A Note on $\mathbf{G}\left(\gamma_{m t s s}\right)$ of Certain Graphs.

T.Sheeba Helen ${ }^{\# 1}$,T.Nicholas ${ }^{\# 2}$,
Assistant Professor in Mathematics,Holy Cross College (Autonomous), (Affiliated to Manonmaniam Sundaranar University, Tirunelveli) Nagercoil, TamilNadu, India.
Former Principal,St.Jude's College, (Affiliated to Manonmaniam Sundaranar University, Tirunelveli), Thoothoor, TamilNadu, India.

Abstract

A total dominating set D of graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a total strong split dominating set if the induced sub graph $\langle\mathrm{V}-\mathrm{D}\rangle$ is totally disconnected with at least two vertices. The total strong split domination number $\gamma_{\text {tss }}(\mathrm{G})$ is the minimum cardinality of a total strong split dominating set. In this paper we define the modified γ_{tss}-graph $\mathrm{G}\left(\gamma_{\mathrm{mtss}}\right)=\left(\mathrm{V}\left(\gamma_{\mathrm{mtss}}\right), \mathrm{E}\left(\gamma_{\mathrm{mtss}}\right)\right)$ of G to be the graph whose vertices $\mathrm{V}\left(\gamma_{\mathrm{mtss}}\right)$ corresponds injectively with the $\gamma_{\text {tss }}$-sets of a graph G and two $\gamma_{\text {tss }}-$ sets D_{1} and D_{2} form an edge in $G\left(\gamma_{\mathrm{mtss}}\right)$ if there exists a vertex $\mathrm{v} \in \mathrm{D}_{1}$ and $\mathrm{w} \in \mathrm{D}_{2}$ such that $\mathrm{D}_{1}=\mathrm{D}_{2}-\{\mathrm{w}\} \cup\{\mathrm{v}\}$ and $\mathrm{D}_{2}=\mathrm{D}_{1}-\{\mathrm{v}\} \cup\{\mathrm{w}\}$. Thus two $\gamma_{\text {tss }}$ - sets are said to be adjacent if they differ by one vertex. We also determine $\mathrm{G}\left(\gamma_{\mathrm{mtss}}\right)$ of certain graphs.

Keywords - Domination number, total strong split domination number, $\gamma_{\text {tss }}$ - graph of a graph, γ_{mtss} - graph of a graph.

I. INTRODUCTION

The graphs considered here are finite, undirected, without loops, multiple edges. For all graph theoretic terminology not defined here, the reader is referred to [2]. A set of vertices D in a graph G is a dominating set, if every vertex in $\mathrm{V}-\mathrm{D}$ is adjacent to some vertex in D . The domination number $\gamma(\mathrm{G})$ is the minimum cardinality of a dominating set. A total dominating set D of a connected graph G is a total split dominating set if the induced sub graph $<\mathrm{V}-\mathrm{D}>$ is disconnected. The total split domination number $\gamma_{\mathrm{ts}}(\mathrm{G})$ is the minimum cardinality of a total split dominating set. This concept was introduced by B. Janakiram, Soner and Chaluvaraju in [3]. Strong split domination was introduced by V. R. Kulli and B. Janakiram in [4]. A dominating set D of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a strong split dominating set if the induced sub graph $\langle\mathrm{V}-\mathrm{D}\rangle$ is totally disconnected with at least two vertices. The strong split domination number $\gamma_{\mathrm{ss}}(\mathrm{G})$ is the minimum cardinality of a strong split dominating set. A total dominating set D of a connected graph G is a total strong split dominating set if the induced sub graph < V-D > is totally disconnected with at least two vertices. The total strong split domination number $\gamma_{\mathrm{tss}}(\mathrm{G})$ is the minimum cardinality of a total strong split dominating set. This concept was introduced by T. Sheeba Helen and T.Nicholas in [5]. Gerd H. Fricke et al. [1] introduced γ-graph of a graph. Consider the family of all γ-sets of a graph G and define the $\gamma-\operatorname{graph} \mathrm{G}(\gamma)=(\mathrm{V}(\gamma)$, $\mathrm{E}(\gamma))$ of G to be the graph whose vertices $\mathrm{V}(\gamma)$ correspond $1-1$ with the γ-sets of a graph G , and two γ-sets, say D_{1} and D_{2}, form an edge in $\mathrm{E}(\gamma)$ if there exists a vertex $\mathrm{v} \in \mathrm{D}_{1}$ and $\mathrm{w} \in \mathrm{D}_{2}$ such that v is adjacent to w and $\mathrm{D}_{1}=\mathrm{D}_{2}-\{\mathrm{w}\} \cup\{\mathrm{v}\}$ or equivalently $\mathrm{D}_{2}=\mathrm{D}_{1}-\{\mathrm{v}\} \cup\{\mathrm{w}\}$. With this definition, two γ-sets are said to be adjacent if they differ by one vertex, and the two vertices defining this difference are adjacent in G. T. Sheeba Helen and T.Nicholas in [6] introduced the concept $\gamma_{\text {tss }}$ - graph of a graph G and defined the graph $\mathrm{G}\left(\gamma_{\mathrm{tss}}\right)=\left(\mathrm{V}\left(\gamma_{\mathrm{tss}}\right), \mathrm{E}\left(\gamma_{\mathrm{tss}}\right)\right)$ of G to be the graph whose vertices $\mathrm{V}\left(\gamma_{\mathrm{tss}}\right)$ corresponds injectively with the $\gamma_{\text {tss }}$-sets of a graph G and two $\gamma_{\text {tss }}$-sets D_{1} and D_{2} form an edge in $G\left(\gamma_{t s s}\right)$ if there exists a vertex $\mathrm{v} \in \mathrm{D}_{1}$ and $\mathrm{w} \in \mathrm{D}_{2}$ such that v is adjacent to w and $\mathrm{D}_{1}=\mathrm{D}_{2}-\{\mathrm{w}\} \cup\{\mathrm{v}\}$ or equivalently $\mathrm{D}_{2}=$ $D_{1}-\{v\} \cup\{w\}$. With this definition, two $\gamma_{\text {tss }}$-sets are said to be adjacent if they differ by one vertex, and the two vertices defining this difference are adjacent in G.

In this paper we define the modified $\gamma_{t s s}$-graph $\mathrm{G}\left(\gamma_{\mathrm{mtss}}\right)=\left(\mathrm{V}\left(\gamma_{\mathrm{mtss}}\right), \mathrm{E}\left(\gamma_{\mathrm{mtss}}\right)\right)$ of G to be the graph whose vertices $\mathrm{V}\left(\gamma_{\mathrm{mtss}}\right)$ corresponds injectively with the γ_{tss}-sets of a graph G and two $\gamma_{\text {tss }}$-sets D_{1} and D_{2} form an edge in $G\left(\gamma_{\mathrm{mtss}}\right)$ if there exists a vertex $\mathrm{v} \in \mathrm{D}_{1}$ and $\mathrm{w} \in \mathrm{D}_{2}$ such that $\mathrm{D}_{1}=\mathrm{D}_{2}-\{\mathrm{w}\} \cup\{\mathrm{v}\}$ and
$\mathrm{D}_{2}=\mathrm{D}_{1}-\{\mathrm{v}\} \cup\{\mathrm{w}\}$. Thus two $\gamma_{\text {tss }}$-sets are said to be adjacent if they differ by one vertex. We also determine $\mathrm{G}\left(\gamma_{\mathrm{mtss}}\right)$ of certain graphs.

Gerd H. Fricke et al. [8] introduced γ-graph of a graph. The concept of γ-graph inspired the following concept.

Definition 1.1 Consider the family of all γ-sets of a graph G and define the modified $\gamma-\operatorname{graph} \mathrm{G}\left(\gamma_{m}\right)=$ $\left(\mathrm{V}\left(\gamma_{m}\right), \mathrm{E}\left(\gamma_{m}\right)\right)$ of G to be the graph whose vertices $\mathrm{V}\left(\gamma_{m}\right)$ corresponds injectively with the γ-sets of a graph G and two γ-sets D_{1} and D_{2} form an edge in $\mathrm{G}\left(\gamma_{m}\right)$ if there exists a vertex $\mathrm{v} \in \mathrm{D}_{1}$ and $\mathrm{w} \in \mathrm{D}_{2}$ such that $D_{1}=D_{2}-\{w\} \cup\{v\}$ and $D_{2}=D_{1}-\{v\} \cup\{w\}$.

We have introduced $\gamma_{t s s}$-graph of the graph G.
Definition 1.2 Consider the family of all $\gamma_{t s s}$ - sets of a graph G and define the graph $\mathbf{G}\left(\gamma_{t s s}\right)=\left(\mathrm{V}\left(\gamma_{t s s}\right), \mathrm{E}\left(\gamma_{t s s}\right)\right)$ of G to be the graph whose vertices $\mathrm{V}\left(\gamma_{t s s}\right)$ corresponds injectively with the $\gamma_{t s s}$-sets of a graph G and two $\gamma_{t s s}$-sets D_{1} and D_{2} form an edge in $\mathrm{G}\left(\gamma_{t s s}\right)$ if there exists a vertex $\mathrm{v} \in \mathrm{D}_{1}$ and $\mathrm{w} \in \mathrm{D}_{2}$ such that v is adjacent to w and $\mathrm{D}_{1}=\mathrm{D}_{2}-\{\mathrm{w}\} \cup\{\mathrm{v}\}$ or equivalently $\mathrm{D}_{2}=\mathrm{D}_{1}-\{\mathrm{v}\} \cup\{\mathrm{w}\}$.

In this section we define $\mathbf{G}\left(\gamma_{m t s s}\right)$ and we determine $\mathbf{G}\left(\gamma_{m t s s}\right)$ of some graphs.

Definition 1.3.Consider the family of all $\gamma_{t s s}$-sets of a graph G and define the modified $\gamma_{t s s}$-graph $\mathrm{G}\left(\gamma_{m t s s}\right)=\left(\mathrm{V}\left(\gamma_{m t s s}\right), \mathrm{E}\left(\gamma_{m t s s}\right)\right)$ of G to be the graph whose vertices $\mathrm{V}\left(\gamma_{m t s s}\right)$ corresponds injectively with the $\gamma_{t s s}$-sets of a graph G and two $\gamma_{t s s}$-sets D_{1} and D_{2} form an edge in $\mathrm{G}\left(\gamma_{m t s s}\right)$ if there exists a vertex $\mathrm{v} \in \mathrm{D}_{1}$ and $\mathrm{w} \in \mathrm{D}_{2}$ such that $\mathrm{D}_{1}=\mathrm{D}_{2}-\{\mathrm{w}\} \cup\{\mathrm{v}\}$ and $\mathrm{D}_{2}=\mathrm{D}_{1}-\{\mathrm{v}\} \cup\{\mathrm{w}\}$. Thus two $\gamma_{t s s}$-sets are said to be adjacent if they differ by one vertex.

Example 1.4.

G
Figure 1.1
For the given graph in Figure 1.1 the total strong split dominating sets are

$$
\begin{aligned}
& \quad \mathrm{D}_{1}=\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{7}, \mathrm{v}_{8}\right\} . \\
& \mathrm{D}_{2}=\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{6}, \mathrm{v}_{7}, \mathrm{v}_{8}\right\} . \\
& \mathrm{v}=\mathrm{v}_{5} \text { and } \mathrm{w}=\mathrm{v}_{6}
\end{aligned}
$$

Then $D_{1}-\left\{\mathrm{v}^{2}\right\}\{\mathrm{w}\}=\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{7}, \mathrm{v}_{8}\right\}-\left\{\mathrm{v}_{5}\right\} \cup\left\{\mathrm{v}_{6}\right\}$

$$
=\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{6}, \mathrm{v}_{7}, \mathrm{v}_{8}\right\}=\mathrm{D}_{2}
$$

$\mathrm{D}_{2}-\{\mathrm{w}\} \cup\{\mathrm{v}\}=\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{6}, \mathrm{v}_{7}, \mathrm{v}_{8}\right\}-\left\{\mathrm{v}_{6}\right\} \cup\left\{\mathrm{v}_{5}\right\}=\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{7}, \mathrm{v}_{8}\right\}=\mathrm{D}_{1}$

Figure 1.2

Proposition 1.5. $\mathrm{C}_{3 \mathrm{k}}\left(\gamma_{m t s s}\right) \cong \overline{K_{3}}$, for $\mathrm{k} \geq 2$.
Proof: Let $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{3 \mathrm{k}}\right\}$ be the vertex set of $\mathrm{C}_{3 \mathrm{k}}$, for $\mathrm{k} \geq 2$. Let D be the minimal total strong split domination set of $\mathrm{C}_{3 \mathrm{k}} . \mathrm{D}_{1}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{5}, \ldots, \mathrm{v}_{3 \mathrm{k}-2}, \mathrm{v}_{3 \mathrm{k}-1}\right\}, \mathrm{D}_{2}=\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{5}, \ldots, \mathrm{v}_{3 \mathrm{k}-2}, \mathrm{v}_{3 \mathrm{k}}\right\}, \mathrm{D}_{3}=\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{4}\right.$, $\left.\mathrm{v}_{6}, \ldots, \mathrm{v}_{3 \mathrm{k}-2}, \mathrm{v}_{3 \mathrm{k}}\right\}$ are the $\gamma_{t s s}$ sets of $\mathrm{C}_{3 \mathrm{k}}$. Since each $\mathrm{C}_{3 \mathrm{k}}$, for $\mathrm{k} \geq 2$ has 3 disjoint $\gamma_{t s s-}$ sets $\mathrm{C}_{3 \mathrm{k}}\left(\gamma_{m t s s}\right) \cong$ $\overline{K_{3}}$.

Proposition 1.6. $\mathrm{K}_{1, \mathrm{n}}\left(\gamma_{m t s s}\right) \cong K_{n}$.
Proof: Let D be the minimal total strong split domination set of $K_{1, n}$. Let $v, u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ be the vertices of $\mathrm{K}_{1, \mathrm{n}} . \mathrm{D}_{\mathrm{i}}=\left\{\mathrm{v}, \mathrm{v}_{\mathrm{i}}\right\}, \mathrm{i}=1,2, \ldots, \mathrm{n}$ is an element of $\mathrm{V}\left(\gamma_{m t s s}\right)$ and each pair $\left(\mathrm{D}_{\mathrm{i}}, \mathrm{D}_{\mathrm{j}}\right),(1 \leq i, j \leq n)$ form an edge in $\mathrm{K}_{1, \mathrm{n}}\left(\gamma_{m t s s}\right)$. Hence $\mathrm{K}_{1, \mathrm{n}}\left(\gamma_{m t s s}\right) \cong \mathrm{K}_{\mathrm{n}}$.

Proposition 1.7. For $3 \leq m \leq n, \mathrm{~K}_{\mathrm{m}, \mathrm{n}}\left(\gamma_{m t s s}\right) \cong K_{n}$.
Proof: Let $X=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{m}\right\}, Y=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ be the two partitions of the complete bipartite graph $K_{m, n}$. Let D be the minimal total strong split domination set of $K_{m, n}$.

Suppose $\mathrm{m}=\mathrm{n}=2$ then $\langle\mathrm{V}-\mathrm{D}\rangle$ results in an isolated vertex, which violates the definition of total strong split domination.

Suppose $m \leq n, m \geq 3$. Then $\mathrm{D}_{1}=\left\{\mathrm{v}_{1}, \mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \ldots, \mathrm{u}_{\mathrm{m}}\right\}, \mathrm{D}_{2}=\left\{\mathrm{v}_{2}, \mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \ldots, \mathrm{u}_{\mathrm{m}}\right\}, \ldots, \mathrm{D}_{\mathrm{n}}=$ $\left\{\mathrm{v}_{\mathrm{n}}, \mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \ldots, \mathrm{u}_{\mathrm{m}}\right\}$ be the $\gamma_{t s s_{-}}$sets of $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$. Each $\gamma_{t s s_{-}}$set of $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ differ by one vertex. Each pair (D_{i}, $\left.\mathrm{D}_{\mathrm{j}}\right),(1 \leq i, j \leq n)$ form an edge in $\mathrm{K}_{\mathrm{m}, \mathrm{n}}\left(\gamma_{m t s s}\right)$.

Hence $\mathrm{K}_{\mathrm{m}, \mathrm{n}}\left(\gamma_{m t s s}\right) \cong \mathrm{K}_{\mathrm{n}}$.

Proposition 1.8. $\mathrm{P}_{2} \times \mathrm{P}_{3}\left(\gamma_{m t s s}\right) \cong \mathrm{C}_{4}$

Figure 1.3

Proof: Let $\left\{u_{1}, u_{2}, u_{3}, v_{1}, v_{2}, \quad v_{3}\right\}$ be the vertex set of the grid $P_{2} \times P_{3}$. Then $D_{1}=\left\{u_{1}, u_{2}, v_{2}, v_{3}\right\}, D_{2}=\left\{u_{2}, u_{3}, v_{1}, v_{2}\right\}, D_{3}=\left\{u_{1}, u_{2}, u_{3}, v_{2}\right\}, D_{4}=\left\{u_{2}, v_{1}, v_{2}, v_{3}\right\}$ are the $\gamma_{t s s-}$ sets of $P_{2} \times$ P_{3}.

Here D_{1} is adjacent to $D_{3}, D_{4} . D_{2}$ is adjacent to $D_{3}, D_{4} . D_{3}$ is adjacent to $D_{1}, D_{2} . D_{4}$ is adjacent to D_{1}, D_{2}. Order of $P_{2} \times P_{2}\left(\gamma_{m t s s}\right)$ is 4 and each vertices D_{i} have degree 2. Thus $P_{2} \times P_{3}\left(\gamma_{m t s s}\right)$ is isomorphic to C_{4}.

Figure 1.4

Proposition1.9. $\mathrm{P}_{2} \times \mathrm{P}_{4}\left(\gamma_{m t s s}\right)$ is isomorphic to the graph with 14 vertices of which 12 vertices are of degree 4 and 2 vertices are of degree 3 .

Figure 1.5

Proof: Let $\left\{u_{1}, u_{2}, u_{3}, u_{4}, v_{1}, v_{2}, v_{3}, v_{4}\right\}$ be the vertex set of the grid $P_{2} \times P_{4}$.
Then $D_{1}=\left\{u_{2}, u_{3}, v_{1}, v_{2}, v_{3}, v_{4}\right\}, D_{2}=\left\{u_{1}, u_{2}, u_{3}, u_{4}, v_{2}, v_{3}\right\}, D_{3}=\left\{u_{1}, u_{2}, u_{3}, u_{4}, v_{1}, v_{3}\right\}$,
$D_{4}=\left\{u_{1}, u_{2}, u_{3}, v_{2}, v_{3}, v_{4}\right\}, D_{5}=\left\{u_{2}, u_{3}, u_{4}, v_{1}, v_{3}, v_{4}\right\}, D_{6}=\left\{u_{1}, u_{2}, u_{3}, v_{1}, v_{2}, v_{4}\right\}, D_{7}=\left\{u_{1}, u_{2}, u_{4}, v_{1}, v_{3}\right.$, $\left.v_{4}\right\}, D_{8}=\left\{u_{1}, u_{3}, v_{1}, v_{2}, v_{3}, v_{4}\right\}, D_{9}=\left\{u_{2}, u_{4}, v_{1}, v_{2}, v_{3}, v_{4}\right\}, D_{10}=\left\{u_{1}, u_{2}, u_{3}, u_{4}, v_{2}, v_{4}\right\}, D_{11}=\left\{u_{2}, u_{3}, u_{4}, v_{1}\right.$, $\left.\mathrm{v}_{2}, \mathrm{v}_{3}\right\}, \mathrm{D}_{12}=\left\{\mathrm{u}_{1}, \mathrm{u}_{3}, \mathrm{u}_{4}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}, \mathrm{D}_{13}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{4}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$,
$D_{14}=\left\{u_{1}, u_{3}, u_{4}, v_{1}, v_{2}, v_{4}\right\}$ are the $\gamma_{t s s-}$ sets of $P_{2} \times P_{4}$. Here D_{1} is adjacent to $D_{4}, D_{5}, D_{6}, D_{14} . D_{2}$ is adjacent to $D_{3}, D_{10}, D_{13} . D_{3}$ is adjacent to $D_{2}, D_{8}, D_{10}, D_{12}$. D_{4} is adjacent to $D_{1}, D_{5}, D_{11}, D_{14} . D_{5}$ is adjacent to D_{1}, D_{4}, $D_{7}, D_{13} . D_{6}$ is adjacent to $D_{1}, D_{7}, D_{8}, D_{9} . D_{7}$ is adjacent to $D_{5}, D_{6}, D_{9}, D_{13} . D_{8}$ is adjacent to $D_{3}, D_{6}, D_{9}, D_{12}$. D_{9} is adjacent to $D_{6}, D_{7}, D_{8}, D_{12} . D_{10}$ is adjacent to $D_{2}, D_{3}, D_{11}, D_{14} . D_{11}$ is adjacent to $D_{4}, D_{10}, D_{12}, D_{14} . D_{12}$ is adjacent to $D_{3}, D_{8}, D_{9}, D_{11} . D_{13}$ is adjacent to D_{2}, D_{5}, D_{7}. D_{14} is adjacent to $D_{1}, D_{4}, D_{10}, D_{11}$. Order of $P_{2} \times$ $\mathrm{P}_{4}\left(\gamma_{m t s s}\right)$ is 14 of which 12 vertices are of degree 4 and 2 vertices are of degree 3 .

Hence $\mathrm{P}_{2} \times \mathrm{P}_{4}\left(\gamma_{m t s s}\right)$ is isomorphic to the graph with 14 vertices of which 12 vertices are of degree 4 and 2 vertices are of degree 3. Thus we get the following graph.

Figure 1.6

REFERENCES

[1] Gerd. H. Fricke, Sandra. M, Hedetniemi, Stephen Hedetniemi and Kevin R. Hutson, γ-graph on Graphs, Discuss Math Graph Theory n31 (2011) 517-531.
[2] Harary. F, Graph Theory, Addison-Wesley, Reading, MA, 1972.
[3] Janakiraman. B, Soner. N. D and Chaluvaraju. B, Total Split Domination in Graphs, Far East J.Appl. Math. 6(2002) 89-95.
[4] Kulli.V. R and Janakiram. B, The Strong Split Domination Number of a Graph, Acta Ciencia Indica, Vol. XXXII M, No. 2 (2006) 715-720.
[5] T. Nicholas and T. Sheeba Helen, The Total Strong Split Domination Number of Graphs, International Journal of Mathematics and Statistics Invention, Vol. 5 Issue 2(1-3) February 2017.
[6] T. Nicholas and T. Sheeba Helen, A Note on G($\gamma_{t s s}$) of Some Graphs, International Journal of Mathematics Trends and Technology, Vol. 65 Issue 4(80-83), April 2019.

