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Abstract: Big-data systems allow storage and examination of huge amounts of data, and are fuelling the data revolution that is impacting 

roughly all walks of human undertaking today. The establishment of any big-data system is an extensive, circulated, data storage system.  To 

increase in the huge amount of data to be read and transferred during recovery for an erasure-coded system results in two major problems: high 

degraded read latency and longer reconstruction time. To overcome these problems, this paper presents an enhanced method of Erasure-Coded 

Data Archival System for Hadoop Clusters using Enhanced Greedy Block Failure Recovery Algorithm (EGBFRA), which combines Spark 

framework and load balancing strategy to solve the optimization problem during Big data processing.  The proposed system implemented using 

Spark 1.6 with Hadoop 2.6 platform under goes MapReduce framework. According to the EGBFRA strategy it can work with the large file 

database for finding the mining data block failures. The results shown that the performance of the new scheme is effective compared with other 

aHDFS algorithms. As the Experimental results show, Enhanced Greedy Block Failure Recovery Algorithm clearly outperforms HDFS-EC and 

aHDFS. 
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I. INTRODUCTION 

In data mining, Big Data is a term used to illustrate a group 

of data that is enormous in size and however rising 

exponentially with time. In short such data is so huge and 

composite that none of the established data management tools 

are able to store it or process it efficiently. “Big Data” is any 

attribute that challenges the constraints of computing systems. 

Gartner [1-2] refers as the big data with the “3V”: high volume, 

high velocity and high variety data that need a new way for 

being processed. So we can say that big data is not only big for 

size, but also big for the high volume of data generators (i.e. a 

small quantity generated by a big variety of sources). 

Disk-based archival storage systems are a handful of studies 

focusing on data archival techniques to save data storage space. 

With the rapid growth of data volume in many enterprises, 

large-scale data processing becomes a challenging issue, 

attracting plenty of attention in both the academic and 

industrial fields. Many research approaches typically produce 

possible ranges or hash partitions, which are then evaluated 

using heuristics and cost models. 

While fixing multiple failures is not uncommon in the 

distributed storage system [3] or even is intended, we can 

design erasure codes that reconstruct data from multiple 

failures in batches rather than separately, such that even less 

network transfer will be incurred than MSR codes. Meanwhile, 

we can significantly save disk I/O as we can read existing 

blocks only once instead of multiple times. However, while the 

optimal network transfer to reconstruct multiple blocks has 

been theoretically established, there has been no explicit 

construction of erasure codes that achieve both the optimal 

network transfer to reconstruct exact data of multiple failed 

servers and the optimal storage overhead simultaneously, 

except for those that impose strict constraints on system 

parameters. 

The erasure code replication technology provides 

redundancy by simply creating copies of original data; erasure 

coding technology encodes the data. Specifically, given an 

object, erasure coding system first divides it into d fragments, 

then produces another e fragments based on generator matrix, 

and these d + e fragments are defined as an erasure coding set. 

d/d+e < 1 gives the encoding rate of the set. One of the most 

attractive features of erasure coding is that any d fragments in 

one set can be used for reconstructing the original d fragments. 

To maximize fault tolerance, fragments of a set are stored in 

different nodes. 

 

Figure 1 presents examples of encoding and decoding 

processes with d = 3 and e = 2. Erasure codes are a superset of 

replicated and Redundant Array of Inexpensive Disks (RAID) 

systems. When d = 1 and e = 2, three replicas will be created 

for a block, which is the same as the replication. RAID 4 can 

be described as erasure coding with d = 4, e = 1, while RAID6 

means e = 2. 
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Fig. 1: Erasure coding with d=3 and e=2 

In this paper presents an Erasure-Coded Data Archival 

System for Hadoop Clusters using Enhanced Greedy Block 

Failure Recovery Algorithm (EGBFRA), which combines 

Spark framework and load balancing strategy to solve the 

optimization problem during big data processing. 

 

The main contributions of this paper are as follows: 

 

 Evaluate the EGBFRA in spark-hadoop-apache 

framework will improve performance in iterative 

and interactive analytics approach by reusing data 

across multiple parallel operations.  

 Analyze the performance measures of running time, 

shuffling cost, and mining cost with existing 

techniques. 

 

The rest of the paper is organized as follows: Related work is 

detailed in Sect. 2. In Sect. 3, Research methodology in Sect. 3, 

Experimental results are described in Sect. 4; finally conclusion 

is in Sect. 5. 

II. RELATED WORK 

(B. Calder, et al., 2011) [5] Windows Azure Storage (WAS) 

is a cloud storage system that provides customers the ability to 

store seemingly limitless amounts of data for any duration of 

time. WAS customers have access to their data from anywhere 

at any time and only pay for what they use and store. In WAS, 

data is stored durably using both local and geographic 

replication to facilitate disaster recovery. Currently, WAS 

storage comes in the form of Blobs (files), Tables (structured 

storage), and Queues (message delivery). The authors described 

the WAS architecture, global namespace, and data model, as 

well as its resource provisioning, load balancing, and 

replication systems. 

 

(D. Borthakur, 2012) [6] author discussed a Hadoop 

Distributed File System (HDFS) is a distributed file system 

designed to run on commodity hardware. It has many 

similarities with existing distributed file systems. However, the 

differences from other distributed file systems are significant. 

HDFS is highly fault-tolerant and is designed to be deployed on 

low-cost hardware. HDFS provides high throughput access to 

application data and is suitable for applications that have large 

data sets. 

 

(M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and J. 

Kelly, 2013) [7] authors discussed a Quantcast File System 

(QFS) is an efficient alternative to the Hadoop Distributed File 

System (HDFS). QFS is written in C++, is plug-in compatible 

with Hadoop MapReduce, and offers several efficiency 

improvements relative to HDFS: 50 per cent disk space savings 

through erasure coding instead of replication, a resulting 

doubling of write throughput, a faster name node, support for 

faster sorting and logging through a concurrent append feature, 

a native command line client much faster than hadoop fs, and 

global feedback-directed I/O device management. As QFS 

works out of the box with Hadoop, migrating data from HDFS 

to QFS involves simply executing hadoop dist cp. 

 

(J. Wang, P. Shang, and J. Yin, 2014) [8] authors developed 

a new Data-gRouping-AWare (DRAW) data placement scheme 

to address the above-mentioned problem. DRAW dynamically 

scrutinizes data access from system log files. It extracts optimal 

data groupings and re-organizes data layouts to achieve the 

maximum parallelism per group subjective to load balance. By 

experimenting two real-world MapReduce applications with 

different data placement schemes on a 40-node test bed, we 

conclude that DRAW increases the total number of local map 

tasks executed up to 59.8 per cent, reduces the completion 

latency of the map phase up to 41.7 per cent, and improves the 

overall performance by 36.4 per cent, in comparison with 

Hadoop's default random placement. 

 

(M. Xia, M. Saxena, M. Blaum, and D. A. Pease, 2015) [9] 

authors presented Hadoop Adaptively-Coded Distributed File 

System (HACFS), a new erasure-coded storage system that 

instead uses two different erasure codes and dynamically 

adapts to workload changes. It uses a fast code to optimize for 

recovery performance and a compact code to reduce the storage 

overhead. A novel conversion mechanism is used to efficiently 

upcode and downcode data blocks between fast and compact 

codes. We show that HACFS design techniques are generic and 

successfully apply it to two different code families: Product and 

LRC codes. 

 

(Yuanqi Chen, et al., 2017) [10] proposed an erasure-coded 

data archival system called aHDFS for Hadoop clusters, where 

RS(k + r, k) codes are employed to archive data replicas in the 

Hadoop distributed file system or HDFS. They developed two 

archival strategies (i.e., aHDFS-Grouping and aHDFS-

Pipeline) in aHDFS to speed up the data archival process. 

aHDFS-Grouping - a MapReduce-based data archiving scheme 

- keeps each mapper’s intermediate output Key-Value pairs in a 

local key-value store.  
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III. RESEARCH METHODOLOGY 

In this paper, proposed Erasure-Coded Data Archival System 

for Hadoop Clusters using Enhanced Greedy Block Failure 

Recovery Algorithm (EGBFRA), which combines Spark 

framework and load balancing strategy to solve the 

optimization problem during big data processing in Java JDK 

1.8.0_20 and Spark 1.6.0 with inbuild Hadoop 2.6 framework 

[4]. In order to know the methodology of EGBFRA in System 

Model, Grouping Strategy, Pipeline Archiving and Mapreduce-

Based Pipelined Data Archiving is performed.  The proposed 

work flow diagram is described in figure 2.  

 

Fig. 2: Proposed flow diagram 

 

A. SYSTEM MODEL 

The system model assumes a homogenous Hadoop cluster, 

which is composed of a Namenode and a few Datanodes. As 

depicted in Figure 3, the Datanodes are grouped into three 

sets: Fundamental Set (FS), Extended Set (ES), and Waiting 

Set (WS). FS is similar to the covering subset (CS) which 

stores only one copy of all data blocks. Redundant data blocks 

are generated following a redundancy mechanism, and they 

are stored in ES nodes. The size of ES, i.e., the number of 

Datanodes contained in ES, is proportional to that of FS and 

we store approximately the same number of blocks in each 

node of FS and ES. 

 

Fig. 3: System Model 

This is because a same amount of redundancy is 

maintained for every unique block. Datanodes in WS are not 

assigned to store any data and they are used as backup nodes 

for failure recovery. The size of WS is flexible and will not be 

discussed in this thesis. When there is no node failure, only 

nodes in FS are required to be active all the time to respond to 

data requests while nodes in ES and WS can be turned off to 

save energy. 

B. GROUPING STRATEGY 

The grouping or clustering strategy is MapReduce-based 

method grouping intermediate output from the multiple 

mappers (i.e., mappers 1 - n). A conventional wisdom is to 

deliver an intermediate result created by each mapper to a 

reducer through the shuffling phase. To optimize the 

performance of our parallel archiving scheme, we group 

multiple intermediate results sharing the same key into one 

Key-Value pair to be transferred to the reducer. During the 

course of grouping, of course, the XOR operations are 

performed to generate the value in the Key-Value pair. The 

advantage of our new group strategy makes it possible to shift 

the grouping and computing load traditionally handled by 

reducers to mappers. 

In grouping strategy default, in HDFS, replication 

approach is used for maintaining data redundancy. 

Accordingly, the case where r copies of all data blocks are 

stored in ES nodes. As mentioned, to divide all the Datanodes 

into three sets, FS, ES, and WS, and the size of ES is 

proportional to that of FS. If a total number of m unique data 

blocks are stored in n FS nodes, then r - m data blocks are 

maintained in r - n ES nodes. In both FS and ES, data blocks 

are randomly distributed and stored and replicas of a data 

block are kept in different nodes. Thus, on average, a FS/ES 

node gets around k = m/n data blocks. 

C. PIPELINE ARCHIVING 

In pipeline archiving, when there is a FS node failure, only 

partial rather than all data blocks get lost. To restore a few 

blocks, it is unnecessary to activate all Datanodes in ES. In 

order to achieve an energy-efficient failure recovery, desire to 

minimize the number of nodes to be turned on during the 

recovery process. This energy-efficient failure recovery reduces 

to the set covering problem because we need to identify the 

smallest number of sets (i.e., sets of data blocks in nodes) 

whose union contains all lost data blocks. Since the set 

covering problem is NP-hard, the research work develops an 

enhanced greedy algorithm to solve it. With this enhanced 

greedy failure recovery algorithm, one replica of each lost data 

block will be found and sent to a newly activated WS node for 

restoration. Algorithm 1 shows the details of the energy-

efficient failure recovery algorithm when we employ 

replication as the redundancy technique in Extended Set. The 

algorithm uses a “pipeline archive” function to identify 
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common blocks shared by two nodes. The function pipeline 

archive is as follows: 

 

Function 1: Pipeline Archive 

Input: x[m]: an array that records data blocks stored in the 

failed node, y[m]: an array that records data blocks stored in an 

ES node 

Output: frequent blocks: the number of common blocks of the 

two nodes 

Process:  

 Pipeline archive (boolean x[m]; boolean y[m]) 

{ 

int frequent blocks = 0; 

for(int i = 0; i < m - 1; i + + ) 

if(x[i] == TRUE && y[i] == TRUE) 

//The block exists in both node a and b 

common blocks++; 

return frequent blocks; 

} 

End Procedure 

In Algorithm1, firstly, we record the lost data blocks in an 

array failed node and then we calculate the number of 

unavailable data blocks (lost blocks) caused by the failure 

(lines 1-8). To recover the lost blocks, all unmarked ES nodes 

are examined to identify the node (indexed by max row) that 

contains the largest number of replicas for lost data blocks 

(lines 10-21). That node is then marked and activated to send 

out the corresponding data copies (common blockList). 

Specifically, the data copies are transferred to an activated node 

in WS. After the transmission, the activated ES node will be 

shut down automatically to save energy. This process continues 

until all lost blocks are recovered. failed node, lost blocks are 

updated accordingly to reflect the blocks remained to be 

recovered (lines 23-27). 

ALGORITHM 1: GREEDY FAILURE RECOVERY 

WITH REPLICATION 

Input: dataFS[n][m]: a two-dimensional boolean array that 

records the data placement information of the n Datanodes in 

FS, which can be got from Namenode. dataFS[i] represents the 

data placement information of the ith node. If the jth block in is 

stored in the ith node, dataFS[i][j] = TRUE, otherwise 

dataFS[i][j] = FALSE. 

Input: dataES[r  n][m]: similar to dataFS, dataES records the 

data placement information of ES nodes. 

Process: block failed: the index of the failed node in FS, 

where 0 ≤ failed < n. 

Step 1: boolean failed node[ ] = dataFS[block failed] 

Step 2: int lost blocks = 0 

Step 3: List Pipeline Archive blockList 

Step 4: for index = 0  m -1 do 

Step 5:  if bock failed node[index] == TRUE then 

Step 6:   lost blocks + + 

Step 7:  end if 

Step 8: end for 

Step 9: Turn on a WS node 

Step 10: while lost blocks! = 0 do 

Step 11:  common_blocks = 0 

Step 12:  max_row = 0 

Step 13: for i = 0  r  n - 1 do 

Step 14: if the ith ES node is marked then 

Step 15:  Continue 

Step 16: end if 

Step 17: Result = Pipeline archive (failed node, dataES[i]) 

Step 18: if Result > common_blocks then 

Step 19:  common blocks = Result 

Step 20:  max row = i 

Step 21: end if 

Step 22: end for 

Step 23: if common blocks > 0 then 

Step 24:  lost blocks- = common blocks 

Step 25:  common blockList:empty() 

Step 26: endif 

Step 27: endwhile 

D. MAPREDUCE-BASED PIPELINED DATA 

ARCHIVING 

The greedy pipeline data archiving strategy is an extension of 

the parallel data archiving scheme proposed in previous section. 

In the mapreduce-based pipelined archiving strategy, the last 

mapper writes key-value pairs to its subsequent node’s local 

key-value store rather than a reducer. The last mapper in each 

node propagates key-value pairs to the node’s subsequent 

node’s key-value store. The last node in an archiving pipeline 

has no subsequent node, it is the last node’s responsibility to 

write a parity block to HDFS. 

IV. RESULT AND DISCUSSIONS 

The proposed research work evaluate the performance of An 

Erasure-Coded Data Archival System for Hadoop Clusters 

using enhanced greedy block failure recovery algorithm 

(EGBFRA) in Spark 1.6.0 Hadoop 2.6 cluster equipped with 

data nodes. Each node has an Intel I5-6500 series 3.20 GHz 4 

core processor, 8GB main memory, and runs on the Windows 

operating system, on which Java JDK 1.8.0_20 and Spark1.6.0 

with inbuild Hadoop 2.6 are installed. To evaluate the 

performance of the proposed EGBFRA, we generate synthetic 

datasets using the IBM Quest Market-Basket Synthetic Data 

Generator [11], which can be flexibly configured to create a 

wide range of data sets to meet the needs of various test 

requirements.  The research work compared the performance of 

EGBFRA, HDFS-EC and aHDFS [11] when the number k of 

pivots varies from 20 to 180. In this experiment, performance 

measures reveals the running time, shuffling cost, and mining 

cost of EGBFRA, HDFS-EC and aHDFS processing the 4G 

61-block T40I10D dataset on the 8-node cluster. 

 

To evaluate the performance of map execution time of the 

testing datasets. 

 

𝑀𝑎𝑝 𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑏𝑦 𝑎𝑙𝑙 𝑀𝑎𝑝 𝑡𝑎𝑠𝑘𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑎𝑝 𝑇𝑎𝑠𝑘𝑠
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Table 1: Comparison of Map Execution time with 

existing HDFS-EC, aHDFS and proposed EGBFRA 

Methods 1k 8k 64k 512k 4m 

HDFS-EC 81 40 35 26 25 

aHDFS 64 28 20 18 17 

EGBFRA 20 21 19 16 15 

 

 

 
Fig. 4: Archival Map Execution time 

 

To evaluate the performance of reduce time of the testing 

datasets. 

 

𝑅𝑒𝑑𝑢𝑐𝑒 𝑇𝑖𝑚𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑏𝑦 𝑎𝑙𝑙 𝑅𝑒𝑑𝑢𝑐𝑒 𝑡𝑎𝑠𝑘𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑑𝑢𝑐𝑒 𝑡𝑎𝑠𝑘𝑠
 

 

Table 2: Reduce Time measures with existing HDFS-EC, 

AHDFS and proposed EGBFRA 

Methods 1k 8k 64k 512k 4m 

HDFS-EC 45 42 38 35 41 

aHDFS 15 18 19 12 17 

EGBFRA 14 15 13 11 14 

 

 
Fig. 5: Archival Reduce time 

 

Shuffle Time: The expected shuffle cost of the parallel 

clustering approach is a function of the number of reducer’s r 

to receive the data and the amount of data to be shuffled s, 

which is given by: 

 

Shuffling Time (r, s) =
𝑠 . 𝐷𝑟

𝑟
.

1

𝑁𝑠

 

The majority of the shuffling cost is related to shipping data 

between distinct machines through the network. Whenever 

possible, spark Mapreduce minimizes the cost by assigning 

reduce tasks to the machines that already have required data in 

local disks. Dr is the ratio of data actually shipped between 

distinct machines relative to the total amount of data 

processed. Thus, the total amount of data be shipped is s.Dr 

bytes. The data will be received in paralleled by r reducers, 

each one receiving in average Ns byters per second. 

 

Table 3: Shuffling Time with existing HDFS-EC, AHDFS 

and proposed EGBFRA 

Methods 1k 8k 64k 512k 4m 

HDFS-EC 100 92 90 87 85 

aHDFS 58 10 12 17 18 

EGBFRA 42 9 10 15 17 

 

 
Fig. 6: Archival Shuffling time 

 

V. CONCLSUION 

In this paper, presents an enhanced method of Erasure-Coded 

Data Archival System for Hadoop Clusters using Enhanced 

Greedy Block Failure Recovery Algorithm (EGBFRA), which 

combines Spark framework and load balancing strategy to 

solve the optimization problem during Big data processing.  In 

the EGBFRA model presents a data reconstruction system to 

deal with block failure issues on Hadoop clusters. The 

proposed technique that iteratively computes the optimal 

solution with the help of a big dataset program solves. Our 

scheme is implemented using Spark 1.6 with Hadoop 2.6 

platform under goes MapReduce framework. According to the 

EGBFRA strategy it can work with the large file database for 

finding the mining data block failures. The results shown that 

the performance of the new scheme is effective compared with 

other aHDFS algorithms. As the Experimental results show, 

Enhanced Greedy Block Failure Recovery Algorithm clearly 

outperforms HDFS-EC and aHDFS. 
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