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I. Introduction  

Fixed point theory is the most dynamic subject of Non-linear sciences. Because of its feasibility of applications in various 

disciplines of sciences and other fields, many researchers have given their contribution, and several research articles are 

published in this area. The most crucial result which attracted most of the researchers is Banach Contraction Principal [1], 

given by Banach in his thesis in 1922, which asserts that ‘Every contraction mapping on complete metric space has a unique 

fixed point.' This theorem provides existence and uniqueness of the solution and also provides a systematic way to find a 
solution and the existence theorems can be expressed in the form of fixed point principles. Therefore, it becomes an active 

area of research in nonlinear analysis with vast applications. After this theorem Banach contraction principle is presented in 

various forms by various researchers either by using different contractive conditions on mappings or different generalizations 

of the topologies of the metric spaces and exciting results are obtained. Some generalizations of mappings are Kannan 

contraction, Ciric contraction T-Kannan contraction, T-Banach contraction, weakly contraction, cyclic contraction, d-cyclic φ-

contraction, Chatterjee type contraction, α-φ contractive mappings, etc. Some generalizations of metric spaces are partial 

metric space, cone metric space, b-metric space, G-Metric space, dislocated metric space, quasi-metric space, b-metric space, 

dislocated quasi-metric space, dislocated quasi b-metric space, modular metric space, etc. 

1.1 Definition: Let 𝑋 be a nonempty set, suppose that the mapping 𝑑: 𝑋 × 𝑋 → [0, ∞) satisfies the following conditions: 

i. 𝑑(𝑥, 𝑥) = 0 for all 𝑥𝜖𝑋; 

ii.  𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) = 0 implies  𝑥 = 𝑦 for all 𝑥, 𝑦𝜖𝑋 

iii.  𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦𝜖𝑋; 

iv.  𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) For all𝑥, 𝑦, 𝑧𝜖𝑋. 

Then 𝑑 is called a metric on 𝑋 and (𝑋, 𝑑)  is called as Metric space. Further, if 𝑑 satisfies conditions (i), (ii) and (iii), then 𝑑 is 

called a quasi-metric on 𝑋. If 𝑑 satisfies conditions (ii), (iii) and (iv), then 𝑑 is called a dislocated metric on 𝑋. 

In 2000, Hitzler and Seda [3] excluded the condition of self distance equal to zero in the hypothesis of metric spaces and 

introduced the concept of dislocated metric spaces, where the self distance for any point in space need not be zero. 

As a generalization of metric spaces, the concept of quasi-metric spaces was introduced by Wilson [3] by dropping 
the symmetric property in dislocated metric space, then F. M. Zeyada et. al.[4], put some definitions and strengthen the 

literature of generalization of metric spaces. In their study, they used the concept of dislocated metric space due to Hitzler and 

Seda [2] to establish the idea of complete dislocated quasi-metric space and proved new fixed point theorem in dislocated 

quasi-metric space. Next, to Hitzler and Seda [2], Zeyada et al. [4] gave another generalization of metric space as dislocated 

quasi-metric space by using the concept of dislocated metric space and further established a fixed point theorem in complete 

dislocated spaces. Bakhtin[5] familiarized the concept of b-metric space by relaxing the triangle inequality and further 

Czerwik[6] in his study of ‘contraction mappings in b-metric spaces,’ made more popular and gave new way, and so fixed 

point theory developed in the new class of b-metric spaces which is larger than that of class of metric spaces. 

1.2 Definition: [6] Let 𝑋 be a nonempty set. Suppose that mapping 𝑏: 𝑋 × 𝑋 → [0, ∞) such that the constant 𝑠 ≥ 1satisfies 

the following conditions: 

i.  𝑏(𝑥, 𝑦) = 𝑏(𝑦, 𝑥) = 0 ⟺   𝑥 = 𝑦 for all 𝑥, 𝑦𝜖𝑋 

ii.  𝑏(𝑥, 𝑦) = 𝑏(𝑦, 𝑥) for all 𝑥, 𝑦𝜖𝑋; 

iii.  𝑏(𝑥, 𝑦) ≤ 𝑠[𝑏(𝑥, 𝑧) + 𝑏(𝑧, 𝑦)] For all𝑥, 𝑦, 𝑧𝜖𝑋. 

Then pair (𝑋, 𝑏) is called a b-metric space. 

1.3 Remark: Every metric space is b-metric space but not conversely. 

The generalization of metric space as dislocated quasi-b-metric space was introduced by Chakkrid Klin-eam and Cholatis 

Suanoom[8] and also given the existence of fixed point theorems for dqb-metric spaces. 

1.4 Definition: [8] Let 𝑋 be a nonempty set. Suppose that the mapping 𝑏: 𝑋 × 𝑋 → [0, ∞) such that the constant 𝑠 ≥ 1 

satisfies the following conditions: 

i.  𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) = 0 implies  𝑥 = 𝑦 for all 𝑥, 𝑦𝜖𝑋 

ii. 𝑑(𝑥, 𝑦) ≤ 𝑠[𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦)] For all 𝑥, 𝑦, 𝑧𝜖𝑋. 

Then pair (𝑋, 𝑑) is called a dislocated, quasi b-metric space(or simply dqb-metric space). The number 𝑠 is called the 

coefficient of(𝑋, 𝑑). 

Remark: The b-metric spaces, quasi-b-metric spaces are dislocated quasi-b-metric spaces, but the converse is not true. 

C. T. Aage and J. N. Salunke [9,10] derived some results in dislocated and dislocated quasi-metric spaces and proved 

contraction theorem on dq-metric spaces for continuous mapping, Jha and Panthi [13], proved some contraction theorems in 

dislocated metric space, D. Panthi et. al. [12], MU Rahman et al. [14] showed some results on contraction principal in dislocated-

quasi metric space. Mujeeb Ur Rahman and Muhammad Sarwar [15] has given some remarks in d-metric space and dq-metric 

spaces. In 2010, A. Isufati[11] derived some fixed point theorems for continuous contractive conditions in dislocated quasi-metric 

space. In 2016, Rahman and Sarwar [16] proved Banach's contraction principle, Kannan and Chatterjee type fixed point results 
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for self-mapping in dislocated quasi b-metric space. Aage and Golhare [17] used different kinds of mapping and contractions like 

weakly compatible mappings, Banach contraction mapping, Kannan contraction mapping in dislocated quasi b-metric spaces and 
developed some common fixed point theorems in these spaces. Also, they proved the fixed points for α-admissible mappings in 

dislocated quasi b-metric spaces. 

In this paper, we establish a new fixed point theorem in dislocated quasi b metric space using some new contractive 

conditions. 

We require some definitions in dislocated quasi metric space. 

1.5 Definition: [8] A sequence {𝑥𝑛} in a dqb-metric space (𝑋, 𝑑) dislocated quasi-b-converges (or dqb-converges) to 𝑥𝜖𝑋  

If lim
𝑛→∞

𝑑(𝑥𝑛 , 𝑥) = 0 = lim
𝑛→∞

𝑑(𝑥, 𝑥𝑛)   

and 𝑥 is called a dqb-limit of{𝑥𝑛},this can be written as 𝑥𝑛 → 𝑥. 

1.6 Definition: [8] A sequence {𝑥𝑛} in a dqb-metric space (𝑋, 𝑑) is called Cauchy if   lim
𝑛,𝑚→∞

𝑑(𝑥𝑛, 𝑥𝑚) = 0 =

lim
𝑛,𝑚→∞

𝑑(𝑥𝑚 , 𝑥𝑛) 

1.7 Definition: [8] A dqb-metric space (𝑋, 𝑑) is complete if every Cauchy sequence in it is dqb-convergent in𝑋. 

II. Main Result 

2.1 Theorem: Let (𝑋, 𝑑) be a complete dqb-metric space with coefficient s. Suppose that the mapping 𝑇: 𝑋 → 𝑋 satisfies the 

following conditions:  

𝑑(𝑇𝑥, 𝑇𝑦) ≤ (
𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)

𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦) + 𝑘
) 𝑑(𝑥, 𝑦) 

For all 𝑥, 𝑦𝜖𝑋, where 𝑘 ≥ 1, then 

i. 𝑇 has a unique fixed point in 𝑋. 

ii. 𝑇𝑛𝑥∗ to a fixed point, for all 𝑥∗𝜖𝑋. 

Proof:  

(i.)Let 𝑥0𝜖𝑋 is arbitrary point in 𝑋 we define a sequence {𝑥𝑛} in 𝑋 by denoting  𝑥1 = 𝑇𝑥0, 𝑥2 = 𝑇𝑥1 = 𝑇2𝑥0, … 𝑥𝑛+1 =
𝑇𝑥𝑛 = 𝑇𝑛𝑥0. 

Consider, 𝑑(𝑥𝑛+1, 𝑥𝑛) = 𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛−1) 

≤ ( 
𝑑(𝑥𝑛 , 𝑇𝑥𝑛) + 𝑑(𝑥𝑛−1, 𝑇𝑥𝑛−1)

𝑑(𝑥𝑛 , 𝑇𝑥𝑛) + 𝑑(𝑥𝑛−1, 𝑇𝑥𝑛−1) + 𝑘
)𝑑(𝑥𝑛 , 𝑥𝑛−1) 

≤ ( 
𝑑(𝑥𝑛 , 𝑥𝑛+1) + 𝑑(𝑥𝑛−1, 𝑥𝑛)

𝑑(𝑥𝑛 , 𝑥𝑛+1) + 𝑑(𝑥𝑛−1, 𝑥𝑛) + 𝑘
)𝑑(𝑥𝑛 , 𝑥𝑛−1) 

We take, 𝛽𝑛 = ( 
𝑑(𝑥𝑛,𝑥𝑛+1)+𝑑(𝑥𝑛−1,𝑥𝑛)

𝑑(𝑥𝑛,𝑥𝑛+1)+𝑑(𝑥𝑛−1,𝑥𝑛)+𝑘
) 

We have,  𝑑(𝑥𝑛+1, 𝑥𝑛) ≤ 𝛽𝑛𝑑(𝑥𝑛, 𝑥𝑛−1) 

         ≤ 𝛽𝑛𝛽𝑛−1𝑑(𝑥𝑛−1, 𝑥𝑛−2) 

≤ (𝛽𝑛𝛽𝑛−1 … 𝛽1)𝑑(𝑥1, 𝑥0) 

We observe here that,{𝛽𝑛} is the non-increasing sequence, with positive terms. Therefore 𝛽1𝛽2 … 𝛽𝑛 ≤ 𝛽1
𝑛  and also 𝛽1

𝑛 → 0 as 

𝑛 → ∞. 
It follows that, 

lim
𝑛→∞

(𝛽𝑛𝛽𝑛−1 … 𝛽1) = 0. 

Thus we get that, lim
𝑛→∞

𝑑(𝑥𝑛+1, 𝑥𝑛) = 0 

Now, for all 𝑚, 𝑛𝜖𝑁 and 𝑚 > 𝑛 
We have, 

 

𝑑(𝑥𝑚 , 𝑥𝑛) ≤ 𝑠𝑚−𝑛𝑑(𝑥𝑚 , 𝑥𝑚−1) + 𝑠𝑚−𝑛−1𝑑(𝑥𝑚−1, 𝑥𝑚−2) + ⋯ + 𝑠𝑑(𝑥𝑛+1, 𝑥𝑛) 

𝑑(𝑥𝑚 , 𝑥𝑛) ≤ 𝑠𝑚−𝑛(𝛽𝑚−1𝛽𝑚−2 … 𝛽1)𝑑(𝑥1, 𝑥0) + 𝑠𝑚−𝑛−1(𝛽𝑚−2𝛽𝑚−3 … 𝛽1)(𝑑(𝑥1, 𝑥0) + ⋯ + 𝑠(𝛽𝑛𝛽𝑛−1 … 𝛽1)𝑑(𝑥1, 𝑥0) 

𝑑(𝑥𝑚 , 𝑥𝑛) ≤ 𝑠𝑚−𝑛𝛽1
𝑚−1𝑑(𝑥1, 𝑥0) + 𝑠𝑚−𝑛−1𝛽1

𝑚−2𝑑(𝑥1, 𝑥0) + ⋯ + 𝑠2𝛽1
𝑛+1𝑑(𝑥1, 𝑥0) + 𝑠𝛽1

𝑛𝑑(𝑥1, 𝑥0) 
 

𝑑(𝑥𝑚 , 𝑥𝑛) ≤ (𝑠𝑚−𝑛𝛽1
𝑚−1 + 𝑠𝑚−𝑛−1𝛽1

𝑚−2 + ⋯ + 𝑠2𝛽1
𝑛+1 + 𝑠𝛽1

𝑛)𝑑(𝑥1, 𝑥0) 

Take 𝑛 → ∞ we get,𝑑(𝑥𝑚 , 𝑥𝑛) → 0 

Similarly, by using triangle inequality 

We have 

𝑑(𝑥𝑛 , 𝑥𝑚) ≤ (𝑠𝛽1
𝑛 + 𝑠2𝛽1

𝑛+1 + ⋯ + 𝑠𝑚−𝑛−1𝛽1
𝑚−2 + 𝑠𝑚−𝑛𝛽1

𝑚−1)𝑑(𝑥0, 𝑥1) 

Take 𝑛 → ∞ we get,𝑑(𝑥𝑛 , 𝑥𝑚) → 0 

Thus, we have {𝑥𝑛} is a Cauchy sequence. 

Since (𝑋, 𝑑) is complete dqb-metric space, {𝑥𝑛} must converge to some point 𝑥∗ 𝜖 𝑋, such that 𝑥𝑛 → 𝑥∗ as 𝑛 → ∞ 

𝑑(𝑇𝑥∗, 𝑥∗) ≤ 𝑠𝑑(𝑇𝑥∗, 𝑇𝑥𝑛) + 𝑠𝑑(𝑇𝑥𝑛 , 𝑥∗) 

≤ 𝑠 (
𝑑(𝑥∗, 𝑇𝑥∗) + 𝑑(𝑥𝑛 , 𝑇𝑥𝑛)

𝑑(𝑥∗, 𝑇𝑥∗) + 𝑑(𝑥𝑛 , 𝑇𝑥𝑛) + 𝑘
) 𝑑(𝑥∗, 𝑥𝑛) + 𝑠𝑑(𝑥𝑛+1, 𝑥∗) 

≤ 𝑠 (
𝑑(𝑥∗, 𝑇𝑥∗) + 𝑑(𝑥𝑛 , 𝑥𝑛+1)

𝑑(𝑥∗, 𝑇𝑥∗) + 𝑑(𝑥𝑛 , 𝑥𝑛+1) + 𝑘
) 𝑑(𝑥∗, 𝑥𝑛) + 𝑠𝑑(𝑥𝑛+1, 𝑥∗) 

𝑑(𝑇𝑥∗, 𝑥∗) ≤ 0 as 𝑛 → ∞ 

Therefore 𝑑(𝑇𝑥∗, 𝑥∗) = 0 

Similarly we can prove that, 𝑑(𝑥∗, 𝑇𝑥∗) = 0 and thus we have 𝑇𝑥∗ = 𝑥∗ 
Uniqueness, 

Suppose that 𝑥∗ and 𝑧∗ are two fixed points of 𝑇. 
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Consider, 𝑑(𝑥∗, 𝑦∗) = 𝑑(𝑇𝑥∗ , 𝑇𝑦∗) 

≤ (
𝑑(𝑥∗, 𝑇𝑥∗) + 𝑑(𝑦∗, 𝑇𝑦∗)

𝑑(𝑥∗, 𝑇𝑥∗) + 𝑑(𝑦∗, 𝑇𝑦∗) + 𝑘
) 𝑑(𝑥∗, 𝑦∗) 

Thus, 𝑑(𝑥∗, 𝑦∗) ≤ 0 ⟹ 𝑑(𝑥∗, 𝑦∗) = 0 ⟹ 𝑥∗ = 𝑦∗ 

Hence, 𝑇 unique fixed point 𝑥∗. 
To prove (ii) 

Consider, 

 𝑑(𝑇𝑛𝑥∗, 𝑥∗) = 𝑑(𝑇𝑛−1(𝑇𝑥∗), 𝑥∗) = 𝑑(𝑇𝑛−1𝑥∗ , 𝑥∗) = 𝑑(𝑇𝑛−2(𝑇𝑥∗), 𝑥∗) = ⋯ = 𝑑(𝑇𝑥∗ , 𝑥∗) = 0 
Thus, 𝑑(𝑇𝑛𝑥∗, 𝑥∗) = 0 ⇒ 𝑇𝑛𝑥∗ = 𝑥∗ 

Proving that, 𝑇𝑛𝑥∗ converges to a fixed point, for all 𝑥∗ 𝜖 𝑋. 

2.2 Corollary: Let (𝑋, 𝑑) be a complete dqb-metric space with coefficient s. Suppose that the mapping 𝑇: 𝑋 → 𝑋satisfies the 

following conditions: 

𝑑(𝑇𝑥, 𝑇𝑦) ≤ (
𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)

𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦) + 1
) 𝑑(𝑥, 𝑦) 

For all 𝑥, 𝑦𝜖𝑋 then 

i. 𝑇 has unique fixed point in 𝑋. 

ii. 𝑇𝑛𝑥∗ to a fixed point, for all 𝑥∗𝜖𝑋. 

Proof: The proof of the corollary immediately follows from the proof of the above theorem by putting k=1.  

2.3 Theorem: Let (𝑋, 𝑑) be a complete dislocated-quasi-b-metric space with coefficient s and let 𝑇  
 be a mapping from 𝑋 into itself. Suppose that 𝑇 satisfies the following conditions: 

𝑑(𝑇𝑥, 𝑇𝑦) ≤ (
𝑑(𝑦, 𝑇𝑦)

𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦) + 𝑘
) 𝑑(𝑥, 𝑦) 

For all 𝑥, 𝑦 𝜖𝑋, where 𝑘 ≥ 1, then 

(i) 𝑇 has a unique fixed point in 𝑋. 

(ii) 𝑇𝑛𝑥∗ Converges to a fixed point, for all 𝑥∗𝜖 𝑋. 

Proof: (i)Let 𝑥0be arbitrary point in 𝑋 and choose a sequence {𝑥0} such that, 𝑥𝑛+1 = 𝑇𝑥𝑛. 

Consider, 

 𝑑(𝑥𝑛+1, 𝑥𝑛) = 𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛−1) 

≤ (
𝑑(𝑥𝑛−1, 𝑇𝑥𝑛−1)

𝑑(𝑥𝑛 , 𝑇𝑥𝑛) + 𝑑(𝑥𝑛−1, 𝑇𝑥𝑛−1) + 𝑘
) 𝑑(𝑥𝑛 , 𝑥𝑛−1) 

≤ (
𝑑(𝑥𝑛−1, 𝑥𝑛)

𝑑(𝑥𝑛 , 𝑥𝑛+1) + 𝑑(𝑥𝑛−1, 𝑥𝑛) + 𝑘
) 𝑑(𝑥𝑛 , 𝑥𝑛−1) 

We take, 𝛽𝑛 = (
𝑑(𝑥𝑛−1,𝑥𝑛)

𝑑(𝑥𝑛,𝑥𝑛+1)+𝑑(𝑥𝑛−1,𝑥𝑛)+𝑘
) 

We get that, 𝑑(𝑥𝑛+1, 𝑥𝑛) ≤ 𝛽𝑛𝑑(𝑥𝑛 , 𝑥𝑛−1) ≤ 𝛽𝑛𝛽𝑛−1𝑑(𝑥𝑛−1, 𝑥𝑛−2) 

𝑑(𝑥𝑛+1, 𝑥𝑛) ≤ 𝛽𝑛𝛽𝑛−1 … 𝛽1𝑑(𝑥1, 𝑥0). 
Observe that, {𝛽𝑛} is a non-increasing sequence, with positive terms. 

So, 𝛽𝑛𝛽𝑛−1 … 𝛽1 ≤ 𝛽1
𝑛  and 𝛽1

𝑛 → 0 as  𝑛 → ∞.  

It follows that, lim
𝑛→∞

𝛽𝑛𝛽𝑛−1 … 𝛽1 = 0 

Thus we get, lim
𝑛→∞

𝑑(𝑥𝑛+1, 𝑥𝑛) = 0 

Now for all 𝑚, 𝑛 𝜖 ℕ and 𝑚 > 𝑛 

 We have, 

𝑑(𝑥𝑚 , 𝑥𝑛) ≤ 𝑠𝑚−𝑛𝑑(𝑥𝑚 , 𝑥𝑚−1) + 𝑠𝑚−𝑛−1𝑑(𝑥𝑚−1, 𝑥𝑚−2) + ⋯ 𝑠2𝑑(𝑥𝑛+2, 𝑥𝑛+1) + 𝑠𝑑(𝑥𝑛+1, 𝑥𝑛) 
 

𝑑(𝑥𝑚 , 𝑥𝑛) ≤ 𝑠𝑚−𝑛𝛽𝑚−1𝛽𝑚−2 … 𝛽1𝑑(𝑥1, 𝑥0) + 𝑠𝑚−𝑛−1𝛽𝑚−2𝛽𝑚−3 … 𝛽1𝑑(𝑥1, 𝑥0) + ⋯ + 𝑠2𝛽𝑛+1𝛽𝑛 … 𝛽1𝑑(𝑥1, 𝑥0)
+ 𝑠𝛽𝑛𝛽𝑛−1 … 𝛽1𝑑(𝑥1, 𝑥0) 

𝑑(𝑥𝑚 , 𝑥𝑛) ≤ 𝑠𝑚−𝑛𝛽1
𝑚−1𝑑(𝑥1, 𝑥0) + 𝑠𝑚−𝑛−1𝛽1

𝑚−2𝑑(𝑥1, 𝑥0) + ⋯ + 𝑠2𝛽1
𝑛+1𝑑(𝑥1, 𝑥0) + 𝑠𝛽1

𝑛𝑑(𝑥1, 𝑥0) 

𝑑(𝑥𝑚 , 𝑥𝑛) ≤ (𝑠𝑚−𝑛𝛽1
𝑚−1 + 𝑠𝑚−𝑛−1𝛽1

𝑚−2 + ⋯ + 𝑠2𝛽1
𝑛+1 + 𝑠𝛽1

𝑛)𝑑(𝑥1, 𝑥0) 

Take 𝑛 → ∞ we get, 𝑑(𝑥𝑚 , 𝑥𝑛) → 0 

Similarly we can prove, 𝑑(𝑥𝑛 , 𝑥𝑚) → 0 

Thus {𝑥𝑛} is a Cauchy sequence. 

Now, since the (𝑋, 𝑑) is a complete dqb-metric space, the sequence  {𝑥𝑛} must converge to some point 𝑥∗ in (𝑋, 𝑑), such 

that 𝑥𝑛 → 𝑥∗ as 𝑛 → ∞. 

lim
𝑛→∞

𝑑(𝑥𝑛,𝑥
∗) = 0 = lim

𝑛→∞
𝑑(𝑥∗, 𝑥𝑛) 

𝑑(𝑇𝑥∗, 𝑥∗) ≤ 𝑠𝑑(𝑇𝑥∗, 𝑇𝑥𝑛) + 𝑠𝑑(𝑇𝑥𝑛 , 𝑥∗) 

≤ 𝑠 (
𝑑(𝑥𝑛 , 𝑇𝑥𝑛)

𝑑(𝑥∗, 𝑇𝑥∗) + 𝑑(𝑥𝑛 , 𝑇𝑥𝑛) + 𝑘
) 𝑑(𝑥𝑛 , 𝑥∗) + 𝑠𝑑(𝑇𝑥𝑛 , 𝑥∗) 

≤ 𝑠 (
𝑑(𝑥𝑛 , 𝑥𝑛+1)

𝑑(𝑥∗, 𝑇𝑥∗) + 𝑑(𝑥𝑛 , 𝑥𝑛+1) + 𝑘
) 𝑑(𝑥𝑛 , 𝑥∗) + 𝑠𝑑(𝑥𝑛+1, 𝑥∗) 

As 𝑛 → ∞, 𝑑(𝑇𝑥∗, 𝑥∗) ≤ 0 this implies that 𝑑(𝑇𝑥∗, 𝑥∗) = 0 

Similarly we can prove 𝑑(𝑥∗, 𝑇𝑥∗) = 0 

Thus, 𝑇𝑥∗ = 𝑥∗ giving that 𝑥∗ is a fixed point of 𝑇. 

Uniqueness: 

Consider two fix point x* and y*  of 𝑇. Therefore,𝑇𝑥∗ = 𝑥∗ and 𝑇𝑦∗ = 𝑦∗. 
Consider, 
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𝑑(𝑥∗, 𝑦∗) = 𝑑(𝑇𝑥∗, 𝑇𝑦∗) ≤ (
𝑑(𝑦∗, 𝑇𝑦∗)

𝑑(𝑥∗, 𝑇𝑥∗) + 𝑑(𝑦∗, 𝑇𝑦∗) + 𝑘
) 𝑑(𝑥∗, 𝑦∗) 

𝑑(𝑥∗, 𝑦∗) ≤ 0 ⟹ 𝑑(𝑥∗, 𝑦∗) = 0 ⟹  𝑥∗ = 𝑦∗ 

Hence 𝑥∗ is an unique fixed point of 𝑇. 

(ii)Now,  

Consider,𝑑(𝑇𝑛𝑥∗, 𝑥∗) = 𝑑(𝑇𝑛−1(𝑇𝑥∗), 𝑥∗) = 𝑑(𝑇𝑛−1𝑥∗, 𝑥∗) = ⋯ = 𝑑(𝑇𝑥∗, 𝑥∗) = 0 

𝑖. 𝑒 𝑑(𝑇𝑛𝑥∗, 𝑥∗) = 0,  

Similarly we can prove that  𝑑(𝑥∗, 𝑇𝑛𝑥∗) = 0 

Hence {𝑇𝑛𝑥∗} converges to a fixed point, for all 𝑥∗𝜖 𝑋. 

2.4 Corollary: Let (𝑋, 𝑑)be a complete dislocated quasi-metric space with coefficient s and let 𝑇 be a mapping from 𝑋 into 
itself. 

Suppose that 𝑇satisfies the following condition: 

𝑑(𝑇𝑥, 𝑇𝑦) ≤ (
𝑑(𝑦, 𝑇𝑦)

𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦) + 1
) 𝑑(𝑥, 𝑦) 

For all 𝑥, 𝑦 𝜖𝑋, then 

(i) 𝑇 has unique fixed point in 𝑋. 

(ii) {𝑇𝑛𝑥∗} Converges to a fixed point, for 𝑥∗𝜖 𝑋. 

Proof: The proof of the corollary immediately follows from the proof of the above theorem by putting k=1.  

2.5 Theorem: Let (𝑋, 𝑑) be a complete dqb-metric space with coefficient s. Suppose the mapping 𝑇: 𝑋 → 𝑋 satisfies the 

following conditions:  

𝑑(𝑇𝑥, 𝑇𝑦) ≤ (
𝑑(𝑦, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)

𝑑(𝑦, 𝑇𝑦) ∙ 𝑑(𝑦, 𝑇𝑥) + 𝑘
) 𝑑(𝑥, 𝑦) 

For all 𝑥, 𝑦 𝜖 𝑋, where 𝑘 ≥ 1then 

(i) 𝑇 has a unique fixed point in 𝑋. 

(ii) {𝑇𝑛𝑥 ∗} Converges to a fixed point, for all 𝑥∗ 𝜖 𝑋. 

Proof: (i) Let 𝑥0 𝜖 𝑋 be arbitrary point in 𝑋 and choose a sequence  {𝑥𝑛} such that 𝑥𝑛+1 = 𝑇𝑥𝑛 

𝑑(𝑥𝑛 , 𝑥𝑛+1) = 𝑑(𝑇𝑥𝑛−1, 𝑇𝑥𝑛) 

≤ (
𝑑(𝑥𝑛, 𝑇𝑥𝑛) + 𝑑(𝑥𝑛 , 𝑇𝑥𝑛−1)

𝑑(𝑥𝑛 , 𝑇𝑥𝑛) ∙ 𝑑(𝑥𝑛 , 𝑇𝑥𝑛−1) + 𝑘
) 𝑑(𝑥𝑛−1, 𝑥𝑛) 

≤ (
𝑑(𝑥𝑛, 𝑥𝑛+1) + 𝑑(𝑥𝑛 , 𝑥𝑛)

𝑑(𝑥𝑛 , 𝑥𝑛+1) ∙ 𝑑(𝑥𝑛 , 𝑥𝑛) + 𝑘
) 𝑑(𝑥𝑛−1, 𝑥𝑛) 

Let 𝛽𝑛 = (
𝑑(𝑥𝑛,𝑥𝑛+1)+𝑑(𝑥𝑛,𝑥𝑛)

𝑑(𝑥𝑛,𝑥𝑛+1)∙𝑑(𝑥𝑛,𝑥𝑛)+𝑘
) 

We get that, 𝑑(𝑥𝑛 , 𝑥𝑛+1) ≤ 𝛽𝑛𝑑(𝑥𝑛−1, 𝑥𝑛) ≤ 𝛽𝑛𝛽𝑛−1𝑑(𝑥𝑛−2, 𝑥𝑛−1) 

𝑑(𝑥𝑛 , 𝑥𝑛+1) ≤ 𝛽𝑛𝛽𝑛−1 … 𝛽1𝑑(𝑥0, 𝑥1). 
Observe that, {𝛽𝑛} is a non-increasing sequence, with positive terms.  

So, 𝛽𝑛𝛽𝑛−1 … 𝛽1 ≤ 𝛽1
𝑛  and 𝛽1

𝑛 → 0 as,  𝑛 → ∞.  

It follows that, lim
𝑛→∞

𝛽𝑛𝛽𝑛−1 … 𝛽1 = 0 

Thus we get, 

 lim
𝑛→∞

𝑑(𝑥𝑛 , 𝑥𝑛+1) = 0 

Now for all 𝑚, 𝑛 𝜖 ℕ and 𝑚 > 𝑛 

 We have, 

𝑑(𝑥𝑚 , 𝑥𝑛) ≤ 𝑠𝑚−𝑛𝑑(𝑥𝑚 , 𝑥𝑚−1) + 𝑠𝑚−𝑛−1𝑑(𝑥𝑚−1, 𝑥𝑚−2) + ⋯ 𝑠2𝑑(𝑥𝑛+2, 𝑥𝑛+1) + 𝑠𝑑(𝑥𝑛+1, 𝑥𝑛) 
 

𝑑(𝑥𝑚 , 𝑥𝑛) ≤ 𝑠𝑚−𝑛𝛽𝑚−1𝛽𝑚−2 … 𝛽1𝑑(𝑥0, 𝑥1) + 𝑠𝑚−𝑛−1𝛽𝑚−2𝛽𝑚−3 … 𝛽1𝑑(𝑥0, 𝑥1) + ⋯ + 𝑠2𝛽𝑛+1𝛽𝑛 … 𝛽1𝑑(𝑥0, 𝑥1)
+ 𝑠𝛽𝑛𝛽𝑛−1 … 𝛽1𝑑(𝑥0, 𝑥1) 

𝑑(𝑥𝑚 , 𝑥𝑛) ≤ 𝑠𝑚−𝑛𝛽1
𝑚−1𝑑(𝑥0, 𝑥1) + 𝑠𝑚−𝑛−1𝛽1

𝑚−2𝑑(𝑥0, 𝑥1) + ⋯ + 𝑠2𝛽1
𝑛+1𝑑(𝑥0, 𝑥1) + 𝑠𝛽1

𝑛𝑑(𝑥0, 𝑥1) 

𝑑(𝑥𝑚 , 𝑥𝑛) ≤ (𝑠𝑚−𝑛𝛽1
𝑚−1 + 𝑠𝑚−𝑛−1𝛽1

𝑚−2 + ⋯ + 𝑠2𝛽1
𝑛+1 + 𝑠𝛽1

𝑛)𝑑(𝑥0, 𝑥1) 

Take 𝑛 → ∞ we get, 𝑑(𝑥𝑚 , 𝑥𝑛) → 0 

Similarly we can prove, 𝑑(𝑥𝑛 , 𝑥𝑚) → 0 

Thus {𝑥𝑛} is a Cauchy sequence. 

Now, since (𝑋, 𝑑) is a complete dqb-metric space, the sequence  {𝑥𝑛} must converge to some point 𝑥∗ in dqb-metric 

space (𝑋, 𝑑), Such that 𝑥𝑛 → 𝑥∗ as 𝑛 → ∞. 

i.e.  lim
𝑛→∞

𝑑(𝑥𝑛, 𝑥
∗) = 0 = lim

𝑛→∞
𝑑(𝑥∗, 𝑥𝑛) 

𝑑(𝑇𝑥∗, 𝑥∗) ≤ 𝑠𝑑(𝑇𝑥∗, 𝑇𝑥𝑛) + 𝑠𝑑(𝑇𝑥𝑛 , 𝑥∗) 

𝑑(𝑇𝑥∗, 𝑥∗) ≤ 𝑠 (
𝑑(𝑥𝑛 , 𝑇𝑥𝑛) + 𝑑(𝑥𝑛 , 𝑇𝑥∗)

𝑑(𝑥𝑛 , 𝑇𝑥𝑛) ∙ 𝑑(𝑥𝑛 , 𝑇𝑥∗) + 𝑘
) 𝑑(𝑥∗, 𝑥𝑛) + 𝑠𝑑(𝑇𝑥𝑛 , 𝑥∗) 

𝑑(𝑇𝑥∗, 𝑥∗) ≤ 𝑠 (
𝑑(𝑥𝑛 , 𝑥𝑛+1) + 𝑑(𝑥𝑛 , 𝑇𝑥∗)

𝑑(𝑥𝑛 , 𝑥𝑛+1) ∙ 𝑑(𝑥𝑛 , 𝑇𝑥∗) + 𝑘
) 𝑑(𝑥∗, 𝑥𝑛) + 𝑠𝑑(𝑥𝑛+1, 𝑥∗) 

Taking limit as 𝑛 → ∞ on both sides we get, 

𝑑(𝑇𝑥∗ , 𝑥∗) ≤ 𝑠 ∙ 0 + 𝑠 ∙ 0 

𝑑(𝑇𝑥∗, 𝑥∗) ≤ 0 ⟹ 𝑑(𝑇𝑥∗, 𝑥∗) = 0 

And similarly we can prove that, 𝑑(𝑥∗, 𝑇𝑥∗) = 0 

Giving that, 𝑇𝑥∗ = 𝑥∗ 
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This proves that 𝑥∗ is fixed point of 𝑇 
Uniqueness: 

Consider two fix points x* and y*  of 𝑇. Therefore,𝑇𝑥∗ = 𝑥∗ and 𝑇𝑦∗ = 𝑦∗. 

Consider, 

𝑑(𝑥∗, 𝑦∗) = 𝑑(𝑇𝑥∗, 𝑇𝑦∗) ≤ (
𝑑(𝑦∗, 𝑇𝑦∗) + 𝑑(𝑦∗, 𝑇𝑥∗)

𝑑(𝑦∗, 𝑇𝑦∗) ∙ 𝑑(𝑦∗, 𝑇𝑥∗) + 𝑘
) 𝑑(𝑥∗, 𝑦∗) 

𝑑(𝑥∗, 𝑦∗) ≤ 0 ⟹ 𝑑(𝑥∗, 𝑦∗) = 0 
 

And 𝑑(𝑦∗, 𝑥∗) = 𝑑(𝑇𝑦∗, 𝑇𝑥∗) ≤ (
𝑑(𝑥∗,𝑇𝑥∗)+𝑑(𝑥∗,𝑇𝑦∗)

𝑑(𝑥∗,𝑇𝑥∗)∙𝑑(𝑥∗,𝑇𝑦∗)+𝑘
) 𝑑(𝑦∗, 𝑥∗) 

𝑑(𝑦∗, 𝑥∗) ≤ 0 ⟹ 𝑑(𝑦∗, 𝑥∗) = 0 

Thus 𝑑(𝑥∗, 𝑦∗) = 0 and 𝑑(𝑦∗, 𝑥∗) = 0 implies that, 𝑥∗ = 𝑦∗ 

Hence 𝑥∗ is a unique fixed point of 𝑇. 

(ii) 

Now,  

Consider,𝑑(𝑇𝑛𝑥∗, 𝑥∗) = 𝑑(𝑇𝑛−1(𝑇𝑥∗), 𝑥∗) = 𝑑(𝑇𝑛−1𝑥∗, 𝑥∗) = ⋯ = 𝑑(𝑇𝑥∗, 𝑥∗) = 0 

𝑖. 𝑒 𝑑(𝑇𝑛𝑥∗, 𝑥∗) = 0 Similarly we can prove that𝑑(𝑥∗, 𝑇𝑛𝑥∗) = 0 

This gives that, 𝑇𝑛𝑥∗ = 𝑥∗ 

Hence {𝑇𝑛𝑥∗} converges to a fixed point, for all 𝑥∗𝜖 𝑋. 

2.6 Corollary: Let (𝑋, 𝑑) be a complete dqb-metric space with coefficient s. Suppose the mapping 𝑇: 𝑋 → 𝑋 satisfies the 

following conditions:  

𝑑(𝑇𝑥, 𝑇𝑦) ≤ (
𝑑(𝑦, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)

𝑑(𝑦, 𝑇𝑦) ∙ 𝑑(𝑦, 𝑇𝑥) + 1
) 𝑑(𝑥, 𝑦) 

For all 𝑥, 𝑦 𝜖 𝑋, then 

(i) 𝑇 has a unique fixed point in 𝑋. 

(ii) {𝑇𝑛𝑥∗} Converges to a fixed point, for all 𝑥∗ 𝜖 𝑋. 

Proof: The proof follows from the proof of the above theorem by putting k=1.  

2.7 Theorem: Let (𝑋, 𝑑) be a complete dqb-metric space with coefficient s. Suppose that mapping 𝑇: 𝑋 → 𝑋 satisfies the 

following condition:  

𝑑(𝑇𝑥, 𝑇𝑦) ≤ (
𝑑(𝑦, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)

𝑑(𝑦, 𝑇𝑦) ∙ 𝑑(𝑦, 𝑇𝑥) + 𝑘
) 𝑑(𝑥, 𝑦) 

For all 𝑥, 𝑦 𝜖 𝑋, where 𝑘 ≥ 1then 

(iii) 𝑇 has a unique fixed point in 𝑋. 

(iv) {𝑇𝑛𝑥∗} Converges to a fixed point, for all 𝑥∗ 𝜖 𝑋. 

Proof: (i) Let 𝑥0 𝜖 𝑋 be arbitrary point in 𝑋 and choose a sequence  {𝑥𝑛} such that 𝑥𝑛+1 = 𝑇𝑥𝑛 

𝑑(𝑥𝑛 , 𝑥𝑛+1) = 𝑑(𝑇𝑥𝑛−1, 𝑇𝑥𝑛) 

≤ (
𝑑(𝑥𝑛, 𝑇𝑥𝑛) + 𝑑(𝑥𝑛 , 𝑇𝑥𝑛−1)

𝑑(𝑥𝑛 , 𝑇𝑥𝑛) ∙ 𝑑(𝑥𝑛 , 𝑇𝑥𝑛−1) + 𝑘
) 𝑑(𝑥𝑛−1, 𝑥𝑛) 

≤ (
𝑑(𝑥𝑛, 𝑥𝑛+1) + 𝑑(𝑥𝑛 , 𝑥𝑛)

𝑑(𝑥𝑛 , 𝑥𝑛+1) ∙ 𝑑(𝑥𝑛 , 𝑥𝑛) + 𝑘
) 𝑑(𝑥𝑛−1, 𝑥𝑛) 

Let 𝛽𝑛 = (
𝑑(𝑥𝑛,𝑥𝑛+1)+𝑑(𝑥𝑛,𝑥𝑛)

𝑑(𝑥𝑛,𝑥𝑛+1)∙𝑑(𝑥𝑛,𝑥𝑛)+𝑘
) 

We get that,  

𝑑(𝑥𝑛 , 𝑥𝑛+1) ≤ 𝛽𝑛𝑑(𝑥𝑛−1, 𝑥𝑛) ≤ 𝛽𝑛𝛽𝑛−1𝑑(𝑥𝑛−2, 𝑥𝑛−1) 

𝑑(𝑥𝑛 , 𝑥𝑛+1) ≤ 𝛽𝑛𝛽𝑛−1 … 𝛽1𝑑(𝑥0, 𝑥1). 
Observe that, {𝛽𝑛} is a non-increasing sequence with positive terms. 

So, 𝛽𝑛𝛽𝑛−1 … 𝛽1 ≤ 𝛽1
𝑛  and 𝛽1

𝑛 → 0 as,  𝑛 → ∞.  

It follows that, lim
𝑛→∞

𝛽𝑛𝛽𝑛−1 … 𝛽1 = 0 

Thus we get, 

 lim
𝑛→∞

𝑑(𝑥𝑛 , 𝑥𝑛+1) = 0 

Now for all 𝑚, 𝑛 𝜖 ℕ and 𝑚 > 𝑛 

 We have, 

𝑑(𝑥𝑚 , 𝑥𝑛) ≤ 𝑠𝑚−𝑛𝑑(𝑥𝑚 , 𝑥𝑚−1) + 𝑠𝑚−𝑛−1𝑑(𝑥𝑚−1, 𝑥𝑚−2) + ⋯ 𝑠2𝑑(𝑥𝑛+2, 𝑥𝑛+1) + 𝑠𝑑(𝑥𝑛+1, 𝑥𝑛) 
 

𝑑(𝑥𝑚 , 𝑥𝑛) ≤ 𝑠𝑚−𝑛𝛽𝑚−1𝛽𝑚−2 … 𝛽1𝑑(𝑥0, 𝑥1) + 𝑠𝑚−𝑛−1𝛽𝑚−2𝛽𝑚−3 … 𝛽1𝑑(𝑥0, 𝑥1) + ⋯ + 𝑠2𝛽𝑛+1𝛽𝑛 … 𝛽1𝑑(𝑥0, 𝑥1)
+ 𝑠𝛽𝑛𝛽𝑛−1 … 𝛽1𝑑(𝑥0, 𝑥1) 

𝑑(𝑥𝑚 , 𝑥𝑛) ≤ 𝑠𝑚−𝑛𝛽1
𝑚−1𝑑(𝑥0, 𝑥1) + 𝑠𝑚−𝑛−1𝛽1

𝑚−2𝑑(𝑥0, 𝑥1) + ⋯ + 𝑠2𝛽1
𝑛+1𝑑(𝑥0, 𝑥1) + 𝑠𝛽1

𝑛𝑑(𝑥0, 𝑥1) 
𝑑(𝑥𝑚 , 𝑥𝑛) ≤ (𝑠𝑚−𝑛𝛽1

𝑚−1 + 𝑠𝑚−𝑛−1𝛽1
𝑚−2 + ⋯ + 𝑠2𝛽1

𝑛+1 + 𝑠𝛽1
𝑛)𝑑(𝑥0, 𝑥1) 

Take 𝑛 → ∞ we get, 𝑑(𝑥𝑚 , 𝑥𝑛) → 0 

Similarly, we can prove, 𝑑(𝑥𝑛 , 𝑥𝑚) → 0 

Thus {𝑥𝑛} is a Cauchy sequence. 

Now, since (𝑋, 𝑑) is a complete dqb-metric space, the sequence  {𝑥𝑛} must converge to some point 𝑥∗ in dqb-metric 

space (𝑋, 𝑑), Such that 𝑥𝑛 → 𝑥∗ as 𝑛 → ∞. 

i.e.  lim
𝑛→∞

𝑑(𝑥𝑛, 𝑥
∗) = 0 = lim

𝑛→∞
𝑑(𝑥∗, 𝑥𝑛) 

𝑑(𝑇𝑥∗, 𝑥∗) ≤ 𝑠𝑑(𝑇𝑥∗, 𝑇𝑥𝑛) + 𝑠𝑑(𝑇𝑥𝑛 , 𝑥∗) 
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𝑑(𝑇𝑥∗, 𝑥∗) ≤ 𝑠 (
𝑑(𝑥𝑛 , 𝑇𝑥𝑛) + 𝑑(𝑥𝑛 , 𝑇𝑥∗)

𝑑(𝑥𝑛 , 𝑇𝑥𝑛) ∙ 𝑑(𝑥𝑛 , 𝑇𝑥∗) + 𝑘
) 𝑑(𝑥∗, 𝑥𝑛) + 𝑠𝑑(𝑇𝑥𝑛 , 𝑥∗) 

𝑑(𝑇𝑥∗, 𝑥∗) ≤ 𝑠 (
𝑑(𝑥𝑛 , 𝑥𝑛+1) + 𝑑(𝑥𝑛 , 𝑇𝑥∗)

𝑑(𝑥𝑛 , 𝑥𝑛+1) ∙ 𝑑(𝑥𝑛 , 𝑇𝑥∗) + 𝑘
) 𝑑(𝑥∗, 𝑥𝑛) + 𝑠𝑑(𝑥𝑛+1, 𝑥∗) 

Taking limit as 𝑛 → ∞ on both sides we get, 

𝑑(𝑇𝑥∗ , 𝑥∗) ≤ 𝑠 ∙ 0 + 𝑠 ∙ 0 

𝑑(𝑇𝑥∗, 𝑥∗) ≤ 0 ⟹ 𝑑(𝑇𝑥∗, 𝑥∗) = 0 

And similarly we can prove that, 𝑑(𝑥∗, 𝑇𝑥∗) = 0 

Giving that, 𝑇𝑥∗ = 𝑥∗ 

This proves that 𝑥∗ is fixed point of 𝑇 
Uniqueness: 

Consider two fix points x* and y*  of 𝑇. Therefore,𝑇𝑥∗ = 𝑥∗ and 𝑇𝑦∗ = 𝑦∗. 

Consider, 

𝑑(𝑥∗, 𝑦∗) = 𝑑(𝑇𝑥∗, 𝑇𝑦∗) ≤ (
𝑑(𝑦∗, 𝑇𝑦∗) + 𝑑(𝑦∗, 𝑇𝑥∗)

𝑑(𝑦∗, 𝑇𝑦∗) ∙ 𝑑(𝑦∗, 𝑇𝑥∗) + 𝑘
) 𝑑(𝑥∗, 𝑦∗) 

𝑑(𝑥∗, 𝑦∗) ≤ 0 ⟹ 𝑑(𝑥∗, 𝑦∗) = 0 
 

And 𝑑(𝑦∗, 𝑥∗) = 𝑑(𝑇𝑦∗, 𝑇𝑥∗) ≤ (
𝑑(𝑥∗,𝑇𝑥∗)+𝑑(𝑥∗,𝑇𝑦∗)

𝑑(𝑥∗,𝑇𝑥∗)∙𝑑(𝑥∗,𝑇𝑦∗)+𝑘
) 𝑑(𝑦∗, 𝑥∗) 

𝑑(𝑦∗, 𝑥∗) ≤ 0 ⟹ 𝑑(𝑦∗, 𝑥∗) = 0 

Thus 𝑑(𝑥∗, 𝑦∗) = 0 and 𝑑(𝑦∗, 𝑥∗) = 0 implies that, 𝑥∗ = 𝑦∗ 

Hence 𝑥∗ is a unique fixed point of 𝑇. 

(ii) 

Now,  

Consider,𝑑(𝑇𝑛𝑥∗, 𝑥∗) = 𝑑(𝑇𝑛−1(𝑇𝑥∗), 𝑥∗) = 𝑑(𝑇𝑛−1𝑥∗, 𝑥∗) = ⋯ = 𝑑(𝑇𝑥∗, 𝑥∗) = 0 

𝑖. 𝑒 𝑑(𝑇𝑛𝑥∗, 𝑥∗) = 0 Similarly we can prove that𝑑(𝑥∗, 𝑇𝑛𝑥∗) = 0 

This gives that, 𝑇𝑛𝑥∗ = 𝑥∗ 

Hence {𝑇𝑛𝑥∗} converges to a fixed point, for all 𝑥∗𝜖 𝑋. 

2.8 Corollary: Let (𝑋, 𝑑) be a complete dqb-metric space with coefficient s. Suppose that mapping 𝑇: 𝑋 → 𝑋 satisfies the 

following condition:  

𝑑(𝑇𝑥, 𝑇𝑦) ≤ (
𝑑(𝑦, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)

𝑑(𝑦, 𝑇𝑦) ∙ 𝑑(𝑦, 𝑇𝑥) + 1
) 𝑑(𝑥, 𝑦) 

For all 𝑥, 𝑦 𝜖 𝑋, then 

(v) 𝑇 has a unique fixed point in 𝑋. 

(vi) {𝑇𝑛𝑥∗} Converges to a fixed point, for all 𝑥∗ 𝜖 𝑋. 

Proof: The proof follows from the proof of the above theorem by putting k=1.  
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