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ABSTRACT 

Symmetry properties of positive solutions for elliptic boundary value problems in Rn are considered. We employ the moving 

plane method based on maximum principle on unbounded domains to obtain the result on symmetry of solutions.  
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INTRODUCTION 

In this paper we study the radial symmetry of positive solutions for elliptic boundary value problem in Rn. We consider the 

problem of the form 

∆𝑢 + 𝑏1

𝜕𝑢

𝜕𝑥1

+   𝑏2

𝜕𝑢

𝜕𝑥2

+  … … … +  𝑏𝑛

𝜕𝑢

𝜕𝑥𝑛

+  𝑓(|𝑥|, 𝑢) = 0 

𝑢(𝑥) → 0  𝑎𝑠  |𝑥| → ∞            𝑤ℎ𝑒𝑛 𝑛 ≥ 2 

We establish the symmetry result for the boundary value problem (1.1) in general case. Our arguments are based on the 

moving plane method. The device goes back to Alexandrov [8] and was first developed by J. Serrin [16], in the theory of partial 

differential equations, and  later it was extended and generalized by Gidas, Ni and Nirenberg [5,6].The moving plane method has been 

further improved and simplified by Berestycki and Nirenberg [1,2] with the aid  and Cong-ming Li [9].  Riechel [17] obtained 

symmetry results for semilinear elliptic boundary value problem in exterior domain. 

Y Naito [10,11] obtained symmetry result for semilinear elliptic equations. Further Naito [12] studied the semilinear elliptic problem 

Δ𝑢 + 𝑓(|𝑥|, 𝑢) = 0  in Rn  

In paper [13] author studied the symmetric solutions of nonlinear elliptic Neumann BVP 

∆𝑢 =  −1      𝑖𝑛 Ω      with  u = 0 

𝜕𝑢

𝜕𝜂
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡   

Our proofs shows that the technique used by Berestycki and Nirenberg [1,2], Gidas, Ni and Nirenberg [5,6], Serrin [16], 

Cafarelli, Gidas and Spruck [3], Patil and Dhaigude [14] are useful for the study of symmetry of solutions of the elliptic boundary 

value problems. 

In this paper we present an approach based on the maximum principle in unbounded domains together with the method of 

moving planes. In section 1 we state the main result about the symmetry of solutions and discuss the method of moving planes. 

Second section is devoted to the statements and proofs of some essential lemmas. Third section contains proof of the main result 

about symmetry of positive solutions of boundary value problem. 
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1.  STATEMENT OF MAIN RESULT 

In the boundary value problem 

∆𝑢 + 𝑏1

𝜕𝑢

𝜕𝑥1

+   𝑏2

𝜕𝑢

𝜕𝑥2

+  … … … +  𝑏𝑛

𝜕𝑢

𝜕𝑥𝑛

+  𝑓(|𝑥|, 𝑢) = 0 

                                                                                                                                     (1.1) 

𝑢(𝑥) → 0  𝑎𝑠  |𝑥| → ∞    𝑤ℎ𝑒𝑛 𝑛 ≥ 2 ,    𝑏1, 𝑏2, … , 𝑏𝑛 ∈   [0 , ∞)  

Assume that 𝑏1, 𝑏2, … , 𝑏𝑛 ∈   [0 , ∞) 

f(r, u) is continuous and C1 in 𝑢 ≥ 0 and f(r, u) is  nonincreasing in r > 0 for each fixed 𝑢 ≥ 0 .  

Let 𝑢 ∈  𝐶2(𝑅𝑛) be the solution of the equation (1.1) . 

Define 𝑈(𝑟) = sup{𝑢(𝑥) ∶ |𝑥|  ≥ 𝑟} and  

Φ(𝑟) = sup {
𝜕𝑓

𝜕𝑢
( 𝑟 , 𝑠): 0 ≤ 𝑠 ≤  {sup 𝑢(𝑥)| |𝑥| ≥ 𝑟 }} 

Assume that there exists a positive function w on |𝑥| ≥ 𝑅0for some 𝑅0 > 0  satisfying  

∆𝑤 +  𝑏1
𝜕𝑤

𝜕𝑥1
+   𝑏2

𝜕𝑤

𝜕𝑥2
+  … … … +  𝑏𝑛

𝜕𝑤

𝜕𝑥𝑛
+  Φ(|𝑥|)𝑤 ≤ 0 𝑖𝑛 |𝑥| ≥ 𝑅0       (1.2) 

and 

lim
|𝑥|→∞

𝑈(|𝑥|)

𝑤(𝑥)
=   0                                                (1.3) 

Then u must be radially symmetric about some point 𝑥0 ∈ 𝑅𝑛   𝑎𝑛𝑑  𝑢𝑟 < 0 𝑓𝑜𝑟 𝑟 > 0. 

Before proving the result we give the outline of the moving plane method.[4] 

i. Consider the Euclidean space Rn for an example. 

ii. Let u be the positive solution of a certain problem. 

iii. If we want to show that the solution u is symmetric and monotone in the given direction then assume that direction as X1-

axis.  

iv. For any real number 𝜆, let𝑇𝜆 =  {𝑥 =  (𝑥1, 𝑥2, … , 𝑥𝑛) ∶  𝑥1 =  𝜆}.     

                    This plane is perpendicular to X1direction and it is the plane that we will move. 

v. Let Σ𝜆denote the region to the left of the plane. i.e. Σ𝜆 =  {𝑥 =∈  𝑅𝑛  ∶   𝑥1 <  𝜆}. 

vi. Let 𝑥𝜆 be the reflection of the point x about the plane 𝑇𝜆 . i.e. 𝑥𝜆 =  (2𝜆 −  𝑥1 , 𝑥2, … , 𝑥𝑛) 

vii. We compare the values of solution u at these two points x and 𝑥𝜆. We want to show that u is symmetric about some plane 

𝑇𝜆0. For this purpose we have to check that values of u at these points must be same. 

viii. Let 𝑉𝜆(𝑥) =  𝑢(𝑥) −  𝑢(𝑥𝜆). 

ix. In order to show that there exists some 𝜆0such that 𝑉𝜆0(𝑥) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ Σ𝜆0 

We generally do this through the following two steps. 

Step I : Prepare to move the plane. 

Show that for 𝜆 is sufficiently negative, we have 𝑉𝜆(𝑥)  ≥ 0   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ Σ𝜆.Then we are able to start off from this neighborhood at 

𝑥1 =  −∞ and move the plane 𝑇𝜆 along the X1- direction to the right as long as the inequality 𝑉𝜆(𝑥)  ≥ 0   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ Σ𝜆  holds. 

Step II:Moving the plane 

We continuously move this plane this way up to its limiting position. Define 
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𝜆0 = sup{𝜆 ∶  𝑉𝜆(𝑥)  ≥ 0   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ Σ𝜆}.  

We prove that u is symmetric about the plane 𝑇𝜆0 𝑖. 𝑒. 𝑉𝜆0(𝑥) = 0   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ Σ𝜆0. 

This is usually carried out by the method of contradiction. 

We show that if  𝑉𝜆0(𝑥) ≠ 0 then there would exist 𝜆 ≥ 0 such that 𝑉𝜆(𝑥)  ≥ 0   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ Σ𝜆  holds and this contradicts to the 

definition of 𝜆0. 

Thus key to the moving plane method is to establish inequality𝑉𝜆(𝑥)  ≥ 0   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ Σ𝜆 . For this task in partial differential 

equations Maximum principles are powerful tools. 

 

2. STATEMENTS AND PROOFS OF SOME ESSENTIAL LEMMAS: 

Before going to prove main result we will state some useful results.  We also state and prove some useful lemmas. 

Theorem 2.1 MEAN VALUE THEOREM [15]: If u is harmonic in D..𝑢(𝑥̅ , 𝑦̅)is equal to its mean value taken over any circle in D 

with center at (𝑥̅ , 𝑦̅)   and  

𝑢(𝑥̅ , 𝑦̅) =  
1

2𝜋𝑅
∫ 𝑢𝑑𝑠

𝑅

 

 

Theorem 2.2 STRONG MAXIMUM PRINCIPLE [15]: Suppose that 𝑢 ≠ 0  satisfies 𝐿(𝑢) ≤ 0in Ω and 𝑢 ≥ 0 on Ω. Furthermore 

that there exist a function 𝑤 > 0  on Ω ∪ 𝜕Ω and  𝐿(𝑤) ≤ 0  𝑖𝑛 Ω. If 
𝑢(𝑥)

𝑤(𝑥)
→ 0 . as |𝑥| →  ∞, 𝑥 ∈  Ω,  then 𝑢 > 0 𝑖𝑛 Ω 

 

Lemma 2.1 HOPF BOUNDARY LEMMA [7]: Suppose that Ω satisfies the interior sphere condition at 𝑥0 ∈  𝜕Ω. Let L be strictly 

elliptic with 𝑐 ≤ 0. If 𝑢 ∈  𝐶2(Ω)  ∩ 𝐶(Ω̅) satisfies 𝐿(𝑢) ≥ 0  and  

max
Ω̅

𝑢(𝑥) = 𝑢(𝑥0) 

Then, either 𝑢 = 𝑢(𝑥0)𝑖𝑛 Ω  𝑜𝑟 
𝑢(𝑥0)−  𝑢 (𝑥0+ 𝑡 𝜈)

𝑡
> 0,

𝑡 →  0   

𝑙𝑖𝑚𝑖𝑛𝑓

 possibly infinity, for every direction 𝜈  pointing in to an interior sphere.  If  

𝑢 ∈ 𝐶1(Ω) ∪ {0} , then 
𝜕𝑢

𝜕𝜈
< 0. 

 

Lemma 2.2 If 𝜆 > 0  𝑡ℎ𝑒𝑛 |𝑥𝜆|  ≥  |𝑥|  𝑓𝑜𝑟 𝑥 ∈ Σ𝜆 

Proof: Let 𝜆 > 0  

|𝑥𝜆|
2

=  (2𝜆 −  𝑥1)2 + 𝑥2
2 + … + 𝑥𝑛

2 

          =   4𝜆2 −  4 𝜆𝑥1 +  𝑥1
2 + 𝑥2

2 +  … + 𝑥𝑛
2 

         = 4𝜆(𝜆 − 𝑥1) +  𝑥1
2 + 𝑥2

2 + … +  𝑥𝑛
2 

         = 4𝜆(𝜆 −  𝑥1) +  |𝑥|2 

∴  |𝑥𝜆|
2

−  |𝑥|2 = 4𝜆(𝜆 − 𝑥1) 

As 𝜆 > 𝑥1 for 𝑥 ∈ Σ𝜆  we have 𝜆 −  𝑥1 > 0 

∴  |𝑥𝜆|
2

−  |𝑥|2 ≥ 0   
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∴  |𝑥𝜆|
2

 ≥   |𝑥|2 

|𝑥𝜆|  ≥  |𝑥|  𝑓𝑜𝑟 𝑥 ∈ Σ𝜆 

 

Lemma 2.3 Let > 0  , 𝑏𝑖  𝑎𝑛𝑑 
𝜕𝑢

𝜕𝑥𝑖
 have same sign then 𝑉𝜆 satisfies 

∆ 𝑉𝜆 +  𝑏1

𝜕𝑉𝜆

𝜕𝑥1

+ 𝑏2

𝜕𝑉𝜆

𝜕𝑥2

  +  … +  𝑏𝑛

𝜕𝑉𝜆

𝜕𝑥𝑛

+ 𝐶𝜆(𝑥)𝑉𝜆  ≤ 0         𝑖𝑛   Σ𝜆 

∵  𝐶𝜆(𝑥)  =  ∫ fu (|x|, u (xλ) +  t (u(x) −  u (xλ)))  dt
1

0

 

Proof: Let ∆ 𝑢 +  𝑏1
𝜕𝑢

𝜕𝑥1
+ 𝑏2

𝜕𝑢

𝜕𝑥2
  +  … + 𝑏𝑛

𝜕𝑢

𝜕𝑥𝑛
+ 𝑓(|𝑥|, 𝑢) = 0    be a semilinear elliptic equation. Suppose 𝑢(𝑥) = 𝑢(𝑥1, 𝑥2,

𝑥3 , … , 𝑥𝑛) 

∴ 𝑢(𝑥𝜆) =  𝑢( 2𝜆 −  𝑥1, 𝑥2, 𝑥3 , … , 𝑥𝑛) 

Differentiating we get 
𝜕𝑢(𝑥𝜆)

𝜕𝑥1
=

𝜕𝑢(𝑥)

𝜕𝑥1
(−1),

𝜕𝑢(𝑥𝜆)

𝜕𝑥2
=

𝜕𝑢(𝑥)

𝜕𝑥2
 ,  

𝜕𝑢(𝑥𝜆)

𝜕𝑥3
=

𝜕𝑢(𝑥)

𝜕𝑥3
 , … ,

𝜕𝑢(𝑥𝜆)

𝜕𝑥𝑛
=

𝜕𝑢(𝑥)

𝜕𝑥𝑛
 

Differentiating second time  

𝜕2𝑢(𝑥𝜆)

𝜕𝑥1
2 =

𝜕2𝑢(𝑥)

𝜕𝑥1
2  ,

𝜕2𝑢(𝑥𝜆)

𝜕𝑥2
2 =

𝜕2𝑢(𝑥)

𝜕𝑥2
2  ,  

𝜕2𝑢(𝑥𝜆)

𝜕𝑥3
2 =

𝜕2𝑢(𝑥)

𝜕𝑥3
2  , … , 

𝜕2𝑢(𝑥𝜆)

𝜕𝑥𝑛
2 =

𝜕2𝑢(𝑥)

𝜕𝑥𝑛
2  

Therefore we have following two equations  

∆ 𝑢(𝑥) + 𝑏1

𝜕𝑢(𝑥)

𝜕𝑥1

+  𝑏2

𝜕𝑢(𝑥)

𝜕𝑥2

  +  … + 𝑏𝑛

𝜕𝑢(𝑥)

𝜕𝑥𝑛

+ 𝑓(|𝑥|, 𝑢(𝑥)) = 0     

∆ 𝑢(𝑥𝜆) +  𝑏1

𝜕𝑢(𝑥𝜆)

𝜕𝑥1

+  𝑏2

𝜕𝑢(𝑥𝜆)

𝜕𝑥2

  +  … + 𝑏𝑛

𝜕𝑢(𝑥𝜆)

𝜕𝑥𝑛

+ 𝑓(|𝑥𝜆|, 𝑢(𝑥𝜆)) = 0     

Subtracting we get, 

 0 =  [∆ 𝑢(𝑥) + 𝑏1

𝜕𝑢(𝑥)

𝜕𝑥1

+  𝑏2

𝜕𝑢(𝑥)

𝜕𝑥2

  +  … +  𝑏𝑛

𝜕𝑢(𝑥)

𝜕𝑥𝑛

+ 𝑓(|𝑥|, 𝑢(𝑥))]

−  [∆ 𝑢(𝑥𝜆) +  𝑏1

𝜕𝑢(𝑥𝜆)

𝜕𝑥1

+ 𝑏2

𝜕𝑢(𝑥𝜆)

𝜕𝑥2

  +  … +  𝑏𝑛

𝜕𝑢(𝑥𝜆)

𝜕𝑥𝑛

+ 𝑓(|𝑥𝜆|, 𝑢(𝑥𝜆))] 

= ∆ 𝑢(𝑥) − ∆ 𝑢(𝑥𝜆) + (𝑏1

𝜕𝑢(𝑥)

𝜕𝑥1

+  𝑏2

𝜕𝑢(𝑥)

𝜕𝑥2

  +  … +  𝑏𝑛

𝜕𝑢(𝑥)

𝜕𝑥𝑛

)  −  (𝑏1

𝜕𝑢(𝑥𝜆)

𝜕𝑥1

+ 𝑏2

𝜕𝑢(𝑥𝜆)

𝜕𝑥2

  +  … +  𝑏𝑛

𝜕𝑢(𝑥𝜆)

𝜕𝑥𝑛

) 

+ 𝑓(|𝑥|, 𝑢(𝑥)) − 𝑓(|𝑥𝜆|, 𝑢(𝑥𝜆)) 

= ∆ ( 𝑢(𝑥) − 𝑢(𝑥𝜆)) + 𝑏1 (
𝜕𝑢(𝑥)

𝜕𝑥1

−  
𝜕𝑢(𝑥𝜆)

𝜕𝑥1

) +  𝑏2 (
𝜕𝑢(𝑥)

𝜕𝑥2

−  
𝜕𝑢(𝑥𝜆)

𝜕𝑥2

) + 𝑏3 (
𝜕𝑢(𝑥)

𝜕𝑥3

−  
𝜕𝑢(𝑥𝜆)

𝜕𝑥3

) + ⋯ +  𝑏𝑛 (
𝜕𝑢(𝑥)

𝜕𝑥𝑛

− 
𝜕𝑢(𝑥𝜆)

𝜕𝑥𝑛

)

+ +𝑓(|𝑥|, 𝑢(𝑥)) − 𝑓(|𝑥𝜆|, 𝑢(𝑥𝜆)) 

= ∆(𝑉𝜆(𝑥)) + 𝑏1

𝜕(𝑉𝜆(𝑥))

𝜕𝑥1

+ 𝑏2

𝜕(𝑉𝜆(𝑥))

𝜕𝑥2

 + 𝑏3

𝜕(𝑉𝜆(𝑥))

𝜕𝑥3

 +  … + 𝑏𝑛

𝜕(𝑉𝜆(𝑥))

𝜕𝑥𝑛

+  𝑓(|𝑥|, 𝑢(𝑥)) − 𝑓(|𝑥𝜆|, 𝑢(𝑥𝜆)) 

≥ ∆(𝑉𝜆(𝑥)) + (𝑏1

𝜕

𝜕𝑥1

+ 𝑏2

𝜕

𝜕𝑥2

 + 𝑏3

𝜕

𝜕𝑥3

 +  … +  𝑏𝑛

𝜕

𝜕𝑥𝑛

) (𝑉𝜆(𝑥)) +  𝑓(|𝑥|, 𝑢(𝑥)) − 𝑓(|𝑥|, 𝑢(𝑥𝜆)) 
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≥ ∆(𝑉𝜆(𝑥)) + (𝑏1

𝜕

𝜕𝑥1

+ 𝑏2

𝜕

𝜕𝑥2

 + 𝑏3

𝜕

𝜕𝑥3

 +  … + 𝑏𝑛

𝜕

𝜕𝑥𝑛

) (𝑉𝜆(𝑥)) +
 𝑓(|𝑥|, 𝑢(𝑥)) − 𝑓 (|𝑥|, 𝑢(𝑥𝜆))

𝑢(𝑥) −  𝑢(𝑥𝜆)
× 𝑉𝜆(𝑥) 

≥ ∆(𝑉𝜆(𝑥)) + (𝑏1

𝜕

𝜕𝑥1

+ 𝑏2

𝜕

𝜕𝑥2

 + 𝑏3

𝜕

𝜕𝑥3

 +  … +  𝑏𝑛

𝜕

𝜕𝑥𝑛

) (𝑉𝜆(𝑥)) + 𝐶𝜆(𝑥)𝑉𝜆(𝑥) 

𝑤ℎ𝑒𝑟𝑒 𝐶𝜆(𝑥 ) =  
 𝑓(|𝑥|, 𝑢(𝑥)) − 𝑓 (|𝑥|, 𝑢(𝑥𝜆))

𝑢(𝑥) −  𝑢(𝑥𝜆)
 

𝑖. 𝑒.  𝐶𝜆(𝑥 ) = ∫ 𝑓𝑢 (|𝑥|, 𝑢(𝑥𝜆) +  𝑡 (𝑢(𝑥) −  𝑢(𝑥𝜆))) 𝑑𝑡
1

0

 

Put 𝐵0 =  {𝑥 ∈  𝑅𝑛 ∶ |𝑥| <  𝑅0}  Where R0 is the constant defined in the statement of the theorem. 

Define Λ as Λ =  {𝑥 ∈  𝑅𝑛 ∶  𝑉𝜆  (𝑥) ≥ 0  𝑖𝑛 Σ𝜆 }. 

 

Lemma2.4 Let𝜆 > 0 . If 𝑉𝜆 > 0   𝑜𝑛 Σ𝜆 ∩  𝐵0
̅̅ ̅. Then 𝜆 ∈  Λ. 

Proof:Let𝜆 > 0  . If 𝑉𝜆 > 0   𝑜𝑛 Σ𝜆 ∩  𝐵0
̅̅ ̅. From lemma 2.3 and assumption  

Δ𝑉𝜆  + (𝑏1

𝜕

𝜕𝑥1

+ 𝑏2

𝜕

𝜕𝑥2

+ 𝑏3

𝜕

𝜕𝑥3

+  … +  𝑏𝑛

𝜕

𝜕𝑥𝑛

) 𝑣𝜆 +  𝐶𝜆(𝑥)𝑉𝜆(𝑥) ≤ 0 𝑖𝑛  Σ𝜆 \𝐵0
̅̅ ̅ 

𝑉𝜆   ≥ 0   𝑜𝑛 𝜕 (Σ𝜆 \𝐵0
̅̅ ̅) 

Since U( R ) is non-increasing we have  

0 ≤ 𝑢(𝑥𝜆) + 𝑡 (𝑢(𝑥) − 𝑢(𝑥𝜆))  ≤ 𝑈(|𝑥|) 𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 1 

∴  𝐶𝜆 (𝑥) =  ∫ 𝑓𝑢 (𝑢(𝑥𝜆) + 𝑡 (𝑢(𝑥) − 𝑢(𝑥𝜆)))  𝑑𝑡 
1

0

 

≤  ∫ 𝑓𝑢(𝑈(|𝑥|))
1

0

𝑑𝑡 

=  𝜙(|𝑥|) 𝑖𝑛 Σ𝜆 

∵  𝜙(|𝑥|)  = sup{𝑓𝑢( 𝑟 , 𝑠)| 0 ≤ 𝑠 ≤ 𝑈(𝑟)} 

From Δ𝑤 + (𝑏1
𝜕

𝜕𝑥1
+ 𝑏2

𝜕

𝜕𝑥2
+ 𝑏3

𝜕

𝜕𝑥3
+  … +  𝑏𝑛

𝜕

𝜕𝑥𝑛
) 𝑤 +  𝜙(|𝑥|) 𝑤 ≤ 0 𝑖𝑛 |𝑥|  ≥  𝑅0 

andlim
𝑈(|𝑥|)

𝑤(𝑥)
= 0 

The positive function w satisfies 

Δ𝑤 + (𝑏1

𝜕

𝜕𝑥1

+ 𝑏2

𝜕

𝜕𝑥2

+ 𝑏3

𝜕

𝜕𝑥3

+ … +  𝑏𝑛

𝜕

𝜕𝑥𝑛

) 𝑤 + 𝐶𝜆(𝑥) 𝑤 ≤ 0 𝑖𝑛  Σ𝜆 \𝐵0
̅̅ ̅ 

and
𝑉𝜆(𝑥)

𝑤(𝑥)
 ≤  

𝑢(|𝑥|)

𝑤(𝑥)
 → 0         𝑥 ∈ Σ𝜆 \𝐵0

̅̅ ̅  , |𝑥| →  ∞ 

Hence by maximum principle we have  

𝑉𝜆 > 0      𝑖𝑛 Σ𝜆 \𝐵0
̅̅ ̅ 

∴ 𝑉𝜆 > 0     𝑖𝑛  Σ𝜆 

By assumption  

𝜆 ∈  Λ. 
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Lemma 2.5Let 𝜆 > 0 . If 𝜆 ∉  Λ then 
𝜕𝑢

𝜕𝑥1
< 0 on 𝑇𝜆, then there exist 𝑥0  ∈  Σ𝜆  ∩  𝐵0

̅̅ ̅  such that 𝑉𝜆(𝑥0)  ≤ 0  

Lemma 2.6 Let 𝜆 ∈ Λ then 
𝜕𝑢

𝜕𝑥1
< 0 on 𝑇𝜆. 

Proof: Let 𝜆 ∈ Λ   Hence 𝜆 > 0  

By lemma 2.3 

Δ𝑉𝜆  + (𝑏1

𝜕

𝜕𝑥1

+ 𝑏2

𝜕

𝜕𝑥2

+ 𝑏3

𝜕

𝜕𝑥3

+  … + 𝑏𝑛

𝜕

𝜕𝑥𝑛

) 𝑣𝜆 + 𝐶𝜆(𝑥)𝑉𝜆(𝑥) ≤ 0 𝑖𝑛  Σ𝜆 

𝑉𝜆 > 0     𝑖𝑛  Σ𝜆 

Therefore on 𝑇𝜆       , ∴ 𝑉𝜆(𝑥) =  0      

ByHopf boundary lemma  

𝜕𝑉𝜆

𝜕𝑥
< 0      𝑜𝑛 𝑇𝜆      

∴  
𝜕𝑢

𝜕𝑥1

=  
1

2

𝜕𝑉𝜆

𝜕𝑥1

< 0  𝑜𝑛 𝑇𝜆      

 

 

2. PROOF OF MAIN RESULT 

Since u(x0 is positive and  

lim
|𝑥|→∞

𝑢(𝑥) = 0 

then there exist 𝑅1 > 𝑅0 such that  

max{𝑢(𝑥) ∶ |𝑥| > 𝑅1} < min{𝑢(𝑥) ∶ |𝑥| ≤ 𝑅0}           (2.1) 

where R0  is constant as defined in the statement of the theorem. We shall prove the theorem in following three steps. 

Step I : To prove [𝑅1 , ∞)  ⊂  Λ 

Let 𝜆 ∈  [𝑅1 , ∞) 

∴  𝜆 ≥  𝑅1 

Note that 𝐵0
̅̅ ̅  ⊂  Σ𝜆 

Also 𝑉𝜆(𝑥) = 𝑢(𝑥) − 𝑢(𝑥𝜆) 

From 2.1   𝑉𝜆(𝑥) > 0   𝑖𝑛  𝐵0
̅̅ ̅ 

By lemma 2.4 𝜆  ∈ Λ 

[𝑅1 , ∞)  ⊂  Λ 

Step II: Toprove: Let 𝜆0 ∈  Λ then there exist 𝜖 > 0 such that(𝜆0 , −  𝜖 , 𝜆0)  ⊂  Λ. 

Assume to the contrary that there exist 𝑎𝑛 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 {𝜆𝑖}i = 1,2,3 ….. 

such that 𝜆𝑖  ∉  Λ and 𝜆𝑖  →  𝜆0  as 𝑖 →  ∞.  By lemma 2.5 we have sequence {𝑥𝑖}i = 1,2,3 …..such that 𝑥𝑖  ∈  Σ𝜆𝑖∩ 𝐵0̅̅ ̅̅  and 

𝑉𝜆𝑖 (𝑥𝑖)  ≤ 0 . A subsequence which we call again {𝑥𝑖}  𝑖 = 1,2,3, … converges to some point𝑥0  ∈  Σ𝜆0 ̅̅ ̅̅ ̅  ∩  𝐵0
̅̅ ̅ . 

Then 𝑉𝜆0(𝑥0) ≤ 0 . 

 Since 𝑉𝜆0 > 0in Σ𝜆0.  We have 𝑥0  ∈  𝑇𝜆0. 

By mean value theorem there exist a point yi  satisfying(
𝜕𝑢

𝜕𝑥𝑖
)

𝑦𝑖
 ≥ 0  on straight segment joining 𝑥𝑖   𝑡𝑜 𝑥𝑖

𝜆𝑖  for each i = 

1,2,3…. Since 𝑦𝑖 →  𝑥0 as 𝑖 → ∞ we have 
𝜕𝑢

𝜕𝑥1
(𝑥0) ≥ 0 . 

On the other hand 𝑥0  ∈  𝑇𝜆0, we have 
𝜕𝑢

𝜕𝑥1
(𝑥0) < 0  by lemma 2.6. This is a contradiction. Hence our assumption is wrong.  

∴ (𝜆0 , −  𝜖 , 𝜆0)  ⊂  Λ 

Step III :To prove either statement (A) or statement (B) holds. 

 

(A) 𝑢(𝑥) = 𝑢(𝑥𝜆1)for some 𝜆1 > 0 and 
𝜕𝑢

𝜕𝑥1
< 0  𝑜𝑛 𝑇𝜆 for 𝜆 > 𝜆1. 
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(B) 𝑢(𝑥) = 𝑢(𝑥0)in Σ0and 
𝜕𝑢

𝜕𝑥1
< 0  𝑜𝑛 𝑇𝜆 for 𝜆 > 0 

 

 

Proof of step III : Let 𝜆1 = inf{𝜆 > 0 ∶  (𝜆 , ∞)  ⊂   Λ} 

We distinguish it in to two cases  

Case (1) 𝜆1 > 0 

Let 𝑉𝜆1(𝑥) = 𝑢(𝑥) − 𝑢(𝑥𝜆1) 

Since u is continuous 𝑉𝜆1(𝑥)  ≥ 0in Σ𝜆1. From lemma 2.3. we have  

Δ𝑉𝜆(𝑥) + (𝑏1

𝜕

𝜕𝑥1

+ 𝑏2

𝜕

𝜕𝑥2

+ 𝑏3

𝜕

𝜕𝑥3

+  … +  𝑏𝑛

𝜕

𝜕𝑥𝑛

) 𝑣𝜆(𝑥) +  𝐶𝜆(𝑥)𝑉𝜆(𝑥) ≤ 0 𝑖𝑛  Σ𝜆1 

 

Hence by strong maximum principle we have that either 𝑉𝜆1 > 0   𝑖𝑛 Σ𝜆1 or 𝑉𝜆1 = 0   𝑖𝑛 Σ𝜆1 

Assume that 𝑉𝜆1 > 0   𝑖𝑛 Σ𝜆1then 𝜆1   ∈ Λ . by lemma 2.4. 

From step II there exist 𝜖 > 0 such that (𝜆1 −  𝜖 , 𝜆1)  ⊂  Λ.  This contradicts to the definition of 𝜆1. 

∴ 𝑉𝜆1 = 0   𝑖𝑛 Σ𝜆1 

∴ 𝑢(𝑥) = 𝑢(𝑥𝜆1)      𝑓𝑜𝑟 𝜆1 > 0 

Since (𝜆1 , ∞)  ⊂  Λ.We have 
𝜕𝑢

𝜕𝑥1
< 0  𝑜𝑛 𝑇𝜆 for 𝜆 > 𝜆1   by lemma 2.6. 

Thus statement (A) holds. 

Case II: Let 𝜆1 = 0Since u is continuous𝑢(𝑥) ≥ 𝑢(𝑥0)  𝑖𝑛 Σ0 by lemma 2.6  
𝜕𝑢

𝜕𝑥1
< 0  𝑜𝑛 𝑇𝜆 for𝜆 >  0 . Thus statement (B) holds. If 

(B) occurs in step III we can repeat the previous steps I II and III for negative X1 direction about some planr𝑥1 =  𝜆1 < 0  or 𝑢(𝑥) ≤

𝑢(𝑥0)    𝑖𝑛 Σ0    Therefore 𝑢(𝑥) + 𝑢(𝑥0)  𝑖𝑛 Σ0 

Thus u must be radially symmetric in X1 direction about some plane and strictly decreasing away from the plane. As the given 

equationis invariant under rotation we may take any direction as X1 directionand conclude that u is symmetric in every direction about 

some plane. Therefore u is radially symmetric about some point 𝑥0  ∈  𝑅𝑛and𝑢𝑟 < 𝑜  𝑓𝑜𝑟 𝑟 > 0 . 
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