is the number of variables and  ,r r
l l

E b b is determined from the autocorrelation function of the underlying stochastic 

field of b, which can be written as [24, 25] 

      , b b

r r
l l

E b b                                                                                                                                    (34) 

Where,  

1

2

... ... 0

0 ... 0

... ... ... ...

0 ... ...

b

b

b

bm








 
 
 
 
 
 

and  

12 1

21 2

1 2

1 ...

1 ...

... ... .. ...

... 1

m

m

m m

 

 


 

 
 
 
 
 
 

                                                             (35) 

Where b ,   and m are the standard deviation (SD) of random variables, the correlation coefficient matrix and number of 

random variables, respectively.  

Substituting Eq. (34) in Eq. (33), we obtain as: 

var      
    
   
       

j j

j b b

T
d d

R R
l l

q q
q

b b
                                                                                                                (36) 

Eq. (36) express the covariance of the deflection in terms of standard deviations (SD) of random variables bi (i=1, 2,…, R) and 

correlation coefficients. It is evident from Eq.(36) that the response coefficient of variation obtained by using the first perturbation 

techniques exhibits linear variation with all random variables in material properties, expansion of the hygrothermal coefficients, 

lamina plate thickness and lateral loading.  

 

 

 

5. Result and discussion  

The second order statistics (mean & standard deviation) of the nonlinear transverse central deflection of laminated composite 

spherical shell with random system properties subjected to hygrothermo-mechanical loading with different boundary conditions, 

plate thickness ratios, aspect ratios, lateral pressure and environmental conditions are obtained through numerical examples. 

A nine noded Lagrange isoparametric element with 63 DOFs per element for the present HSDT model with von Karman non 

linearity has been used for discretizing the laminate. Based on convergence study conducted, a (8*8) mesh has been used through 

out the study. The mean and standard deviation of the transverse nonlinear central deflection are obtained considering all the 

random material inputs variables, thermal expansion and hygrothermal contraction coefficients, lateral pressure and lamina plate 
thickness taking individual and/or combined as random variables. Being a linear nature of variation random variables as 

mentioned earlier and passing through the origin, the results are only presented by against standard deviation (SD) of system 
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property equal to 0.10. However, the obtained results reveals that the stochastic approach would be valid up to SD = 0.20 [20]. 

Moreover the presented results would be sufficient to extrapolate the results for other SD values keeping in mind the limitation of 

FOPT.  
In order to show the accuracy and efficiency of present solution methodology mean and SD results are compared with those 

available in literatures and independent Monte Carlo simulation. The basic random system parameters such as E1, E2, G12, G13, 

G23, α12, α1, α2, h, Q and β22 are modelled as the basic random variables which are sequenced and denoted as  

b1=E1, b2= E2, b3= G12, b4 = G13, b5= G23, b6= v12, b7 = α1, b8= α2, b9 = h, b10 = Q and b11= β22 

The following non dimensionalized nonlinear transverse mean central deflection has been used in the present study for 

uniformly distributed and sinusoidal load are as 

0

,
2 2

a b
w

W
h

 
 
 

 and  

3

2
0 4

0

100
,

2 2

E ha b
W w

b q

  
      

 

Where ,
2 2

a b
w
 
 
 

is the mean dimensionalized transverse central deflection of piezoelectric elastically supported laminated 

composite sandwich plate. 
 

 

In the present study, the various combination of boundary support conditions used in analysis are SSSS, CCCC, CSCS, are given 

as; 

1. All edges are simply supported (SSSS): 

            
0, 0,

0, 0,

y y

x x

u w atx a

v w aty b

 

 

    

    
.  

2. All edges are Clamped (CCCC): 

    
0, 0,

0, 0,

y x y x

y x y x

v w atx a

u w aty b

   

   

      

      
                                                                 

     3. Two opposite edge are clamped and others two are simply supported (CSCS): 

          

0, 0 0

0, ; 0, 0,

y x y x

y y x x

u v w at x and y

v w at x a u w at y b

   

   

        

         
 

For the computational analysis, the following properties of composite material are considered to be temperature dependent on 

temperature and moisture. The material properties taken in analysis are at reference temperature 210 C and moisture concentration 

at 0% are given as [12]  

Ef1=220 GPa, Ef2=13.79 GPa, Em=3.45 GPa, Gf1=8.79 GPa, v f12=0.2, vm=0.35, α f1=-0.99*10e -6  0/C, 

 α f2=-10.08*10e -6 0/C, αm =72.0*10e -6 0/C, βm=0.33, Tg0=2160C.  

The piezoelectric (5A) material layered at different positions of fiber layers are given as:  

E11p = 63.0 GPa, E22p = 63.0 GPa, G12p = G13p = G23p= 24.3 GPa, v12p = 0.3, E11p = 63 GPa,  

Figure 5.1 shows the validation study of mean of linear and non-linear central deflection of square clamped laminated sandwich 

composite plate by varying load parameter. The present results using CO finite element method are in good agreement with 

available literature of Putcha et al [1984]. 

Figure 5.2 shows the Convergence study for mean central deflection of a square laminated composite plate is examined by using 3 
x 3, 4 x 4, 5 x 5, 6 x 6 and 7 x 7 mesh size of elements and plotted. As the number of mesh size increases, the mean central 

deflection decreases converges from 5 x 5 mesh size. Therefore, the total number of element equal to 25 is taken into 

consideration for the computation of further numerical results.  

Figure 5.3 (a)-(b) shows the effect of foundation parameters and load parameters with random change in only foundation 

parameters {bi= (9, 10) =0.10} on the (a) mean and (b) COV of central deflection of square simply supported laminated 

[0/90/C/90/0] plate for Vf=0.6, a/h=100. As the foundation parameter increases, the central deflection decreases. The decrease of 

central deflection is highest for change in shear foundation. The effect of COV of central deflection is still highest for random 

change in shear foundation only. The effect of mean and COV are more severe for higher loads.    

Figure 5.4 (a)-(b) shows the effect of cross-ply and angle-ply symmetric and anti-symmetric lamination scheme and load 

parameter with random change in all system parameters {bi= (1,…,7) =0.10}  on the (a) mean and (b) COV of central deflection 

of square laminated [0/90/C/90/0]  simply supported sandwich composite plate and Vf = 0.6, a/h=100, Q=50. Among the different 

lamination scheme, mean central deflection of symmetric cross-ply or angle-ply is higher than anti-symmetric, cross-ply and 
angle-ply plate while, COV on central deflection of symmetric angle plate is lower. As the load parameter increases, mean central 

deflection increases and COV decreases. 
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(a) (b) 

Figure 5.1 The validation study of mean of linear and 

non-linear central deflection of square clamped 

laminated sandwich composite plate by varying load 

parameter 

Figure 5.2 Convergence study for mean central 

deflection of a square laminated composite plate 

 
 

(a) (b) 

Figure 5.3 Effect of foundation parameters and load parameters with random change in only foundation 

parameters on the (a) mean and (b) COV of central deflection 

 
 

(a) (b) 

Figure 5.4 The effect of cross-ply and angle-ply symmetric and anti-symmetric lamination scheme and load 

parameter with random change in all system properties on the (a) mean and (b) COV of central deflection 

 

 
Figure 5.5 (a)-(b) shows the effect of position of piezoelectric layer at various position of fiber layers and load parameter with 

random change in all system parameters {bi=(1,…,7) =0.10} on mean (a) and (b) COV of central deflection of simply supported 

square laminated composite plate for Vf=0.6, a/h=100. Among the given pizoelectric layer attached at different location of fiber 

layers, the mean central deflection is highest when piezo layer is attached at bottom place of fiber layer, However, COV of central 

deflection is highest when piezoelectric layer is attached at second position of fiber layer at Q=50, while, lowest when piezolayer 

attached with first position, at Q=50, COV of central deflection is highest when piezoelectric layer is attached at last position of 

fiber layer at Q=250, while, lowest when piezolayer attached with fourth position, at Q=250. 

Figure 5.6 shows the effect of support conditions and load parameter  with random change in all system parameters 

{bi=(1,…,7) =0.10} on the (a) mean and (b) COV of central deflection of square laminate [0/90/C/90/0] plate for Vf=0.5, 

a/h=100. Among the different support conditions, mean central deflection of clamped supported plate is lowest while, COV of 

simply supported plate is lowest. It is because of higher boundary constraits decreases the mean and increases the COV of central 
deflection. The change in mean of central deflection for Q=250 is highest, and COV of central deflection is highest at Q=50. 
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Figure 5.7 shows the effect of volume fraction of fibre, load parameter with random change in system parameters {bi=(1,…,7) 

=0.10}  on the (a) mean and (b) COV of central deflection of simply supported square laminate [0/90/C/90/0] plate for Vf=0.6, 

a/h=100. As the fiber volume fraction increases, the mean central deflection decreases and COV of central deflection increases 
with increase of fiber volume fraction and effect are more pronounced when low volume of fiber with low load parameter is 

considered. 

 

  

(a) (b) 

Figure 5.5 Effect of position of piezoelectric layer at various position of fiber layers and load parameter with 

random change in all system parameters on mean (a) and (b) COV of central deflection 

  
(a) (b) 

Figure 5.6 Effect of support conditions and load parameter with random change in all system parameters on the 

(a) mean and (b) COV of central deflection of square laminate plate 

  

(a) (b) 

Figure 5.7 Effect of volume fraction of fibre, load parameter with random change in system parameters on the 

(a) mean and (b) COV of central deflection 

Figure 5.8 shows the effect of presence and absence of core sheet, load parameter with random change in system parameters 
{bi=(1,…,7) =0.10} on the (a) mean and (b) COV of central deflection of square laminate [0/90/C/90/0] plate for Vf=0.6, 

a/h=100, with clamped boundary condition at two opposite edge and simply supported at other two. Mean of central deflection 

increases as the core sheet is introduced between the face sheets and central deflection increases as load parameter increases. Also 

COV of laminates with core sheets is lower than that of the laminate without core, COV decreases as the load parameter 

increases. 

Figure 5.9 shows the effect of temperature change, moisture change, volume fraction of fibre and load parameter with random 

change in system parameters {bi=(1,…,7) =0.10}  on the (a) mean and (b) COV of central deflection of simply supported square 
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laminate [45/-45/45/-45] plate for Vf=0.6, a/h=10. The mean of central deflection increases as change in temperature, moisture 

and volume fraction decreases, but COV increases as change in temperature, moisture and volume fraction increases. 

  

(a) (b) 

Figure 5.8 Effect of presence and absence of core sheet, load parameter with random change in system 

parameters on the (a) mean and (b) COV of central deflection 

  

(a) (b) 

Figure 5.9 Effect of temperature change, moisture change, volume fraction of fibre and load parameter with 

random change in system properties on the (a) mean and (b) COV of central deflection 

Figure 5.10 shows the variation of central deflection along the length of the plate with different volume fraction and load 

parameters for simply supported square laminate [0/90/C/90/0], a/h=100. Mean of central deflection increases as x/a increases and 

is maximum at the centre of the plate and then decreases. As Vf decreases central deflection increases.    

Figure 5.11 shows the validation study of COV of central deflection of square clamped laminated sandwich composite plate by 
varying load parameter {bi=(1,…,7) =0.10} using SOPT and MCS for clamped square laminated [0/90/C/90/0] plate with Vf=0.5, 

a/h=100. It shows good agreement of the present method with the MCS method. 

Figure 5.12 shows the effect of COC of random change in system properties and load parameter with random change in all system 

parameters {bi=(1,…,7) =0.10}on the COV of central deflection for clamped square laminated [0/90/C/90/0] plate with Vf=0.5, 

a/h=100. As the COC increase COV of the central deflection increases.   

Figure 5.13 shows the effect of load parameter and COC of random change in system properties with random change in only load 

parameter {bi=(14) =0.10} on the COV of central deflection for clamped square laminated [0/90/C/90/0] plate with Vf=0.5, 

a/h=100. As the COC increases COV increases linearly.    

Figure 5.14 shows the comparison study with HSDT for mean central deflection of square laminated [0/90/C/90/0] plate with 

different load parameter and support condition. Figure shows good agreement with HSDT results. 
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Figure 5.10 Variation of central deflection along the 

length of the plate with different volume fraction and 

load parameters   

Figure 5.11 The validation study of COV of central 

deflection of square clamped laminated sandwich 

composite plate by varying load parameter using 
SOPT and MCS 

  
(a) (b) 

Figure 5.12 Effect of COC of random change in 

system properties and load parameter with random 
change in all system parameters on the COV of central 

deflection   

Figure 5.13 Effect load parameter and COC of random 

change in system properties with random change in 
only load parameter on the COV of central deflection   

 
Figure 5.14 Comparison study with HSDT for mean central deflection of square sandwich composite plate with 

different load parameter  

a/b=1, 45/-45/C/-45/45, SSSS, Vf=0.6 
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Figure 5.15 
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Figure 5.16 

 
Table 5.1:- Flexural behaviour of three layered laminated plate [0/90/0] subjected to UDL. 

Source 

 

a/h 

2 4 10 20 50 100 

Simulated results 

Sheikh and Chakrabarti (2003) 

Reddy(1984) 
Ghosh and Dey (1990) 

7.8525 

7.767 

7.767 
  ---- 

2.9328 

2.9093 

2.9091 
  ---- 

1.1287 

1.091 

1.09 
0.965 

0.7785 

0.7763 

0.776 
0.7572 

0.6842 

0.6841 

0.6838 
  ---- 

0.6706 

0.6708 

0.6705 
0.6823 

 

Table 5.2: Influence of boundary condition on non-dimensional deflection of anti-symmetric laminate [0/90] subjected to 

SSL. 

Boundary 

condition 

Source 

 

W 

a/h=5 a/h=10 

SSSS Simulated results (SFSDT) 
Reddy  (HSDT) 

1.62 
1.6 

1.2 
1.2 

SCSS Simulated results (SFSDT) 

Reddy  (HSDT) 

1.3 

1.23 

0.81 

0.8 

SCSC Simulated results (SFSDT) 

Reddy  (HSDT) 

1.3 

1.1 

0.6 

0.56 

 

 

4.3 Three layered sandwich plate subjected to uniform pressure  

The flexural behaviour of a sandwich plate constituted of two orthotropic face sheets and one orthotropic core [0/C/0] with its all 
edges simply supported under the influence of uniform pressure is examined in terms of deflection and stresses at critical points. 

The ratio of core-thickness (hc) to total thickness (h) of the plate is 0.8 while the thickness of each face-sheet (hf) is 0.1 times the 

thickness of plate. The material properties of the orthotropic core are given. 
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The parameter R is multiplied with the reduced stiffness coefficients of core to obtain the face sheets properties. The static 

analysis is performed for R= 5, 10, and 15 for the plate with a/h =10 and non-dimensional deflection and stresses as described in 

Eq. (19) are evaluated. Table 4.4 shows the comparison of the present results along with the established results. The comparison 

of the present results and the existing results with the exact solution reveals the superiority of the present theory. It is observed 

that the percentage difference of the present results from the exact solution (Srinivas, 1973) is 1.38% as compared to 3.03% of 

Pandya and Kant (1988), 2.26% of Touratier theory (Xiang et al, 2009), 1.83% of Karama's theory (Xiang et al, 2009), 1.88% of 

Ferreira et al. (2003), 1.66% of Mantari et al. (2012) and 1.32% of ZZ results presented by Sahoo and Singh (2013). Thus, with 

the similar or less computational cost, SFSDT evaluates more accurate and efficient results for the flexural behaviour of sandwich 

plates. 
 

 

Table 5.3:- Simply supported sandwich plate [0/C/0] subjected to UDL. 

 

Source 

 

R 

 

5 10 15 

Simulated results 

Exact (Srinivas, 1973) 

Touratier (Xiang et al.,2009) 

Karama (Xiang et al.,2009) 

Ferreira et al. (2003) 

Mantari et al. (2012) 

Sahoo and Singh (2013) 

257.31 

258.97 

253.989 

253.638 

257.11 

256.706 

258.4292 

155.88 

159.38 

153.139 

153.357 

154.658 

155.498 

159.1948 

116.91 

121.72 

113.964 

114.585 

114.644 

115.919 

121.56 

 

Table 5.4 shows the effect of individual random system parameters {bi= (1,…,14) =0.10} and fibre volume fraction on the 

dimensionless mean and COV of central deflection of piezoelectric elastically simply supported laminated  [0/90/C/90/0] square 

plate using SOPT for a/h=100. The effect of COV on central deflection with random change in volume fraction of fiber, Young’s 

modulus of fiber and matrix, plate thickness, lamination angle and load parameter are very high. Therefore, it is concluded that 

for sensitive  and safe applications like aerospace, nuclear and other related applications, tight control of these random system 

properties are required if high reliability of the plate is desired.   

Table 5.5 shows the effect of individual random system parameters {bi=(1,…,14) =0.10} and fibre volume fraction on the 

dimensionless mean and COV of central deflection of piezoelectric elastically simply supported laminated  [P/90C/90/0] square 

plate using SOPT for a/h=100, k1=100, k2=10. The effect of COV on central deflection with random change in volume fraction 

of fiber, Young’s modulus of fiber and matrix, plate thickness, lamination angle and load parameter are very high. Therefore, it is 
concluded that for sensitive  and safe applications like aerospace, nuclear and other related applications, tight control of these 

random system properties are required if high reliability of the plate is desired.   
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Table 5.4: Effects of individual random variable and fibre volume fraction on the dimensionless mean and COV of central 

deflection of laminated [0/90C/90/0] simply supported square plate 

bi 

 
Q 

COV, W0 

Vf=0.4 Vf=0.5 Vf=0.6 

MEAN COV MEAN COV MEAN COV 

Vf 

50 0.7574 0.1414 0.7108 0.1606 0.6897 0.1809 

100 1.3086 0.1404 1.2443 0.1595 1.2151 0.1796 

Ef1 

 

50 0.7591 0.0845 0.7134 0.0857 0.6934 0.0862 

100 1.3067 0.0832 1.2424 0.0845 1.2130 0.0850 

Ef2 

 

50 0.7633 0.0239 0.7179 0.0327 0.6982 0.0426 

100 1.3104 0.0240 1.2469 0.0328 1.2186 0.0428 

Em 

 

50 0.7642 0.0889 0.7184 0.0786 0.6983 0.0674 

100 1.3141 0.0897 1.2491 0.0792 1.2195 0.0680 

Gf12 

 

50 0.7621 0.0013 0.7165 0.0018 0.6965 0.0024 

100 1.3085 0.0014 1.2445 0.0019 1.2156 0.0026 

vf12 

 

50 0.7622 0.0011 0.7166 0.0014 0.6966 0.0017 

100 1.3086 0.0011 1.2446 0.0014 1.2441 0.0017 

h1 

 

50 0.7583 0.0798 0.7128 0.0796 0.6928 0.0795 

100 1.3054 0.0823 1.2412 0.0820 1.2119 0.0818 

theta 

50 0.7657 0.031 0.7200 0.030 0.7000 0.028 

100 1.3075 0.062 1.2438 0.060 1.2154 0.058 

k1 

 

50 0.7622 0 0.7166 0 0.6966 0 

100 1.3086 0 1.2446 0 1.2441 0 

k2 

 

50 0.7622 0 0.7166 0 0.6966 0 

100 1.3086 0 1.2446 0 1.2441 0 

E1p 

 

50 0.7622 0 0.7166 0 0.6966 0 

100 1.3086 0 1.2446 0 1.2441 0 

E2p 

 

50 0.7622 0 0.7166 0 0.6966 0 

100 1.3086 0 1.2446 0 1.2441 0 

G12p 

50 0.7622 0 0.7622 0 0.7622 0 

100 1.3086 0 1.3086 0 1.3086 0 

Q 

50 0.7645 0.0995 0.7187 0.0996 0.6985 0.0996 

100 1.3152 0.0992 1.2506 0.0992 1.2215 0.0993 
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Table 5.5: Effects of individual random variable and fibre volume fraction on the dimensionless mean and COV of central 

deflection of laminated [P/90C/90/0] simply supported square elastically supported plate 

bi 

 
Q 

W0 

Vf=0.4 Vf=0.5 Vf=0.6 

MEAN COV MEAN COV MEAN COV 

Vf 

50 0.1932 0.1076 0.1927 0.1354 0.1939 0.1661 

100 0.3827 0.1077 0.3819 0.1354 0.3846 0.1659 

Ef1 

 

50 0.1942 0.0164 0.1942 0.0154 0.1961 0.0139 

100 0.3843 0.0169 0.3843 0.0159 0.3880 0.0146 

Ef2 

 

50 0.1943 0.0397 0.1943 0.0543 0.1961 0.0714 

100 0.3846 0.0396 0.3845 0.0542 0.3881 0.0712 

Em 

 

50 0.1933 0.1337 0.1936 0.1190 0.1957 0.1028 

100 0.3831 0.1332 0.3835 0.1186 0.3875 0.1024 

Gf12 

 

50 0.1943 1.8484e-04 0.1944 2.4566e-04 0.1963 3.2892e-04 

100 0.3845 1.7734e-04 0.3846 2.3903e-04 0.3883 3.2542e-04 

vf12 

 

50 0.1943 2.1749e-04 0.1944 2.5222e-04 0.1963 2.7405e-04 

100 0.3845 2.2420e-04 0.3846 2.6145e-04 0.3883 2.8618e-04 

h1 

 

50 0.1942 0.0227 0.1942 0.0223 0.1961 0.0213 

100 0.3842 0.0235 0.3842 0.0232 0.3880 0.0222 

thetak 

50 0.1948 4.6161e-04 0.1947 3.5596e-04 0.1966 2.3738e-04 

100 0.3853 0.0015   0.3853 0.0013 0.3890 0.0011 

k1 

 

50 0.1942 0.0244 0.1943 0.0245 0.1962 0.0249 

100 0.3844 0.0242 0.3844 0.0243 0.3881 0.0247 

k2 

 

50 0.1940 0.0476 0.1940 0.0477 0.1959 0.0483 

100 0.3839 0.0471 0.3839 0.0473 0.3876 0.0479 

E1p 

 

50 0.1943 0.0038 0.1943 0.0046 0.1963 0.0050 

100 0.3845 0.0035 0.3845 0.0043 0.3883 0.0046 

E2p 

 

50 0.1943 0.0015 0.1944 0.0013 0.1963 0.0011 

100 0.3845 0.0015 0.3846 0.0013 0.3883 0.0011 
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G12p 

50 0.1943 3.4193e-05 0.1944 3.6867e-05 0.1963 4.3615e-05 

100 0.3845 3.5938e-05 0.3846 3.8617e-05 0.3883 4.5217e-05 

Q 

50 0.2062 0.0999 0.2026 0.0999 0.2010 0.0999 

100 0.4106 0.0998 0.4035 0.0998 0.4002 0.0998 

 

Table 5.5 shows the effect of individual random system parameters {bi (i=1,…,14) =0.10} and load parameters with fibre volume 
fraction on the dimensionless mean and COV of transverse central deflection of piezoelectric elastically supported laminated  

[P/90C/90/0] square simply supported plate using SOPT for a/h=100, and k1=100, k2=10. As the fibre volume fraction increases, 

the mean and corresponding COV of transverse central deflection increases with random change in Vf,  

 

The effect of COV on transverse central deflection central deflection with random change in volume fraction of fiber, Young’s 

modulus of fiber and matrix, plate thickness, lamination angle and load parameter are very high. Therefore, it is concluded that 

for sensitive  and safe applications like aerospace, nuclear and other related applications, tight control of these random system 

properties are required if high reliability of the plate is desired.   

 

 

6. Conclusion 

A C0 nonlinear finite element method based on SFSDT with von-Karman nonlinearity in conjunction with SOPT has been 
presented to obtain the mean and COV of transverse central deflection of elastically supported piezoelectric laminated sandwich 

composite plate. The following conclusions can be drawn from this study:  

1) The central deflection increases with increase the load parameter non linearly.  

2) As the foundation parameter increases, the central deflection decreases. The decrease of central deflection is highest for change 

in shear foundation. The effect of COV of central deflection is still highest for random change in shear foundation only  

3) Among the given piezoelectric layer attached at different location of fiber layers, the mean central deflection is highest when 

piezo layer is attached at bottom place of fiber layer, However, COV of central deflection is highest when piezoelectric layer is 

attached at second position of fiber layer at Q=50, while, lowest when piezolayer attached with first position, at Q=50, COV of 

central deflection is highest when piezoelectric layer is attached at last position of fiber layer at Q=250, while, lowest when 

piezolayer attached with fourth position, at Q=250.  

4) Among the different support conditions, mean central deflection of clamped supported plate is lowest while, COV of simply 
supported plate is lowest.  

5) As the fiber volume fraction increases, the mean central deflection decreases and COV of central deflection increases with 

increase of fiber volume fraction and effect are more pronounced when low volume of fiber with low load parameter is 

considered.  

 

A direct iterative based stochastic finite element method (DISFEM) using higher order shear deformation plate theory [HSDT] 

and nonlinear von Karman kinematic have been used to obtain the second order statistics (mean and SD) of transverse nonlinear 

central deflection of composite plate with multiple randomness in material properties, thermal expansion coefficient, contraction 

coefficient, lateral loading and lamina plate thickness. The hygrothermal mechanical properties obtained by micromechanical 

model greatly affect the transverse central deflection of the laminated composite shell. Increase the temperature and moisture 

concentration, the dimensionless mean and SD of transverse nonlinear central deflection increases indicating that the shell 

becomes more sensitive with higher temperature and moisture content. The hygrothermal effects are more determinant as the 
working temperature increases and reaches closer to the glass transition temperature. Among the different random system 

properties studied, the longitudinal Young’s modulus, mechanical loading and lamina thickness are most sensitive. The strict 

control of these parameters are therefore required if high reliability of the laminate composite shell is desired. The effect of volume 

fraction greatly influences the transverse central deflection of the shell. Increase the value of volume fraction mean transverse 

deflection and its SD decreases. It is due to the fact that with increase in fiber volume fraction, the stiffness of shell decreases. 

Clamped shell is most desirable in comparison with other support conditions for design point of view. 
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Figure Captions 

1. Geometry of laminated composite spherical shell. 

2. Schematic flow chart of stochastic nonlinear bending analysis. 

3. Validation study of DISFEM and independent MCS the transverse nonlinear central deflection of laminated composite square 

angle-ply [450/-450]2T   spherical shell. 

 

Notations: 

Aij, Bij, etc:  Laminate stiffness’s 

BB:   Strain-displacement matrix 

a, b and h:          Shell length and breadth 

bi:   Basic random system properties 

E11, E22:   Longitudinal and Transverse elastic moduli 

G12, G13, G23:  Shear moduli 
h:   Thickness of the Shell 

KL, KNL :               Linear and nonlinear bending stiffness matrix 
( )GK :  Thermal geometric stiffness matrix 

NE, N:   Number of elements, number of layers in the laminated plate 

NN:   Number of nodes per element 

i    Shape function of ith node 

Q:   Reduced elastic material constants 

q:   Vector of unknown displacements, displacement vector of eth element 

U,  Strain energy due to bending  

u, v, w:                Displacements of a point on the mid plane of plate 

 u v w :  Displacement of a point along  x y z  

{ }, { }:   Stress vector, Strain vector 

1 2and  :  Rotations of normal to mid plane about the 
1 2and   and axis respectively 

    :  Cartesian coordinates 

RVs:   Random variables 

∆T and ∆C:          Change in temperatures and moisture concentration 
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  Aij, Bij, etc         : Laminate stiffness’s 

a, b and h                       : Plate length, breadth and thickness 

h : Thickness of the shell 

12 : Poisson’s ratio of cylindrical shell 

bi   : Basic random variables 

E11, E22   : Longitudinal and Transverse elastic moduli 

G12, G13, G23    : Shear moduli 

KL, KNL : Linear and nonlinear plate stiffness matrix 

Kg and Km : Thermal and moiture geometric stiffness matrix 

D : Elastic stiffness matrices 

ne, n : Number of elements, number of layers in the laminated plate 

1

TN 2

TN , 
1 2

TN
  : In-plane thermal buckling loads 

1

VN ,
2

VN ,
1 2

VN
  : In-plane electrical loads 

kE  : The electric field vector 

nn : Number of nodes per element 

 Ni : Shape function of ith node 

kD  : The electric displacement vector 

p

ijklC  : Reduced elastic material constants 

f, {f}(e) : Vector of unknown displacements, displacement vector of eth element 

u, v, w : Displacements of a point on the mid plane of shell 

1u , 2u , 3u  : Displacement of a point  1 2    

,ij i j   : Stress vector, Strain vector 

kl  
: The dielectric coefficient matrix 

kle
 

: The matrix of the piezoelectric coefficients 

1 , 2  : Rotations of normal to mid plane about the 
1  and 

2  axis respectively 

θ1, θ2, θ3 : Two slopes and angle of fiber orientation wrt 
1 - axis for kth layer 

 1 2    : Cartesian coordinates 

kV
 

: Applied voltage across the kth ply 

 λ, Var(.) : Eigen value and variance 

Ncrnl : The dimensionalized post buckling load 

crnl  : The nondimensionlized critical buckling load 

RVs   : Random variables 

T, C, : Difference in temperatures and moistures 

α11, α22,  β11,  β22 : Thermal expansion and hygroscopic coefficients along 1  and 2 axis, 

respectively. 
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a/b=1,a/h=100, 45/-45/C/-45/45, SSSS, Q=50 
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