
© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906I41 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 80

TASK CLASSIFICATION USING

MULTIQUEUE INTERLACING PEAK

SCHEDULING METHOD IN CLOUD

Madhuri H. Patil

PG student, Department of Computer Engineering, SSVPS’s B. S. Deore College of Engineering, Dhule

ABSTRACT

In cloud computing, resource requirement for tasks is vast and it

may have ambiguous factors and changes dynamically over time.

These factors causes load imbalances. A scheduling technique

known as interlacing peak is developed during which first, the

resource requirement of task is obtained using information such

as CPU, I/O and memory information is gathered continuously

after certain time period then all task are classified into three

queues i.e CPU intensive, I/O intensive and memory intensive,

then after that resources are being sorted in ascending order into

again three queues CPU intensive, I/O intensive and memory

intensive which is performed by global resource manager. After

all this the task is being scheduled for its execution according to

its intensity for CPU, I/O and memory usage. Intensity is

determined on the basis of CPU capacity, I/O operations and

memory usage. In another words, low CPU intensity tasks are

scheduled with resources with low CPU utilization then it

matched with resources of CPU intensive queue, low I/O intensity

tasks are scheduled with resources with shorter I/O wait times are

matched with resources with I/O intensive queue and low

memory intensity tasks are scheduled with resources that have

low memory usage are matched up with resources of memory

intensive queue. The proposed system can balance loads

especially true when resources are less often and many tasks will

demand for the same resource.

Index Terms

Cloud computing, load balancing, multiqueue, task classification

1. INTRODUCTION
Cloud computing has wide variety of applications that can be

used as an tasks those can demand for various types resources for

its completion of its execution, some may require large amount of

memory and some may need large amount of CPU utilization and

others may require greater amount of I/O operations. This all

things can load imbalancing [1]

However There are so many dynamic and ambiguous attributes

related to task and resources such as uncertain changes in

resource requirement by task. Some task may require resources at

any time during its life time, those resources may available or

unavailable to any task at any time. If there could be more

resources than task, then much of resources could get wasted or it

may happen that tasks are more than number of resources then

scheduling performance

could get affected. This all factors got into load imbalancing and

also resource utilization could get badly impacted [2].

Task scheduling algorithm is a method by which tasks are

allocated to proper required task from data center. The task

scheduling method improves average response time as rate of

arrival of task could gets higher.

Figure 1: cloud services

2. RELATED WORK
There are three types of task scheduling based on scheduling

methods in cloud computing. The first category consists of

scheduling methods on the basis of time, including the response

times, the best time span, and the completion time. The second is

on the basis of performance, such as load balancing and resource

utilization. The third is multiobjective optimization, which

includes the budget cost, QoS, and energy consumption.

In 2011, Boutaba et al. developed a method to classify tasks &

algorithm establishes dual fairness constraint in which first

constraint is to classify user task by quality of services then

general expectation function is established with classification of

task to restrain the fairness of resources in selection method &

second constraint is to outline resource fairness function to

evaluate the fairness of resource allocation [3].

In 2011, Qi Zhang et al. focused on characterizing run-time task

resources usage for CPU, memory & disk, to find an accurate

characterization that can reproduce performance of workload

traces in terms of key performance metrics such as task wait time

& machine resource utilization [4].

In 2012, Xifeng yan et al proposed method for prediction of task

characterization for efficiently provisioning computing resources

in the cloud, there is need of capability of characterizing &

predicting workload on virtual machine [5].

In 2013, Zhang et al. proposed method in which workload is

divided into distinct task classes by using k- means clustering

algorithm on the basis of similar characteristics of requirement for

resources & performances [6].

In 2013, Moreno et al. analyzed task characteristics & established

a model to simulate resource usage patterns & predict resources

to optimize resource usage in which a approach for characterizing

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906I41 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 81

workloads that considers workloads in context of both user & task

to capture resource estimation & utilization patterns [7].

In 2013, Malte Schwarzkopf proposes approach for task

characterization for allocation, distinguishing between CPU &

memory – intensified job, large & small jobs & so on , in this for

addressing needs of parallelism, shared state & lock – free

concurrency control [8].

3. SYSTEM MODEL

The system model describes the definitions of task and resources

and queues of resources and tasks. The variables and their

appropriate meaning mentioned in Table 1.

Table 1: Main Notation Definitions

System Definitions

Ui Resources I, 1≤i≤N

Tj Task j, 1≤j≤K

N, K Defines resources and tasks

respectively

Ci , Oi, Mi The CPU, I/O and Memory of Ui

Lj Size of task Tj

Dj Deadline of task Tj

Cj, Oj, Mj CPU, I/O and Memory of task Tj

Cs, Os, Ms CPU, I/O and Memory of the system

Tjh The category of task Tj

C, O, M The rate of Cj, Oj, Mj and Cs, Os, Ms

QC, QO, QM Resources queues of CPU, I/O and

Memory

QTC, QTO, QTM Task queues of CPU, I/O and memory

3.1 Basic Terminologies

In cloud computing, a scheduling model is assumed there are N

resources U = {u1, u2,…,ui, . . . , uN} and K tasks {T1, T2, . . .

,Tj, . . . , TK}.

3.1.1 Resources: A resource is a virtual machine defined by the

values CPU, I/O, and memory i.e. Ui = (Ci, Oi, Mi) this are CPU

utilization, I/O waiting time, and memory usage respectively.

Values of this variables are brought from the global resource

manager, which periodically composes and brings information

from local resource managers.

3.1.2 Tasks: Tj = (Cj, Lj, Mj, Dj), here Cj is CPU usage, Lj is

task size, Mj is memory and Dj is deadline of task in which the

task have to complete its execution. Task size is equal to the

length of the task Information of these values taken from the task

manager.

3.1.3 I/O usage: I/O usage of the task Tj is defined as Oj =

Lj/Cj. Lj is the task size, and Cj shows the capacity of CPU to

complete the task Tj.

3.1.4 Resource Capacity: The variables (Ci, Oi, Mi) denotes

the resource capacity known for CPU, I/O, and memory. At the

same time, It denotes tasks resource requirement of the CPU, I/O,

and memory.

3.1.5 Assumption 1: The first assumption is information

submitted by user is trustworthy, where the value for Lj can be

provided correctly. Dj is the deadline in which the task will be

complete execution. The variables (Cj, Mj) are the values

obtained by the user and are enough to complete the task.

3.1.6 Assumption 2: Second assumption is that variable values

are fixed and do not change during the lifetime of the task means

it shoud have fixed intensity in its life time.

3.1.7 Assumption 3: Third assumption is (Ci, Oi, Mi) are true

valued because resources are ambiguous in cloud computing.

3.2 System Architecture

This section describes system architecture of MIPSM includes

three steps 1) task classification, 2)resource sorting &

3)interlacing peak scheduling.

3.2.1 Task Classification

In first step of task classification, task manager responsible for

undertaking task request for arrival queue by users. The

information about task CPU usage, task size and memory gives

demand for resources. Task classification requires information

regarding I/O usage is calculated using the task size and CPU

capacity. It is necessary to know information of of Cs, Os and Ms

of the system about CPU, I/O and memory respectively before

task classification. The task classification performs on the basis of

formula 1, there it give one value among C,O and M for CPU, I/O

and memory respectively. The largest value denotes task category

Tjh among CPU, I/O, memory queues.

Tjh = max(𝐶, 𝑂, 𝑀) = max (
𝐶𝑗

𝐶𝑠
,

𝑂𝑗

𝑂𝑠
,

𝑀𝑗

𝑀𝑠
) (1)

If Suppose the Tjh has value 0 then that task is considered to be

I/O intensified, the queues for K tasks are QTC, QTO and QTM of a

for CPU intensified, b for I/O intensified, K-a-b memory

intensified by the task category Tjh as follows:

QTC:{T1, T2,….., Tjc,……….,Ta} (2)

QTO: {Ta+1, Ta+2,………,Tjo,……….,Ta+b} (3)

QTM: {Ta+b+1, Ta+b+2,………,Tjm,……..,Tk-a-b} (4)

3.2.2 Resource sorting

In this second step, resource manager responsible for

gathering information from global resource manager, which is

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906I41 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 82

bring from local resource manager, then global resource manager

sorts all resources in ascending order for three QC, QO, and QM as

follows:

QC = {U1, U2, ………….,Uic ,………….,UN} (5)

QO = {U1, U2,…………..,Uio,…………..,UN} (6)

QM = {U1, U2,………......,Uim,…………..,UN} (7)

3.2.3 Interlacing Peak Scheduling Method

The Interlacing peak scheduling method is MIPSM as shown in

figure 2. In first step task manager undertaking all task for

classification of K task, which was done on the basis of task

request of resources for execution. Then that all K tasks are

classified into three queues: 1) CPU intensive, 2) I/O intensive

and 3) memory intensive. Then in next step, global resource

manager which composes and brings information from local

resource manager. Local resource manager also composes and

brings information about task demand for resources from local

nodes. Then in the Last global resource manager performs sorting

of all resources in ascending order as shown in figure 3. As per

demands there are two kinds of queues i.e task queue and

resource queue. Then in final step the scheduling method used to

allocate task to demanded resources. It implicate the peak of

resource uasage.

It implicates the peak resource usage according to resource

demands of tasks. In the first Nature of task is determined

according to formula 1, Then if the value of task category

obtained C then task is considered to be CPU intensified i.e. that

task demands for low CPU capacity then task goes for CPU

intensive queue, then if the value of task category obtained O then

task is considered to be I/O intensified i.e. that task demands for

low I/O operation then task goes for I/O intensive queue, Then if

the value of task category obtained M then task is considered to

be memory intensified i.e. that task demands for low memory

requirement then task goes for memory intensive queue.

Figure 2: Interlacing Peak Scheduling Method

Figure 3: Task and Resource queues

Algorithm: Multiqueue Interlacing Peak Scheduling Method

Input: T1,T2,…….Tj,……Tk,Tj=

(Cj,Lj,Mj,Dj),Qc,Qo,Qm,Cj,OJ,Mj,Cs,Os,Ms

Output: (Tj,Qx)

1. BEGIN

2. FOR j=1 to k

3. Calculate Oj using Definition 3;

4. Calculate Tjh using Formula 1;

5. IF Tjh = C Then

6. x = C;

7. Tj→ Qc;

8. END IF

9. IF Tjh = O Then

10. x = O;

11. Tj→Qo;

12. END IF

13. IF Tjh = M Then

14. x = M;

15. Tj → Qm;

16. END IF

17. END FOR

18. END

The interlacing peak scheduling method balances load according

two strategies that are as follows:

Case 1: when N≥K , task are scheduled according to algorithm as

follows:

QTC → {U1, U2, . . . , Ua} (8)
QTC → {U1, U2, . . . , Ua+b } (9)
QTM → { U1, U2, . . . , Uk-a-b} (10)

Case 2: when N<K No. of resources are less than the No. of task,

so the task are scheduled in groups, First (h= [
𝑁

3
]) tasks are chosen

for queue allocated according to algorithm as follows:

QTC → {U1, U2, . . . ,Uh} (11)

QTO → {U1, U2, . . . ,Uh } (12)

QTM → {U1, U2, . . . ,Uh } (13)

Then in next group K-h tasks are scheduled, If K-h < N , then the

[
𝐾−ℎ

3
] task will be allocated to the three queues ; otherwise [

𝑁

3
]

task are scheduled, then remaining K-2h tasks are allocated in

next groups.

4. SIMULATION OF CLOUDSIM
Cloudsim is open source toolkit that performs simulation of cloud

computing using its generalized framework developed in java.

Cloudsim toolkit developes that support for modeling and

simulation of large scale Cloud computing environments,

including data centers, on a single physical computing node.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906I41 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 83

4.1 Parameter Description
In this cloud computing system, there are 100 host and 10 virtual

machines on each host of having CPU computing ability in the

range 1860 MIPs to 2660 MIPs having disk I/O 10 GB and RAM

4096 MB, the setup is as shown in Table 2

Table 2: VM Parameter setup in each host

Parameter Value

CPU computing

ability

1860 MIPs,2660

MIPs

Disk I/O 10 GB

RAM 4096 MB

Bandwidth 100 M/s

Storage 10G

The task setup of data center is as shown in Table 3

Table 3: Task setup of Data Center

Parameter Value

Length (CPU) [400,1000] MIPs

File Size [200,1000] MB

Output size

(memory)
[20,40] MB

4.2 Simulation Description

Result analysis was conducted on Dell PC with Intel i3 CPU and

2 GB of memory running window 7 and Cloudsim 3.0. Cloudsim

is used to 10 virtual machines in single data center. This system

having task classification method contains the number of tasks

and these tasks are provided for classification. When we create

the task that time applying MIPSM algorithm achieve higher

average response time.

The response time of task is calculated as the time at which task

is submitted for scheduling till completion of task execution. The

average response time is calculated from formula 14

tresponse =
∑(𝑡𝑗−𝑤𝑎𝑖𝑡+𝑡𝑗−𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒)

𝐾
 (14)

Figure 4 states comparison of average response time of MIPSM

and average response time of FCFS for 500 task. The task arrival

rates were 40,60,80,90 tasks/s. In MIPSM average response time

increases as the task arrival rate increases.

Figure 4: Average response time for MIPSM and FCFS for

500 tasks

Then figure 5, states comparison of average response time of

MIPSM and average response time of FCFS for 1200 task. Next

experiment verifies task classification through load balancing, in

this 10 random resources were selected randomly and then

observed their CPU, I/O and Memory usage. Figure 6, states

comparison of CPU utilization of MIPSM and CPU utilization of

FCFS for 500 tasks. Figure 7, states comparison of CPU

utilization of MIPSM and CPU utilization of FCFS for 1200

tasks. Fluctuations of CPU usage are too obvious for FCFS ,

however fluctuations in MIPSM were very less that had balanced

load effectively

Figure 5:Average response time of MIPSM and FCFS for

1200 task

Figure 6:CPU Utilization of MIPSM and FCFS for 500 task

Figure 7: CPU Utilization of MIPSM and FCFS for 1200 task

In Next Figure 8, it shows comparison of I/O utilization for

MIPSM and FCFS for 500 task.

0

20

40

60

80

100

40 60 80 90

A
v
er

ag
e

re
sp

o
n
se

 t
im

e

(s
)

Arrival rate

MIPSM

FCFS

0

10

20

30

40

40 60 80 90

A
v
er

ag
e

re
sp

o
n
se

 t
im

e

(s
)

Arrival rate

MIPSM

FCFS

0

20

40

60

80

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
1

0C
P

U
 u

ti
li

za
ti

o
n
(%

)

Resources

MIPSM

FCFS

0

50

100

150

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
1

0C
P

U
 u

ti
li

za
ti

o
n
 (

%
)

Resources

MIPSM

FCFS

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906I41 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 84

Figure 8: I/O Utilization of MIPSM and FCFS for 500 tasks

Figure 9, it shows comparison of I/O utilization for MIPSM and

FCFS for 1200 task, here also The fluctuation in resources were

too fewer for MIPSM as compared to FCFS.

Figure 9: I/O Utilization of MIPSM and FCFS for 1200 tasks

In Next Figure 10, it shows comparison of memory utilization for

MIPSM and FCFS for 500 task.

Figure 10:Memory utilization of MIPSM and FCFS for 500

tasks

Figure 11, it shows comparison of memory utilization for MIPSM

and FCFS for 1200 task, here also The fluctuation in resources

were too slight for MIPSM as compared to FCFS.

Figure 11: Memory utilization of MIPSM and FCFS for 1200

tasks

In Next Figure 12, it shows comparison of resource utilization for

MIPSM and FCFS for 500 task. Figure 13, it shows comparison

of resource utilization for MIPSM and FCFS for 1200 task, here

also The resource utilization for ten resources showed little

difference for MIPSM as compared to FCFS.

Figure 12: Resource utilization of MIPSM and FCFS for 500

tasks

Figure 13: Resource utilization of MIPSM and FCFS of 1200

tasks

Deadline violation rate, if running time Tj is greater than deadline

Dj then task is considered to violate the deadline constraint. The

Deadline violation rate is calculated as formula (15).

𝜐 =
𝓃𝑑

𝐾
∗ 100% (15)

Where 𝓃𝑑 is the number of times deadline violated in K tasks. In

Next Figure 14, it shows comparison of deadline violation rate for

MIPSM and FCFS for 500 task. Figure 15, it shows comparison

of deadline violation rate for MIPSM and FCFS for 1200 task,

here deadline violation rate increases as task arrival rate increases

for MIPSM but for FCFS deadline violation rate is very high as

compared to MIPSM.

0

0.5

1

1.5

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
1

0

I/
O

 (
G

B
)

Resources

MIPSM

FCFS

0

0.5

1

1.5

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
1

0

I/
O

 (
G

B
)

Resources

MIPSM

FCFS

0

100

200

300

400

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
1

0

M
em

o
ry

 (
M

B
)

Resources

MIPSM

FCFS

0

200

400

600

800

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
1

0

M
em

o
ry

 (
M

B
)

Resources

MIPSM

FCFS

0

20

40

60

80

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
1

0

R
es

o
u
rc

es
 u

ti
li

za
ti

o
n
 (

%
)

Resource

MIPSM

FCFS

0

2

4

6

8

10

12

14

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
1

0R
es

o
u
rc

e
u
tl

iz
at

io
n
 (

%
0

)

Resources

MIPSM

FCFS

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906I41 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 85

Figure 14: Deadline violation rate of MIPSM and FCFS for

500 tasks

Figure 15: Deadline violation rate of MIPSM and FCFS for

1200 tasks

5. CONCLUSION

In cloud computing, diversity of task, dynamic factors of resource

can dynamically changes over time, this could causes load

imbalances and affect the performance and resource utilization.

MIPSM method solve this issues in which firstly task are

classified into three queues named CPU intense, I/O intensive and

memory intensive, next step resources were sorted according to

CPU utilization, I/O wait times, memory usage and in last, three

queues of task were scheduled to those resources whose loads are

lighter than others.

6. REFERENCES

[1] Shoubin Dong, L. Shu, Chunsheng Zhu, G. Han L. Zuo, "A

Multiqueue Interlacing Peak Scheduling method based on

Tasks Classification in Cloud Computing," IEEE System

Journal, April 2016.

[2] R. Buyya, C. S. Yeoa, S. Venugopala, J. Broberga, and I.

Brandicc, "Cloud computing and emerging IT platforms:

Vision, hype, and reality for delivering computing as the 5th

utility," Future Generation Computer Systems, vol. 25, no. 6,

pp. 599-616, 2009.

[3] J. L. Hellerstein and R. Boutaba A. K. Mishra, "Towards

characterizing cloud backend workloads; insights from google

compute clusters," ACM SIGMETRICS Perform. EVAL. Rev.,

vol. 37, pp. 34-41, March 2010.

[4] J. L. Hellerstein, R. Boutaba Q. Zhang, "Characterizing task

usage shapes in Google's compute clusters," Proc. Large

Scale Distrib. Syst. Middleware Workshop (LADIS), pp. 1-6,

2011.

[5] X. Yan, S. Tao and N. Anerousis A. Khan, "Workload

Characterization and prediction in the cloud: A multiple time

series approach," Proc. IEEE Netw. oper. Manage. Symp.

(NOMS), pp. 1287-1294, 2012.

[6] M. F. Zhani, R. Boutaba, J. H. L. Hellerstein Q. Zhang,

"HARMONY:Dynamic heterogenity? Aware resource

provisioning in the cloud," Proc. 33rd IEEE Int. Conf.

Distrib. Syst., pp. 511-519, 2013.

[7] P. Garraghan, P. Townend and J. Xu. I. S. Moreno, "An

approach for characterizing workloads in Google cloud to

derive realistic resource utilization models," Proc. 7th IEEE

Int. Symp. Serv-Oriented Syst. Eng., pp. 49-60, 2013.

[8] A. Konwinski, M. Abd-El-Malek, J. Wilkes M. Schwarzkopf,

"Omega:flexible,scalable schedulers for large compute

clusters," Proc. 8th ACM Eur. Conf. Comput. Syst., pp. 351-

364, 2013.

0

1

2

3

4

5

6

40 60 80 90

D
ea

d
li

n
e

v
io

la
ti

o
n
(%

)

Arrival rate

MIPSM

FCFS

0

2

4

6

8

10

40 60 80 90D
ea

d
li

n
e

v
io

la
ti

o
n
 (

%
)

Arrival rate

MIPSM

FCFS

http://www.jetir.org/

