Study of floristic diversity, life-forms and biological spectrum of the forest situated at the Sansarpur of Koraon range, Allahabad, Uttar Pradesh, India

¹Uma Shukla, ²Alok Kushwaha, ³Anuj Kumar, ⁴Ankit Singh Gautam, ⁵D.N. shukla ^{1,2,3,4}Research Scholar, ⁵ Professor University of Allahabad

Abstract

Floral diversity is affected by the external factors like fire, grazing, pest, invasive species and especially by the man made activities. This study was conducted at the forest of Sansarpur, Koraon, Allahabad, Uttar Pradesh, India. For identification of floristic composition, quadrates were laid down and samples of all species of trees, shrubs, herbs, climbers and epiphytes were collected and identified with the help of Flora of Allahabad, Flora of Uttar Pradesh, Herbarium of the Botany Department of Allahabad University and various floras and monographs. Classification of the plants has been done on the basis of perrenating buds on the plants and the degree of their protection during adverse conditions and the biological spectrum is prepared on the basis of the percentage of each life-form following Raunkiaer (1934). A total of 138 species belonging to 112 genera and 48 families of angiosperm were recorded in the course of the sampling of vegetation. Out of 48 families 45 families belong to dicotyledons and remaining 3 belongs to monocotyledons. The dicotyledons comprise 45 families 96 genera and 120 species and monocotyledons comprise 03 families 16 genera and 18 species. Out of the total 138 species dicotyledons represents 86.95% and monocotyledons 13.04%. Dicotyledons comprise a main proportion of the area. Out of total 48 families Fabaceae was the more dominant family followed by Poaceae, Asteraceae, Malvaceae, Euphorbiaceae, Acanthaceae, Combretaceae, Mimosaceae, Caesalpiniaceae and Rubiaceae at the study area. In this study phanerophytes are more than therophytes. Phanerophytes constituted themain proportion of the vegetation which is 48%, followed by therophytes (34%), chamaephytes (8%), geophytes (6%), hemicryptophytes (3%), and epiphytes(1%). Keywords – Floral diversity, biological spectrum, life-forms, koraon.

Introduction

Forest is the largest productive biota of the earth and play a significant role in economic progress and conserving natural ecosystem. Forests provide renewable raw material and energy for use of human beings, diminish climate change, maintain biodiversity, protect land and water resources and decrease pollution level. Forests are affected by the external factors like fire, grazing, pest, invasive species and especially by the manmade activities. All life – forms depend on the forests and biodiversity. Biodiversity or Biological diversity is the part of nature which refers to the differences between and among living community and their environmental conditions (Nath, 2015). Biodiversity is important for the survival of human beings as well as for economy and for the function and stability of the ecosystem (Singh, 2002). Plants and animals are the two main factors of the biodiversity which included the variation among species (Joshiand Shringi, 2014). Floral diversity is the variation in the plant species which occur naturally in the specific area. Diversity in the plants is natural resource found on the earth and it is commercially important and it is a strong economy of a country. The floristic diversity determined the structure and function of forest ecosystem more than any other living component (Richards, 1996). Floristic diversity of an area is a tool which provides the design and functioning of the natural communities and also adds to complete information about the pattern and process of their organization.

Life – forms is the total adaptations of plants to the climate (Raunkiaer, 1934).Raunkiaer (1934)classified plants into five major groups on the basis of perrenating buds on the plants and the degree of their protection during adverse conditions - phanerophytes, chamaephytes, hemicryptophytes, cryptophytes and therophytes. Life – forms are an important thing to know the biological spectrum of the plant community because the biological spectrum is the percentage of life – forms classes in any plant community (Milne and Milne, 1971). Biological spectrum is designed to know that which type of environment is dominant at any specific region and it also indicates climatic conditions of any specific region.

In the recent years developing and under developing countries are showing more awareness in the study of floristic diversity for the assessment of plant wealth of their country (Vediya and Kharadi, 2011). Floristic variety and structural analysis studies are important for providing information on species abundance of the forests, the structure of the forest, functions of ecosystem, beneficial in identifying naturally and economically important plants and their varieties and also in conserving threatened and naturally important plant species. (Giriraj et al., 2008; Pappoe et al., 2010, Addo-Fordjour et al., 2009).

C.S. Jha and J.S. Singh (1990), Adhikarietal.(1995), Singh and Rawat (2000), C.V. Chittibabu and N. Parthasarathy (2000), S. K. Pandey and R. P. Shukla (2003), D. C. Saini (2005), S. Mani and Parthasarathy N. (2005), Shukla and Mishra (2006), Y. L. Krishnamurthy et al. (2010), S. D. Maliya (2012), S. Baithalu et al. (2013) and A. S. Thakur (2015) they have been worked on floristic composition and biological spectrum of the plant community in India.

C.P. Shukla, and K.N. Mishra (2006) worked on floristic composition and biological spectrum of burnt and unburnt grazing lands of Dewghat forest.

The aim of this paper to study the floristic diversity, life - forms and the biological spectrum of the Sansarpur forest of Koraon range, Allahabad, Uttar Pradesh.

Materials and methods-

Study area

The present study was conducted in Sansarpur forest located in Koraon Tehsil in Allahabad District of Uttar Pradesh State, India. The forest is situated 19 km distance from Koraon and 82 Km distance from main District, Allahabad. Forest lies at 24⁰52'13.50"N latitude and 82⁰05'48.54" E longitude at an altitude of 92 meters above sea level. Rainy, winter and summer seasons are the three well recognized monsoonic seasons. Average annual rainfall is about 934 mm and most rainfall is seen from the month of June to September. There is a common occurrence of winter rains. There is a long and hot summer season with maximum temperature ranging from 40 °C to 45 °C and extend from March to June. Study area enjoys a wonderful cool and dry winter season and extends from December to February. There is black and coarse grey landand soil has more clay than any other types of rocks or minerals.

Method

The study was conducted during different seasons of the year 2016-17. Global Positioning System (GPS) is used for the Geographical coordinates of the study area. The study area was visited on the basis of altitude, physical appearance, hill, angle, dry place, water body, road side etc. A sampleof all species occurring at a site belonging to trees, shrubs, herbs, climbers and epiphytes were collected and identified. Collected plant samples were identified with the help of Flora of Allahabad, Flora of Uttar Pradesh, Herbarium of the Botany Department of Allahabad University and various floras and monographs. Classification of the plants in the life forms or growth forms were done on the basis of Raunkiaer's (1934) classification of plants. The basis of the preparation of the biological spectrum is the percentage of each life-form following Raunkiaer (1934).

Result and discussion

Classification of habit and life-forms of plants observed at Sansarpur forests.

S. No.	Name of the flora	Common name	Family	Habit	Life forms
	Abutilon indicum	Kanghi	Malvaceae	Herb	Th
1	(Linn.) Swee.				
2	Acacia catechu (L. f.) Willd.	Khair	Mimosaceae	Tree	Ph
3	Acacia farnesiana(Linn.) Wight	VilayatiKika r	Mimosaceae	Tree	Ph
4	Acacia nilotica(Linn.) P.J.H.	Babul	Mimosaceae	Tree	Ph
5	Achyranthes aspera Linn.	Latjeera	Amaranthaceae	Herb	Th
6	Adina cordifolia Hook. f.	Haldu	Rubiaceae	Tree	Ph
7	Aegle marmelos(Linn.) Corre.	Bel	Rutaceae	Tree	Ph

8	Ageratum conyzoides Linn.	Sarhand	Asteraceae	Herb	Th
9	Ailanthus excelsa Roxb.	Aruu	Simaroubaceae	Tree	Ph
10	<i>Alangium salvifolium</i> (L.f.) Wangerin	Ankal	Cornaceae	Tree	Ph
11	Albizia lebbekBenth.	Siris	Mimosaceae	Tree	Ph
12	Albizia procera Benth.	SafedSiris	Mimosaceae	Tree	Ph
13	Alysicarpus vaginalis DC.	Sauri	Fabaceae	Herb	Th
14	Amaranthus viridis Linn.	Jungalichaul ayi	Amaranthaceae	Herb	Th
15	Anagallis arvensis Linn.	Krishananeel	Primulaceae	Herb	Th
16	Anogeissus latifolia(Roxb. ex Dc) Wall.	Dhaura	Combretaceae	Tree	Ph
17	Anogeissus acuminate (Roxb. ex Candolle) Guillemin et al.	Dhaura	Combretaceae	Tree	Ph
18	Argemone mexicana Linn.	Satyanashi	Papaveraceae	Herb	Th
19	AzadirachtaindicaA. Juss.	Neem	Meliaceae	Tree	Ph
20	<i>Bambusa arundinaceae</i> (Retz.) Willd.	KanteelaBaa ns	Poaceae	Herb	G
21	Barleria cristata Linn.	Kansaraiya	Acanthaceae	Herb	Ch
22	<i>Bauhinia purpurea</i> (Linn.) Benth.	Kachhar	Caesalpinaceae	Tree	Ph
23	Bauhinia racemosa Lam	katmauli	Caesalpinaceae	Tree	Ph
24	<i>Bidens biternata</i> (Lour.) Merr. and Sherff.	Chirchitta	Asteraceae	Herb	Ch
25	Boerhhavia diffusa Linn.	Punarnawa	Nyctaginaceae	Herb	Н
26	Borreria stricta Linn. F.	Safedphooli	Rubiaceae	Herb	Th
27	<i>Boswellia serrata</i> Roxb. exColebr.	Salai	Burseraceae	Tree	Ph
28	Blumea lacera(Burn.f.) DC.	Kakronda	Asteraceae	Herb	Th
29	Brachiaria reptans(Linn.) Gard.	Chaurila	Poaceae	Herb	Th
30	Bridelia retusa(Linn.) Spreng.	Kaji	Euphorbiaceae	Tree	Ph

$\textcircled{\sc c}$ 2019 JETIR June 2019, Volume 6, Issue 6

www.jetir.org (ISSN-2349-5162)

31	Buchanania lanzan Spreng.	Chironji	Anacardiaceae	Tree	Ph
32	Butea monosperma(Lam.) Taub.	Palas	Fabaceae	Tree	Ph
33	Calotropis procera(Ait.) R. Br.	Madar	Asclepiadaceae	Shrub	Ph
34	Cannabis sativa Linn.	Bhang	Cannabinaceae	Herb	Th
35	Cassia absus Linn.	Bankulthi	Caesalpiniaceae	Herb	Th
36	Cassia fistula Linn.	Amaltas	Caesalpiniaceae	Tree	Ph
37	Cassia tora Linn.	Chakvad	Caesalpiniaceae	Herb	Th
38	Cleome gynandra Linn.	SafedHurhur	Cappariaceae	Herb	Th
39	Chenopodium album Linn.	Bathua	Chenopodiacea	Herb	Th
40	Coccinia grandis(Linn.) Voigt.	Kunuru	e Cucurbitaceae	Climber	Ph
41	Convolvulus pluricaulis Choisy.	Shankhpuspi	Gentianaceae	Herb	Н
42	Corchorus tricularis Lam.	Kadvapat	Tiliaceae	Herb	Th
43	Cordia dichotoma Forst.	Lasora	Ehreteaceae	Tree	Ph
44	Crotalaria prostrata Willd.	Chhunchhuni	Fabaceae	Herb	Th
45	Cuscuta reflexa Roxb.	Amar Bel	Cuscutaceae	Climber	Ph
46	Cynodon dactylon(Linn.) Pers.	Doobghaaas	Poaceae	Herb	G
47	Cyperus difformis Linn.	Moth <mark>a</mark>	Cyperaceae	Herb	Ch
48	Cyperus rotundus Linn.	Bara-nagar- motha	Cyperaceae	Herb	G
49	Dactyloctenium aegyptiacum	Makra	Poaceae	Herb	G
	Linn.				
50	Dalbergia latifolia Roxb.	Safed	Fabaceae	Tree	Ph
51	Dalbergia sissoo Roxb.	Shisham	Fabaceae	Tree	Ph
52	Datura innoxia Linn.	Datura	Solanaceae	Shrub	Ph
53	Dendrocalamus stictus(Roxb.)	LathiBaans	Poaceae	Herb	G
	Nees.				
54	Desmodium	Salparni	Fabaceae	Herb	Ch
	gangeticum(Desv.)DC.				
55	Desmodium triflorum DC.	Kudaliya	Fabaceae	Herb	Ch
56	<i>Desmostachya bipinnata</i> (L.) Stapf.	Kusha	Poaceae	Herb	Ch

$\textcircled{\sc c}$ 2019 JETIR June 2019, Volume 6, Issue 6

www.jetir.org (ISSN-2349-5162)

57	Digitaria ciliaris(Retz.) Koele.	Takri	Poaceae	Herb(Grass	G
58	Diospyros melanoxylon Roxb.	Tendu	Ebenaceae) Tree	Ph
59	<i>Echinochloa colonum</i> (Linn.) Link.	Jharwa	Poaceae	Herb	G
60	Eclipta prostrata Hassak.	Bhringaraj	Asteraceae	Herb	Th
61	Elytraria acaulis(L.f.) Lindau.	Patharchatta	Acanthaceae	Herb	Н
62	Emblica officinalis Gaertn.	Amla	Euphorbiaceae	Tree	Ph
63	<i>Eragrostis tenella</i> (Linn.) Roem. and Schult.	Bharbhusi	Poaceae	Herb(Grass)	Th
64	Eucalyptus robustaSm	Safeda	Myrtaceae	Tree	Ph
65	Euphorbia hirtaLinn.	Duddhi	Euphorbiaceae	Herb	Th
66	Evolvulus alsinoides Linn.	NeeliShankh	Convolvulaceae	Herb	Н
67	Evolvulus nummularis Linn.	Musakarni	Convolvulaceae	Herb	Н
68	Feronia limonia Linn.	Kaith	Rutaceae	Tree	Ph
69	Ficus benghalensis Linn.	Bargad tree	Moraceae	Tree	Ph
70	Ficus racemosa Linn.	Gular tree	Moraceae	Tree	Ph
71	Ficus religiosa Linn.	Peepal tree	Moracea	Tree	Ph
72	Ficus rumphaii Linn.	Pakar	Moraceae	Tree	Ph
73	Gardenia latifoliaAit.	Papra	Rubiaceae	Tree	Ph
74	Gloriosa superb Linn.	Kalihari	Colchicaceae	Herb	G
75	Gomphrena celosioides Mart.	Gul-e-	Amaranthaceae	Herb	Th
76	Gymnema sylvestre R.Br.	Gudmar	Asclepiadaceae	Herb	Th
77	<i>Hemidesmus indicus</i> (Linn.) Schult.	Anantamul	Asclepiadaceae	Climber	Ph
78	<i>Holoptelia integrifolia</i> (Roxb.)	Chilbil	Ulmaceae	Tree	Ph
	Planch.				
79	Ipomoea fistulosa Mart DC.	Behaya	Convolvulaceae	Shrub	Ph
80	Iseilema anthephoroides Hack.	Ghaas	Poaceae	Herb	Ch
81	Jatropha gossypifolia Linn.	Ratanjoti	Euphorbiaceae	Shrub	Ph
82	Justicia adhatoda Nees.	Adusa	Acanthaceae	Shrub	Ph

© 2019	JETIR June 2019, Volume 6, Issue 6	5		www.jetir.org	ı (ISSN-2349-5162)
83	<i>Justicia paniculata</i> (Burm.f.) Wall. ex Nees.	Chiraita	Acanthaceae	Herb	Th
84	Justicia procumbens Linn.	Kalmashi	Acanthaceae	Herb	Th
85	Lantana camaraLinn.	Raimuniya	Verbenaceae	Shrub	Ph
86	<i>Leucaena leucocephal</i> (Lam.) De Wit.	Subabul	Fabaceae	Tree	Ph
87	Leucas aspera(Willd.) Link.	Gumma	Lamiaceae	Herb	Th
88	Lindernia ciliata(Colsm.) Pen.	Oonmudia	Linderniaceae	Herb	Th
89	Loranthus longiflorus Desr.	Banda	Proteaceae	Epiphyte	Е
90	Madhuca indica Gme.	Mahua	Sapotaceae	Tree	Ph
91	Malvastrum coromandelianum (Linn.) Garc.	Kharenti	Malvaceae	Herb	Th
92	Mangifera indica Linn.	Aam	Anacardiaceae	Tree	Ph
93	Medicago denticulataWilld.	Alfalfa	Fabaceae	Herb	Th
94	Melilotus indica(Linn.) All.	Ban methi	Fabaceae	Herb	Th
95	Miliusa tomentosa(Roxb.) J.	Hoom	Annonaceae	Tree	Ph
96	Mimusop shexandraRoxb.	Khirni	Sapotaceae	Tree	Ph
97	<i>Mitragyna parvifolia</i> (Roxb.) Korth.	Kaim	Rubiaceae	Tree	Ph
98	Murraya koenigii(Linn.)	Curry patta	Rutaceae	Tree	Ph
99	Spreng. <i>Oldenlandia herbaceae</i> (Linn.) Roxb.	Paper-bhed	Rubiaceae	Herb	Th
100	<i>Oplismenus burmannii</i> (Retz.) P.Beauv.	Kudak	Poaceae	Herb	Th
101	Oxalis corniculata Linn.	Khatibuti	Oxalidaceae	Herb	Ch
102	Panicum repens Linn.	Bansi	Poaceae	Herb	Th
103	Parthenium hysterophorus Linn.	GajarGhans	Asteraceae	Herb	Th
104	<i>Peristrophe paniculata</i> (Forssk.) Brummi.	Atrilal	Acanthaceae	Herb	Th
105	Phyllanthus debilis Ham.	Jarmala	Euphorbiaceae	Herb	Th

106	Plumbago zeylanica Linn.	Cheetrak	Plumbaginaceae	Herb	Th
107	Pongamia pinnata Linn.	Karanj	Fabaceae	Tree	Ph
108	Prosopis cineraria(Linn.) Dru.	Shami	Fabaceae	Tree	Ph
109	Prosopis julifera(Sw.) DC.	Vilayati	Fabaceae	Tree	Ph
110	PterocarpusmarsupiumRoxb.	babul Bijasal	Fabaceae	Tree	Ph
111	Ricinus communis Linn.	Rendi	Euphorbiaceae	Tree	Ph
112	Saccharum spontaneum Linn.	Kans	Poaceae	Herb	Ch
113	Saccharum munja Roxb.	Munj	Poaceae	Herb	Ch
114	Salmalia malabarica Linn.	Semal	Malvaceae	Tree	Ph
115	Setaria pumila(Poir) Roem. and	Bandra	Poaceae	Herb	Ch
	Schult.				
116	Sida cordata (Burm. f.) Borss.	Bhuinii	Malvaceae	Herb	Th
	Waal.				
117	Sida cordifolia Linn.	Khareti	Malvaceae	Herb	Th
118	Sida spinosa Linn.	Gulsakari	Malvaceae	Herb	Th
119	Solanum nigrum Linn.	Makoi	Solanaceae	Herb	Th
120	Solanum xanthocarpum Schrad.	Bhatakataiya	Solanaceae	Herb	Th
	and H. Wendl.				
121	Syzygium cumini Linn.	Jamun	Myrtaceae	Tree	Ph
122	Tamarindus indica Linn.	Imli	Fabaceae	Tree	Ph
123	Tectona grandis Linn.	Sagon	Lamiaceae	Tree	Ph
124	Tephrosia purpurea Linn.	Sarphonk	Fabaceae	Herb	Th
125	Terminalia arjuna Wight and	Arjun	Combretaceae	Tree	Ph
	Arn.				
126	Terminalia bellirica Roxb.	Behera	Combretaceae	Tree	Ph
127	Terminalia chebula Retz.	Harad	Combretaceae	Tree	Ph
128	Terminalia tomentosa (Roxb.)	Asan	Combretaceae	Tree	Ph
	Wight and Arn.				

129	<i>Tinosporacordifolia</i> (Willd.) Miers.	Giloy	Menispermacea e	Climber	Th
130	Tribulus terrestris Linn.	Gokhru	Zygophyllaceae	Herb	Th
131	Trichosanthes cucumerina Linn.	Junglichichin da	Cucurbitaceae	Climber	Ph
132	Tridax procumbens Linn.	Musbhari	Asteraceae	Herb	Th
133	Vernonia cinerea Less.	Sahdevi	Asteraceae	Herb	Th
134	Xanthium strumarium Linn.	Chotadhatura	Asteraceae	Herb	Th
135	Xyliaxylo carpa(Roxb.) Taub.	Jambu	Fabaceae	Tree	Ph
136	Ziziphus mauritiana Lam.	Ber	Rhamnaceae	Tree	Ph
137	Ziziphus nummularia	Jharber	Rhamnaceae	Shrub	Ph
	(Burn.f.) Wight. and Arn.	1 N 4 N			
138	Zizyphus oenoplia(Linn.) Mill.	Makkay	Rhamnaceae	Shrub	Ph

A total of 138 species belonging to 112 genera and 48 families of angiosperm were recorded throughout the sampling of vegetation (Table 1). Out of 48 families 45 families belongs to dicotyledons and remaining 3 belongs to monocotyledons. Out of these 138 species and 112 genera total 54 tree species belongs to 36 genera; 08 shrubs species to 07 genera and 70 herbs species to 61 genera. Five climbers and one of epiphyte species also recorded. The number of herb species is more than other plant species. The dicotyledons comprise 45 families 96 genera and 120 species and monocotyledons comprise 03 family 16 genera and 18 species. Out of the total 138 species dicotyledons represents 86.95% and monocotyledons 13.04%. Dicotyledons comprise main proportion of the area. Fabaceae(17 species) was the more dominant family followed by Poaceae(15 species), Asteraceae(08 species), Malvaceae(06 species), Euphorbiaceae(06 species), Acanthaceae(06 species), Combretaceae(06 species), Mimosaceae(05 species), Caesalpiniaceae(05 species) and Rubiaceae(04 species) at the study area.

Category	Dicotyledons		Monocotyledons	
	Number	Percentage	Number	Percentage
Family	45	93.75%	3	6.25%
Genera	96	85.71%	16	14.28%

Species	120	86.95%	18	13.04%

In this study phanerophytes are more than therophytes. The main cause in the decline of therophytes is grazing by animals. Grazing is the common phenomenon in the forest (Yadav and Singh 1977). There is the highest percentage of phanerophytes which is 48%, followed by therophytes (34%), chamaephytes (8%), geophytes (6%), hemicryptophytes (3%), and epiphytes (1%). The large proportion of the life-forms constituted by phanerophytes and therophytes. Bioclimatic conditions of an area strongly affect the life-forms (Meher-Homji, 1964). The phanerophytic bioclimatic condition is dominant in the moist area and therophytic bioclimatic condition in the dry area.

References-

- Addo-Fordjour, P., Obeng, S., Anning, A., and Addo, M. 2009. Floristic composition, structure and natural regeneration in a moist semideciduous forest following anthropogenic disturbances and plant invasion. International Journal of Biodiversity and. Conservation, 1: 021- 037.
- Adhikari, B. S., Rikhari, H. C., Rawat, Y. S., and Singh, S. P. 1991. High altitude forest composition, Diversity and profile structure in a part of Kumaun Himalaya. International Society for Tropical Ecology, 32: 86-97.

- 3. Ayyappan, N. and Parthasarathy, N. 1999. Biodiversity inventory of trees in a large-scale permanent plot of the tropical evergreen forest at Varagalaiar, Anamalais, Western Ghats, India. Biodiversity and Conservation,8(11): 1533- 1554.
- Baithalu, S., Anbarashan, M. and Parthasarathy, N. 2013. Two-decadal changes in forest structure and tree diversity in a tropical dry evergreen forest on the Coromandel Coast of India. International Society for Tropical Ecology, 54: 397–403.
- Bhatt, R. P. and Bhatt, S. 2016. Floristic Composition and Change in Species Diversity over Long Temporal Scales in Upper Bhotekoshi Hydropower Project Area in Nepal. American Journal of Plant Sciences, 7: 28-47.
- Chittibabu, C. V., Parthasarathy, N. 2000. Attenuated tree species diversity in human-impacted tropical evergreen forest sites at Kolli hills, Eastern Ghats, India. Biodiversity and Conservation, 9: 1493-1519.
- Ganesh, T., Ganesan, R., Devy, M. S., Davidar, P. and Bawa, K. S. 1996. Assessment of plant biodiversity at a mid-elevation evergreen forest of Kalakad– Mundanthurai Tiger Reserve. Current Science, 71: 379-392.
- Giriraj, A., Murthy, M. S. R. and Ramesh, B. R. 2008. Vegetation composition, structure and patterns of diversity: a case study from the tropical wet evergreen forests of the Western Ghats, India. Edinburgh Journal of Botany, 65(3): 447 468.
- 9. Jha, C. S. and J.S. Singh. 1990. Composition and dynamics of dry tropical Forest in relation to soil texture. Journal of Vegetation Science, 1: 609-614.
- Joshi, S. and Shringi,S. K. 2014. Floristic Diversity with Special Reference to Rare and Threatened Plants of Jawahar Sagar Sanctuary Area near Kota Rajasthan. Biological Forum – An International Journal,6(1): 84-91.
- Krishnamurthyn,Y. L., Prakasha, H. M., Nanda, A., Krishnappa, M., Dattaraja, H. S., and Suresh, H. S. 2010. Vegetation structure and floristic composition of a tropical dry deciduous forest in Bhadra Wildlife Sanctuary, Karnataka, India. International Society for Tropical Ecology, 51(2): 235-246.
- Maliya, S. D. 2012. Addition to the flora of Katarniaghat Wildlife Sanctuary, Bahraich district, Uttar Pradesh. Journal of Economic and Taxonomic Botany, 36(2): 419-426.
- 13. Mani, S. and Parthasarathy, N. 2005. Biodiversity assessment of trees in five inland tropical dry evergreen forests of peninsular India. Systematics and Biodiversity, 3(1): 1-12.
- Meher-Homji, V. M. 1964. Life forms and biological spectra as epharmonic criteria of aridity and humidity in tropics. Journal of Indian Botanical Society, 43(3): 424–430.
- 15. Milne, L. and Milne, M. 1971. The Arena of Life. The Dynamics of Ecology. Double day Natural History Press, Gardern City, New York, 240 p.

- Nath, S. K. 2015. Floristic diversity of Nagaon district of Assam, India. International Journal of Science Technology & Management, 4(1): 549-553.
- 17. Panda, S. S., Dhal, N. K., Dash, A. and Panda, S. C. 2014. Floristic diversity of Khandapara forest ranges of Nayagarh District Odisha, India. Indian Journal of Plant Sciences, 3(1): 1-10.
- Pandey, S. K. and R. P., Shukla. 2003. Plant diversity in managed sal (*Shorea robusta* Gaertn.) forests in Gorakhpur, India: species composition, regeneration and conservation. Biodiversity and Conservation, 12: 2295-2319.
- Pappoe, A. N., Armah, F. A., Quaye, E.C., Kwakye, P. K. and Buxton, G. N. 2010. Composition and stand structure of a tropical moist semideciduous forest in Ghana. International Research Journal of Plant Sciences, 1: 095-106.
- Parthipan, B., Rajeeswariand, M., Jeeva, S. 2016. Floristic Diversity of South Travancore Hindu College (S. T. Hindu College) Campus, Kanyakumari District (Tamilnadu) India. Bioscience Discovery, 7(1): 41-56.
- 21. Prasad, P. R. C., Reddy, C. S. and Dutt, C. B. S. 2007. Phytodiversity assessment of tropical rainforest of North Andaman Islands, India. Research Journal of forestry, 1(1): 27-39.
- 22. Raunkiaer, C. 1934. The life forms of plants and statistical plant geography. Clarendon Press, Oxford.
- 23. Richards, P. W. 1996. The tropical rain forest: an ecological study. Second edition. Cambridge University Press, London.
- 24. Sagar, R., Raghubanshi, A. S., Singh, J. S. 2003. Tree species composition, dispersion and diversity along a disturbance gradient in a dry tropical forest region of India. Forest Ecology and Management, 186: 61–71.
- 25. Saini, D. C. 2005. Flora of Bahraich District, Uttar Pradesh I IV. Journal of Economic and Taxonomic Botany, 29(3): 528-636.
- 26. Sarkar, M. and Devi, A. 2014. Assessment of diversity, population structure and regeneration status of tree species in Hollongapar Gibbon Wildlife Sanctuary, Assam, Northeast India. Tropical Plant Research, 1(2): 26-36.
- 27. Sharma, J., Raina, A. K. and Sharma,S. 2014. Life form classification and biological spectrum of Lamberi Forest Range, Rajouri, J&K, India. *International Journal of* Current Microbiology and Applied Science, 3(11): 234-239.
- Shukla, C. P. and Mishra, K. N. 2006. Floristic Composition, biological spectrum and plant diversity of burnt and unburnt grazing lands of Dewghat Forest, Koraon Range, U.P. National Academy Science Letters, 29(9-10): 345-349.
- 29. Shukla, R. P. and Srivastava, S. 2017. Plant Diversity of North-Eastern Uttar Pradesh, India: Species Distribution and Depletion Pattern during the Last Five Decades. International Journal of Ecology and Environmental Sciences, 43(2): 99-128.

- 30. Singh, J. S. 2002. The biodiversity crisis: a multifaceted review. Current Science, 82: 638–647.
- 31. Thakur, A. S. 2015. Floristic composition, life-forms and biological spectrum of tropical dry deciduous forest in Sagar District, Madhya Pradesh, India. Tropical Plant Research,2(2):112–119.
- 32. Tripathi, K. P. and Singh B. 2009. Species diversity and vegetation structure across various strata in natural and plantation forests in Katerniaghat Wildlife Sanctuary, North India. International Society for Tropical Ecology, 50(1): 191- 200.
- 33. Vediya, S. D. and Kharadi, H. S. 2011. Floristic diversity of Isari zone, Megharj range forest district Sabarkantha Gujarat, India. International Journal of Pharmacy and Life Science, 2(9): 1033-1034.
- 34. Yadav, J. S. P. and Singh, J. S. 1977. Grassland Vegetation, its structure, function utilization and management. Today and Tomorrows Printers and Publishers, New Delhi, 132 p.

