Study of $\mathbf{C}_{\mathbf{k}}$-Convex Function

Dr. K.Swetank
B. Seminary Inter College
Chapra (Bihar)

Dr. Lal Babu Singh
Department of Mathematics
J.P. University, Chapra

1. Abstract:-

We define C_{k}-Convex Function of a C - set in a linear Space and established some important theorems.
2. Introduction:- In this paper we use the notions of convex set and convex function in a real or complex linear space as given in Doneford and Schwarz [1] Rayden [2] and Rudin [3] in the analogy to the above notions. we define
C_{k} - Convex function and established some results in connection with this definition.

3.Definition.

A real Valued function $\mathrm{f}: \mathrm{R} \rightarrow R$ is a C_{k}-Convex function $(k \geq 0)$ if

$$
K+f(x+a)-f(x)-\frac{a}{b}[f(x)-f(x-b)] \geq 0
$$

For all x in R and all positive reals a, b.
Theorem (3.1) : If f is C_{k}-Convex then f is C_{m}-Convex for all $\mathrm{m} \geq k$.
Proof:- Since f is C_{k}-Convex,
$K+f(x+a)-f(x)-\frac{a}{b}[f(x)-f(x-b)] \geq 0$,
For all real x and and all positive numbers a, b.

Hence $\mathrm{m} \geq k$ implies

$$
m+f(x+a)-f(x)-\frac{a}{b}[f(x)-f(x-b)] \geq 0
$$

Thus f is
C_{m}-Convex.
Theorem(3.2): If f and g are C_{k}-Convex and C_{m}-Convex respectively and if $\alpha, \beta>$ 0 then $\alpha f+\beta g$
is $C_{\alpha k+\beta m}$-Convex.

In particular, the set of all C_{k} - Convex functions is convex.
Proof: Since f is C_{k}-Convex,
$K+f(x+a)-f(x)-\frac{a}{b}[f(x)-f(x-b)] \geq 0$,
For all real x in R and all positive reals a, b.
Since $\alpha>0$,
$\alpha K+(\alpha f)(x+a)-(\alpha f)(x)-\frac{a}{b}[(\alpha f)(x)-(\alpha f)(x-b)] \geq 0$
For all x in R and all positive reals a, b. Also g is C_{m}-Convex,
Hence
$m+g(x+a)-g(x)-\frac{a}{b}[g(x)-g(x-b)] \geq 0$
Where a, b are positive reals and all $x \in R$.
Hence $\beta>0$ implies
$\beta m+(\beta g)(x+a)-(\beta g)(x)-\frac{a}{b}[(\beta g)(x)-(\beta g)(x-b)] \geq 0$
With $\mathrm{x}, \mathrm{a}, \mathrm{b}$ as before .
Adding the inequalities (3.21) and (3.22),

$$
\alpha k+\beta m+(\alpha f+\beta g)(x+a)-(\alpha f+\beta g)(x)-\frac{a}{b}[(\alpha f+\beta g)(x)-(\alpha f+\beta g)(x-b)] \geq 0
$$

For all x in R and all posiive reals a, b.
But this shows that $\alpha f+\beta g$ is $C_{\alpha k+\beta m}$-Convex.
As a Particulars case let g be C_{k}-Convex i.e. $\mathrm{m}=\mathrm{k}$
Let $\alpha+\beta=1, \quad$ then
$\alpha k+\beta m=\alpha k+\beta k=(\alpha+\beta) k=k$
Thus $\alpha f+\beta g$ is also C_{k}-Convex. Hence in particular, the set of all C_{k}-Convex function is convex.

Theorem (2.3) : If f is C_{k}-Convex then a function g is given by

$$
g(x) \equiv f(x-z)
$$

is also C_{k}-Convex for all z in R .

Proof: Let z be a fixed element in R and x be any element of R .
Since f is C_{k}-Convex,

$$
k+f(x+a)-f(x)-\frac{a}{b}[f(x)-f(x-b)] \geq 0
$$

For all positive reals a, b.
Replacing x by $\mathrm{x}-\mathrm{z}$ in the above inequality.

$$
k+f(x-z+a)-f(x-z)-\frac{a}{b}[f(x-z)-f(x-z-b)] \geq 0
$$

or, $\quad k+f(x+a-z)-f(x-z)-\frac{a}{b}[f(x-z)-f(x-b-z)] \geq 0$
or, $k+g(x+a)-g(x)-\frac{a}{b}[g(x)-g(x-b)] \geq 0$
For all x in R and all positive reals a , b .
Hence g is also C_{k}-Convex for all z in R .

Reference :

[1]. Dunford, N. and Schwartz, J. "Linear Operators Part -I" Inter Science Publishers, Inc., New York,1967.
[2]. Royden,H.L. "Real Analysis," Macmillan Company, NewYork, 1964.
[3]. Rudin, W. "Functional Analysis ," Mc. Graw Hill Book Company,Inc.New York,1973.

