ESTIMATION OF NON-STEROIDAL ANTI-INFLAMMATORY DRUGS BY RP-HPLC TECHNIQUE OF ANALYSIS

¹Minakshi Dhoru, ²Priyanshi Patel, ³Pinak Patel, ⁴Krunal Detholia

¹Assistant Professor (Pharmaceutical Quality Assurance), ²Research Scholar, ³Associate Professor (Pharmaceutical Quality Assurance), ⁴Assistant Professor (Pharmaceutics)

¹ Pharmaceutical Quality Assurance ¹ Smt. S.M. Shah Pharmacy College, Mehemdabad, Gujarat, India – 387130

ABSTRACT

Analytical method development and its validation is an important aspect in drug discovery process and Reverse Phase-High Performance Liquid Chromatography (RP-HPLC) is the most common analytical method utilized for analysis of drug due to its accuracy, selectivity and sensitivity. Development and validation of analytical method providing accurate and precise data to ensure drug for its quality and safety. Several methods of analysis are reported/available for estimation of NSAIDs including RP-HPLC. This review article briefly discusses about analytical methods available for the estimation of Non-Steroidal antiinflammatory drugs specially focusing on RP-HPLC.

KEYWORDS: - NSAIDs, analysis of NSAIDs, RP-HPLC, Analytical method

INTRODUCTION

The technique of RP -HPLC is so called because of its improved performance when compared to other chromatographic techniques. Since high pressure is used when compared to other chromatography, it is so called as high pressure liquid chromatography.^[1]

In reverse phase technique, stationary phase is a non-polar in nature and polar mobile phase is used. Hence, polar components get eluted first and non-polar compounds are retained for longer time. Due to the polar nature of the most of the drugs and pharmaceuticals, they are eluted faster and not retained for a longer time, which is advantageous. Different columns used are ODS (Octadecyl silane), C18, C8, C4, etc.^[1]

The advancement in chromatography technique is largely due to the introduction of the versatile technique called liquid chromatography, which is frequently called high-performance liquid chromatography. That terms can be abbreviated as HPLC. Non-steroidal anti-inflammatory drugs(NSAIDs)are among the most frequently prescribed drugs worldwide and are used for relief of inflammatory ,chronic(e.g., rheumatoid arthritis, osteoarthritis, and gout), and acute (e.g., headache, postoperative pain, and orthopedic fractures) pain conditions ^[2]. The anti-inflammatory activity of NSAIDs and most of their other pharmacological effects are related to the inhibition of the conversion of arachidonic acid to prostaglandins, which are mediators of the inflammatory process. NSAIDs are also potent inhibitors of cyclooxygenase ; thereby reducing the production of prostaglandins, prostacyclin, and thromboxane products ^[3]. Table1 represents the classification of NSAIDs based on their chemical structure ^[4].

CLASS	DRUGS			
1.Salicylic acid derivatives	Acetyl salicylic acid (aspirin), sodium salicylate, salicylamide.			
2.p-aminophenol derivatives	Paracetamol			
3.2- Aryl propionic acid derivatives	Ibuprofen, ketoprofen, naproxen.			
4.Enolic acid derivatives	Meloxicam, piroxicam, tenoxicam, droxicam.			
5.Arylalkanoic acid derivatives	Indomethacin, Diclofenac, aceclofenac, etodolac, sulindac.			
6.N-Arylanthranilic acids (fenamic acid)	Mefenamic acid, tolfenamic acid, meclofenamic acid			
7.Selective COX-2 inhibitors	Celecoxib, rofecoxib, etoricoxib, parecoxib.			
8.Sulphonilides	Nimesulide.			
9.Benzoxazocine derivatives	Nefopam.			

 Table 1

 Chemical classification of non-steroidal anti-inflammatory agents^[4].

Table 2	
---------	--

Chromatographic condition for NSAID class 1 drugs: Salicylic acid derivatives

Name of Drug	Sample Matrix	Chromatographic Condition	Mobile Phase	Detection
Aspirin ^[23]	Tablet	Hypersil BDSC18 column (100×4.6 mm, 3µm)	Sodium perchlorate buffer (pH2.5):acetonitrile : isopropyl alcohol(85:14:1%v/v)	UV detection at 275 nm
Salicylamide ^[5]	Bulk API dosage form	$\begin{array}{c} C18~(250~cm\times 4.6\\ mm,~~5\mu m~~)\\ column \end{array}$	Buffer: acetonitrile (40:60v/v). pH adjusting to 3.2	UV- detection at 245 nm

Table 3

Chromatographic condition for class 2 drugs: p-aminophenol derivatives

Name of Drug	Sample Matrix	Chromatographic	Mobile Phase	Detection
		Condition		
Paracetamol ^[21]	Tablet	Phenomenex C18	Acetonitrite :water	UV detection at 210
		column (250 mm	(60:40 v/v)	nm
		×4.6 mm, 5µm)		

 Table 4

 Chromatographic condition for class 3 drugs: 2-Arylpropionic acid derivatives

Name of Drug	Sample Matrix	Chromatographic	Mobile Phase	Detection
Ibuprofen ^[6]	Tablet	ConditionThermohypersilBDS, (150×4.6mm,5µm)	Buffer (HPLC grade water : triethylamine :orthophosphoric acid 1000:1.0:0.5 ml)	UV detection at 220 nm
Ketoprofen ^[20]	Tablet	LiChrosorb C18 column (250mm×4.6mm , 5µm)	Methanol : 0.1 M ammonium acetate buffer pH6.9: triethylamine : acetonitrite (73:20:5:2 v/v/v/v)	UV detection at 230 nm
Naproxen ^[7]	Human plasma	Ace C18 column (250mm×4.6mm , 5μm) with guard column (4mm×3mm, Phenomenex	20Mm phosphoric acid buffer (pH7) (0.1% trifluoroacetic acid :acetonitrite(v/v)	UV detection at 225nm

 Table 5

 Chromatographic condition for class 3 drugs: Enolic acid derivatives

Name of Drug	Sample Matrix	Chromatographic	Mobile Phase	Detection
		Condition		
Meloxicam ^[8]	Tablet	Micro Bandapak	Methanol : water (70	UV detection at 230
		125A C18 (10 µ)	:30 v/v)	nm
		column		
Piroxicam ^[9]	Pure sample(API)	Inertsil, ODS – 3V,	Methanol : buffer	PDA detection at
	_	(150mm ×4.6mm,	pH(3) (55:45%v/v)	240 nm
		5μ)		
Tenoxicam ^[10]	Blood plasma	ODS hypersil C18	0.1M5	UV detection at 381
		column	$KH_2PO_4:ACN(6:4\% v/v)$	nm

Name of Drug	Sample Matrix	Chromatographic Condition	Mobile Phase	Detection
Diclofenac sodium ^[11]	Bulk and Tablet formulations	Hypersil C18 column (250mm×4.6mm,5µm)	Acetonitrite: Phosphoric acid buffer pH7(50:50% v/v)	UV detection at 220 nm
Aceclofenac ^[17]	Tablet	Promesil C18 (250mm×4.6mm,5µm)	Water: acetonitrite(55:45 v/v)	PDA detection at 277 nm
Etodolac ^[12]	Combined dosage form	C18 column (250mm×4.5mm)	Water :acetonitrite (50:50% v/v),pH adjust at 5.6 by orthophosphoric acid	UV detection at 232 nm
Sulindac ^[13]	Human serum	Hypersil C18 column (10 cm × 5mm,3µm 0	Methanol :acetate buffer: acetonitrite (59:29:12)	UV detection at 328 nm

 Table 6

 Chromatographic condition for class 4 drugs: Arylalkanoic acid derivatives

 Table 7

 Chromatographic condition for class 5 drugs: N-Arylanthralinic acid derivatives (fenamic acid)

Name of Drug	Sample Matrix	Chromatographic	Mobile Phase	Detection
		Condition		
Mefenamic acid ^[18]	Bulk API	Grace, alltima C18	(1%triethylamine	UV detection at
		(250mm×4.6mm,5µm)	aqueous buffer, adjust	220nm
			pH 2 by	
			$H_3PO_4(85\%)$:methanol	
			:ACN (35:20:45)	
Tolfenamic acid ^[19]	Meat / milk	C18 column	0.1% phosphoric acid	PDA detector at
		(250mm×4.6mm,5µm)	:ACN(45:55% v/v)	230nm

 Table 8

 Chromatographic condition for class 6 drugs: COX -2 inhibitors

Name of Drug	Sample Matrix	Chromatographic Condition	Mobile Phase	Detection
Celecoxib ^[14]	Micro emulsion	C18 column	Methanol: water (75:25)	UV detection at 250 nm
Rofecoxib ^[24]	Human plasma	Sherisorb ODSI column	acetonitrite: Methanol: 0.067KH ₂ PO ₄ (27:20:53 %v/v/v) pH6.95 adjust by using NaOH	DAD at 244 nm
Etoricoxib ^[15]	Pharmaceutical dosage forms	Hypoersil ODS C18 (250×4.6mm,5µm)	ACN: 0.05M KH ₂ PO ₄ (pH4.2) (46:54% v/v)	UV detection at 280 nm

 Table 9

 Chromatographic condition for class7 drugs: Sulphonilides

Name of Drug	Sample	Chromatographic	Mobile	Detection
	Matrix	Condition	Phase	
Nimesulide ^[16]	Tablet	ODS column	Water :	UV detection
			methanol	at 254 nm
			(30:70%v/v)	

Table 10

Chromatographic condition for class 9 drugs: Benzoxazocine derivatives

Name of Drug	Sample Matrix	Chromatographic Condition	Mobile Phase	Detection
Nefopam ^[22]	Human plasma	C18 symmetry column (150mm×4.6mm,5µm)	(15mM KH ₂ PO ₄ with 5mM octane sulfonic acid pH3.7):ACN (77:33)%v/v	UV detection at 210 nm

Conclusion

This review briefs about the analytical methods development and validation of NSAIDs in various pharmaceutical formulations, bulk and biological samples alone or in combination with other drugs by using RP-HPLC.

Purpose of using RP-HPLC method is for estimation of NSAIDs and validated that method as per ICH guideline. Beneficial properties of RP-HPLC method for estimation of NSAIDs is its high sensitivity, accuracy and reproducibility.

Also the article will be very beneficial for many researchers working in the area of estimation of NSAIDs as they can refer most of the RP-HPLC methods of estimation of NSAIDs by referring this single article.

Acknowledgement

The purpose of this review would not have been possible without help and guidance of many people. I am very much thankful to my project guide Ms. Minakshi M. Dhoru (Assistant professor, Department of Pharmaceutical Qulaity Assurance), Smt. S.M. Shah pharmacy college, Mahemdavad, as she is ever ready to help me in achieving my task, Dr. Pinak Patel (HOD, Department of Pharmaceutical Quality Assurance) Smt. S.M. Shah pharmacy college, Mahemdavad, and Mr. Krunal Detholia (Department of Pharaceutics), Smt. S.M. Shah pharmacy college, Mahemdavad) for providing resource, guidance and support.

References

- 1. Ravi Shankar. 2001.International methods of chemical analysis: 18.2-18.4.
- 2. McCarberg, B. and Gibofsky, A. 2012. Need to develop new non steroidal anti-inflammatory drug formulations. Clinical Therapeutics, 34(9):1954–1963
- 3. Kovala-Demertzi, D. 2006. Recent advances on non-steroidal anti-inflammatory drugs, NSAIDs: organotin complexes of NSAIDs. Journal of Organometallic Chemistry, 691 (8):1767–1774.
- 4. Starek, M. and Krzek, j. 2009. A review of analytical techniques for determination of oxicams, nimesulide and nabumetone Talanta, 77 (3):925–942.
- 5. Desai, N. 2015. Simultaneous Rp-HPLC determination of salicylamide, salicylic acid and deferasirox in the bulk API dosage forms. Journal of Taibah University for Science, 9(2):245-251.
- 6. Pattanaik, S et al. 2013. Assay method development and validation of ibuprofen tablets by HPLC. Pelagia Research Library, 4(4):91-96.
- 7. Bilal,Y et al.2014. HPLC Method for Naproxen Determination in Human Plasma and Its Application to a pharmacokinetic study in Turkey. Journal of Chromatographic Science, 52(7):584-589.
- Arayne, MS. Sultana, N. 2005. A new RP-HPLC method for analysis of meloxicam in tablets. Pak J Pharm Sci, 18(1):58-62.
- 9. Navalgund, S. 2010. Analytical method development and validation of Piroxicam by RP-HPLC. Scholar Research Library, 2(2):217-222.
- 10. Madni, MA et al. 2016. Determination of Tenoxicam in the plasma by reverse phase-HPLC method using single step extraction technique: A reliable and cost effective approach. Acta Pol Pharm, 73(5):1123-1128.
- 11. Labhade, S. Chaudhari, S.Saudagar, R. 2018. Development and validation of RP-HPLC method for simultaneous determination of Diclofenac sodium and Tizanidine hydrochloride in bulk and tablet formulation. Journal of Analytical & Pharmaceutical Research,7(2):244-247.
- 12. Paramasivam,B et al.2011.RP-HPLC Method Development and Validation of Etodolac and Paracetamol in Combined Dosage Form. Asian J Research Chem, 4(7)1073-1076.
- Lixia, J. 2000-03. Rapid Analysis of Sulindac in Human Serum by HPLC. Chinese Journal of Pharmaceutical Analysis, 20(3):164-164.
- 14. Baboota,S et al. 2007. Development and validation of stability-indicating HPLC method for analysis of celecoxib (CXB) in bulk drug and microemulsion formulations. Acta chromatographica, 18(18):116-120.
- 15. Topalli, S. Mathrusri, A. 2012. Validated RP-HPLC Method for the Assay of Etoricoxib (A Non-Steroidal Anti-Inflammatory Drug) in pharmaceutical dosage forms. E-Journal of Chemistry, 9(2):832-838.

- 16. Zeng,Z and Zhang,H. 1996.Determination of nimesulide by HPLC method. Journal of Chinese Pharmaceutical Sciences, 31(10):610-612.
- 17. Sharma, S. and Chippa, R. 2011. RP-HPLC Method for estimation of Aceclofenac in tablet dosage form. International Journal of Drug Research and Technology, 1(1):1-7.
- 18. Mohammad, A. Bashir, E, Youssef, A. 2017. Determination of Mefenamic acid in Pharmaceutical Drugs and Wastewater by RP-HPLC. Journal of Analytical, Bioanalytical and Separation Techniques, 2(2):85-88.
- 19. Lee, J. Cho, S. Lim, C. and Chang, M. 2017. Development of an Improved HPLC-PDA Method for the Determination of Tolfenamic Acid in Meat and Milk. Journal of Chromatography & Separation Techniques, 8(5):381.
- 20. Tsvetkova, B. and Peikova, L. 2013. HPLC Determination of ketoprofen in tablet dosage form. Trakia Journal of Sciences, 1:55-59.
- 21. Solanki, P. and Boob, S. 2012. RP-HPLC Method for estimation of Paracetamol from Pharmaceutical Formulation Febrinil. Scientific Reviews & Chemical Communication, 2(3):232-236.
- 22. Aymard,G et al. 2002. Sensitive determination of nefopam and its metabolite desmethyl-nefopam in human biological fluids by HPLC. Journal of Pharmaceutical and Biomedical Analysis, 30(4):1013-1021.
- 23. Jamadar, L. et al. 2010. Analytical Method Development and Validation for aspirin. International Journal of ChemTech Research CODEN, 2(1):389-399.
- 24. Savaser Ayhan et al. 2004. RP-HPLC Assay of Rofecoxib from Pharmaceutical Dosage Forms and Human Plasma and Its Drug Dissolution Studies. Analytical Letters, 37(1): 81-97.

