
© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906L24 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 168

DESIGN AND DEVELOPMENT OF ERASURE-

CODED DATA ARCHIVAL USING ENHANCED

GREEDY BLOCK FAILURE RECOVERY

ALGORITHM ON SPARK RDD FRAMEWORK

DHANAPRIYA L 1
M.Phil Research Scholar, Department of Computer Science,

Sri Ramakrishna College of Arts and Science for Women,

Coimbatore, India.

Dr. V. UMARANI 2

Associate professor, Department of Computer Science,

 Sri Ramakrishna College of Arts and Science for Women,

Coimbatore, India.

Abstract: Big-data systems allow storage and examination of huge amounts of data, and are fuelling the data revolution that is impacting

roughly all walks of human undertaking today. The establishment of any big-data system is an extensive, circulated, data storage system. To

increase in the huge amount of data to be read and transferred during recovery for an erasure-coded system results in two major problems: high

degraded read latency and longer reconstruction time. To overcome these problems, this paper presents an enhanced method of Erasure-Coded

Data Archival System for Hadoop Clusters using Enhanced Greedy Block Failure Recovery Algorithm (EGBFRA), which combines Spark

framework and load balancing strategy to solve the optimization problem during Big data processing. The proposed system implemented using

Spark 1.6 with Hadoop 2.6 platform under goes MapReduce framework. According to the EGBFRA strategy it can work with the large file

database for finding the mining data block failures. The results shown that the performance of the new scheme is effective compared with other

aHDFS algorithms. As the Experimental results show, Enhanced Greedy Block Failure Recovery Algorithm clearly outperforms HDFS-EC and

aHDFS.

Keywords: Hadoop distributed file system, Spark, erasure codes, Greedy search.

I. INTRODUCTION

In data mining, Big Data is a term used to illustrate a group

of data that is enormous in size and however rising

exponentially with time. In short such data is so huge and

composite that none of the established data management tools

are able to store it or process it efficiently. “Big Data” is any

attribute that challenges the constraints of computing systems.

Gartner [1-2] refers as the big data with the “3V”: high volume,

high velocity and high variety data that need a new way for

being processed. So we can say that big data is not only big for

size, but also big for the high volume of data generators (i.e. a

small quantity generated by a big variety of sources).

Disk-based archival storage systems are a handful of studies

focusing on data archival techniques to save data storage space.

With the rapid growth of data volume in many enterprises,

large-scale data processing becomes a challenging issue,

attracting plenty of attention in both the academic and

industrial fields. Many research approaches typically produce

possible ranges or hash partitions, which are then evaluated

using heuristics and cost models.

While fixing multiple failures is not uncommon in the

distributed storage system [3] or even is intended, we can

design erasure codes that reconstruct data from multiple

failures in batches rather than separately, such that even less

network transfer will be incurred than MSR codes. Meanwhile,

we can significantly save disk I/O as we can read existing

blocks only once instead of multiple times. However, while the

optimal network transfer to reconstruct multiple blocks has

been theoretically established, there has been no explicit

construction of erasure codes that achieve both the optimal

network transfer to reconstruct exact data of multiple failed

servers and the optimal storage overhead simultaneously,

except for those that impose strict constraints on system

parameters.

The erasure code replication technology provides

redundancy by simply creating copies of original data; erasure

coding technology encodes the data. Specifically, given an

object, erasure coding system first divides it into d fragments,

then produces another e fragments based on generator matrix,

and these d + e fragments are defined as an erasure coding set.

d/d+e < 1 gives the encoding rate of the set. One of the most

attractive features of erasure coding is that any d fragments in

one set can be used for reconstructing the original d fragments.

To maximize fault tolerance, fragments of a set are stored in

different nodes.

Figure 1 presents examples of encoding and decoding

processes with d = 3 and e = 2. Erasure codes are a superset of

replicated and Redundant Array of Inexpensive Disks (RAID)

systems. When d = 1 and e = 2, three replicas will be created

for a block, which is the same as the replication. RAID 4 can

be described as erasure coding with d = 4, e = 1, while RAID6

means e = 2.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906L24 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 169

Fig. 1: Erasure coding with d=3 and e=2

In this paper presents an Erasure-Coded Data Archival

System for Hadoop Clusters using Enhanced Greedy Block

Failure Recovery Algorithm (EGBFRA), which combines

Spark framework and load balancing strategy to solve the

optimization problem during big data processing.

The main contributions of this paper are as follows:

 Evaluate the EGBFRA in spark-hadoop-apache

framework will improve performance in iterative

and interactive analytics approach by reusing data

across multiple parallel operations.

 Analyze the performance measures of running time,

shuffling cost, and mining cost with existing

techniques.

The rest of the paper is organized as follows: Related work is

detailed in Sect. 2. In Sect. 3, Research methodology in Sect. 3,

Experimental results are described in Sect. 4; finally conclusion

is in Sect. 5.

II. RELATED WORK

(B. Calder, et al., 2011) [5] Windows Azure Storage (WAS)

is a cloud storage system that provides customers the ability to

store seemingly limitless amounts of data for any duration of

time. WAS customers have access to their data from anywhere

at any time and only pay for what they use and store. In WAS,

data is stored durably using both local and geographic

replication to facilitate disaster recovery. Currently, WAS

storage comes in the form of Blobs (files), Tables (structured

storage), and Queues (message delivery). The authors described

the WAS architecture, global namespace, and data model, as

well as its resource provisioning, load balancing, and

replication systems.

(D. Borthakur, 2012) [6] author discussed a Hadoop

Distributed File System (HDFS) is a distributed file system

designed to run on commodity hardware. It has many

similarities with existing distributed file systems. However, the

differences from other distributed file systems are significant.

HDFS is highly fault-tolerant and is designed to be deployed on

low-cost hardware. HDFS provides high throughput access to

application data and is suitable for applications that have large

data sets.

(M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and J.

Kelly, 2013) [7] authors discussed a Quantcast File System

(QFS) is an efficient alternative to the Hadoop Distributed File

System (HDFS). QFS is written in C++, is plug-in compatible

with Hadoop MapReduce, and offers several efficiency

improvements relative to HDFS: 50 per cent disk space savings

through erasure coding instead of replication, a resulting

doubling of write throughput, a faster name node, support for

faster sorting and logging through a concurrent append feature,

a native command line client much faster than hadoop fs, and

global feedback-directed I/O device management. As QFS

works out of the box with Hadoop, migrating data from HDFS

to QFS involves simply executing hadoop dist cp.

(J. Wang, P. Shang, and J. Yin, 2014) [8] authors developed

a new Data-gRouping-AWare (DRAW) data placement scheme

to address the above-mentioned problem. DRAW dynamically

scrutinizes data access from system log files. It extracts optimal

data groupings and re-organizes data layouts to achieve the

maximum parallelism per group subjective to load balance. By

experimenting two real-world MapReduce applications with

different data placement schemes on a 40-node test bed, we

conclude that DRAW increases the total number of local map

tasks executed up to 59.8 per cent, reduces the completion

latency of the map phase up to 41.7 per cent, and improves the

overall performance by 36.4 per cent, in comparison with

Hadoop's default random placement.

(M. Xia, M. Saxena, M. Blaum, and D. A. Pease, 2015) [9]

authors presented Hadoop Adaptively-Coded Distributed File

System (HACFS), a new erasure-coded storage system that

instead uses two different erasure codes and dynamically

adapts to workload changes. It uses a fast code to optimize for

recovery performance and a compact code to reduce the storage

overhead. A novel conversion mechanism is used to efficiently

upcode and downcode data blocks between fast and compact

codes. We show that HACFS design techniques are generic and

successfully apply it to two different code families: Product and

LRC codes.

(Yuanqi Chen, et al., 2017) [10] proposed an erasure-coded

data archival system called aHDFS for Hadoop clusters, where

RS(k + r, k) codes are employed to archive data replicas in the

Hadoop distributed file system or HDFS. They developed two

archival strategies (i.e., aHDFS-Grouping and aHDFS-

Pipeline) in aHDFS to speed up the data archival process.

aHDFS-Grouping - a MapReduce-based data archiving scheme

- keeps each mapper’s intermediate output Key-Value pairs in a

local key-value store.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906L24 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 170

III. RESEARCH METHODOLOGY

In this paper, proposed Erasure-Coded Data Archival System

for Hadoop Clusters using Enhanced Greedy Block Failure

Recovery Algorithm (EGBFRA), which combines Spark

framework and load balancing strategy to solve the

optimization problem during big data processing in Java JDK

1.8.0_20 and Spark 1.6.0 with inbuild Hadoop 2.6 framework

[4]. In order to know the methodology of EGBFRA in System

Model, Grouping Strategy, Pipeline Archiving and Mapreduce-

Based Pipelined Data Archiving is performed. The proposed

work flow diagram is described in figure 2.

Fig. 2: Proposed flow diagram

A. SYSTEM MODEL

The system model assumes a homogenous Hadoop cluster,

which is composed of a Namenode and a few Datanodes. As

depicted in Figure 3, the Datanodes are grouped into three

sets: Fundamental Set (FS), Extended Set (ES), and Waiting

Set (WS). FS is similar to the covering subset (CS) which

stores only one copy of all data blocks. Redundant data blocks

are generated following a redundancy mechanism, and they

are stored in ES nodes. The size of ES, i.e., the number of

Datanodes contained in ES, is proportional to that of FS and

we store approximately the same number of blocks in each

node of FS and ES.

Fig. 3: System Model

This is because a same amount of redundancy is

maintained for every unique block. Datanodes in WS are not

assigned to store any data and they are used as backup nodes

for failure recovery. The size of WS is flexible and will not be

discussed in this thesis. When there is no node failure, only

nodes in FS are required to be active all the time to respond to

data requests while nodes in ES and WS can be turned off to

save energy.

B. GROUPING STRATEGY

The grouping or clustering strategy is MapReduce-based

method grouping intermediate output from the multiple

mappers (i.e., mappers 1 - n). A conventional wisdom is to

deliver an intermediate result created by each mapper to a

reducer through the shuffling phase. To optimize the

performance of our parallel archiving scheme, we group

multiple intermediate results sharing the same key into one

Key-Value pair to be transferred to the reducer. During the

course of grouping, of course, the XOR operations are

performed to generate the value in the Key-Value pair. The

advantage of our new group strategy makes it possible to shift

the grouping and computing load traditionally handled by

reducers to mappers.

In grouping strategy default, in HDFS, replication

approach is used for maintaining data redundancy.

Accordingly, the case where r copies of all data blocks are

stored in ES nodes. As mentioned, to divide all the Datanodes

into three sets, FS, ES, and WS, and the size of ES is

proportional to that of FS. If a total number of m unique data

blocks are stored in n FS nodes, then r - m data blocks are

maintained in r - n ES nodes. In both FS and ES, data blocks

are randomly distributed and stored and replicas of a data

block are kept in different nodes. Thus, on average, a FS/ES

node gets around k = m/n data blocks.

C. PIPELINE ARCHIVING

In pipeline archiving, when there is a FS node failure, only

partial rather than all data blocks get lost. To restore a few

blocks, it is unnecessary to activate all Datanodes in ES. In

order to achieve an energy-efficient failure recovery, desire to

minimize the number of nodes to be turned on during the

recovery process. This energy-efficient failure recovery reduces

to the set covering problem because we need to identify the

smallest number of sets (i.e., sets of data blocks in nodes)

whose union contains all lost data blocks. Since the set

covering problem is NP-hard, the research work develops an

enhanced greedy algorithm to solve it. With this enhanced

greedy failure recovery algorithm, one replica of each lost data

block will be found and sent to a newly activated WS node for

restoration. Algorithm 1 shows the details of the energy-

efficient failure recovery algorithm when we employ

replication as the redundancy technique in Extended Set. The

algorithm uses a “pipeline archive” function to identify

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906L24 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 171

common blocks shared by two nodes. The function pipeline

archive is as follows:

Function 1: Pipeline Archive

Input: x[m]: an array that records data blocks stored in the

failed node, y[m]: an array that records data blocks stored in an

ES node

Output: frequent blocks: the number of common blocks of the

two nodes

Process:

 Pipeline archive (boolean x[m]; boolean y[m])

{

int frequent blocks = 0;

for(int i = 0; i < m - 1; i + +)

if(x[i] == TRUE && y[i] == TRUE)

//The block exists in both node a and b

common blocks++;

return frequent blocks;

}

End Procedure

In Algorithm1, firstly, we record the lost data blocks in an

array failed node and then we calculate the number of

unavailable data blocks (lost blocks) caused by the failure

(lines 1-8). To recover the lost blocks, all unmarked ES nodes

are examined to identify the node (indexed by max row) that

contains the largest number of replicas for lost data blocks

(lines 10-21). That node is then marked and activated to send

out the corresponding data copies (common blockList).

Specifically, the data copies are transferred to an activated node

in WS. After the transmission, the activated ES node will be

shut down automatically to save energy. This process continues

until all lost blocks are recovered. failed node, lost blocks are

updated accordingly to reflect the blocks remained to be

recovered (lines 23-27).

ALGORITHM 1: GREEDY FAILURE RECOVERY

WITH REPLICATION

Input: dataFS[n][m]: a two-dimensional boolean array that

records the data placement information of the n Datanodes in

FS, which can be got from Namenode. dataFS[i] represents the

data placement information of the ith node. If the jth block in is

stored in the ith node, dataFS[i][j] = TRUE, otherwise

dataFS[i][j] = FALSE.

Input: dataES[r  n][m]: similar to dataFS, dataES records the

data placement information of ES nodes.

Process: block failed: the index of the failed node in FS,

where 0 ≤ failed < n.

Step 1: boolean failed node[] = dataFS[block failed]

Step 2: int lost blocks = 0

Step 3: List Pipeline Archive blockList

Step 4: for index = 0  m -1 do

Step 5: if bock failed node[index] == TRUE then

Step 6: lost blocks + +

Step 7: end if

Step 8: end for

Step 9: Turn on a WS node

Step 10: while lost blocks! = 0 do

Step 11: common_blocks = 0

Step 12: max_row = 0

Step 13: for i = 0  r  n - 1 do

Step 14: if the ith ES node is marked then

Step 15: Continue

Step 16: end if

Step 17: Result = Pipeline archive (failed node, dataES[i])

Step 18: if Result > common_blocks then

Step 19: common blocks = Result

Step 20: max row = i

Step 21: end if

Step 22: end for

Step 23: if common blocks > 0 then

Step 24: lost blocks- = common blocks

Step 25: common blockList:empty()

Step 26: endif

Step 27: endwhile

D. MAPREDUCE-BASED PIPELINED DATA

ARCHIVING

The greedy pipeline data archiving strategy is an extension of

the parallel data archiving scheme proposed in previous section.

In the mapreduce-based pipelined archiving strategy, the last

mapper writes key-value pairs to its subsequent node’s local

key-value store rather than a reducer. The last mapper in each

node propagates key-value pairs to the node’s subsequent

node’s key-value store. The last node in an archiving pipeline

has no subsequent node, it is the last node’s responsibility to

write a parity block to HDFS.

IV. RESULT AND DISCUSSIONS

The proposed research work evaluate the performance of An

Erasure-Coded Data Archival System for Hadoop Clusters

using enhanced greedy block failure recovery algorithm

(EGBFRA) in Spark 1.6.0 Hadoop 2.6 cluster equipped with

data nodes. Each node has an Intel I5-6500 series 3.20 GHz 4

core processor, 8GB main memory, and runs on the Windows

operating system, on which Java JDK 1.8.0_20 and Spark1.6.0

with inbuild Hadoop 2.6 are installed. To evaluate the

performance of the proposed EGBFRA, we generate synthetic

datasets using the IBM Quest Market-Basket Synthetic Data

Generator [11], which can be flexibly configured to create a

wide range of data sets to meet the needs of various test

requirements. The research work compared the performance of

EGBFRA, HDFS-EC and aHDFS [11] when the number k of

pivots varies from 20 to 180. In this experiment, performance

measures reveals the running time, shuffling cost, and mining

cost of EGBFRA, HDFS-EC and aHDFS processing the 4G

61-block T40I10D dataset on the 8-node cluster.

To evaluate the performance of map execution time of the

testing datasets.

𝑀𝑎𝑝 𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑏𝑦 𝑎𝑙𝑙 𝑀𝑎𝑝 𝑡𝑎𝑠𝑘𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑎𝑝 𝑇𝑎𝑠𝑘𝑠

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906L24 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 172

Table 1: Comparison of Map Execution time with

existing HDFS-EC, aHDFS and proposed EGBFRA

Methods 1k 8k 64k 512k 4m

HDFS-EC 81 40 35 26 25

aHDFS 64 28 20 18 17

EGBFRA 20 21 19 16 15

Fig. 4: Archival Map Execution time

To evaluate the performance of reduce time of the testing

datasets.

𝑅𝑒𝑑𝑢𝑐𝑒 𝑇𝑖𝑚𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑏𝑦 𝑎𝑙𝑙 𝑅𝑒𝑑𝑢𝑐𝑒 𝑡𝑎𝑠𝑘𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑑𝑢𝑐𝑒 𝑡𝑎𝑠𝑘𝑠

Table 2: Reduce Time measures with existing HDFS-EC,

AHDFS and proposed EGBFRA

Methods 1k 8k 64k 512k 4m

HDFS-EC 45 42 38 35 41

aHDFS 15 18 19 12 17

EGBFRA 14 15 13 11 14

Fig. 5: Archival Reduce time

Shuffle Time: The expected shuffle cost of the parallel

clustering approach is a function of the number of reducer’s r

to receive the data and the amount of data to be shuffled s,

which is given by:

Shuffling Time (r, s) =
𝑠 . 𝐷𝑟

𝑟
.

1

𝑁𝑠

The majority of the shuffling cost is related to shipping data

between distinct machines through the network. Whenever

possible, spark Mapreduce minimizes the cost by assigning

reduce tasks to the machines that already have required data in

local disks. Dr is the ratio of data actually shipped between

distinct machines relative to the total amount of data

processed. Thus, the total amount of data be shipped is s.Dr

bytes. The data will be received in paralleled by r reducers,

each one receiving in average Ns byters per second.

Table 3: Shuffling Time with existing HDFS-EC, AHDFS

and proposed EGBFRA

Methods 1k 8k 64k 512k 4m

HDFS-EC 100 92 90 87 85

aHDFS 58 10 12 17 18

EGBFRA 42 9 10 15 17

Fig. 6: Archival Shuffling time

V. CONCLSUION

In this paper, presents an enhanced method of Erasure-Coded

Data Archival System for Hadoop Clusters using Enhanced

Greedy Block Failure Recovery Algorithm (EGBFRA), which

combines Spark framework and load balancing strategy to

solve the optimization problem during Big data processing. In

the EGBFRA model presents a data reconstruction system to

deal with block failure issues on Hadoop clusters. The

proposed technique that iteratively computes the optimal

solution with the help of a big dataset program solves. Our

scheme is implemented using Spark 1.6 with Hadoop 2.6

platform under goes MapReduce framework. According to the

EGBFRA strategy it can work with the large file database for

finding the mining data block failures. The results shown that

the performance of the new scheme is effective compared with

other aHDFS algorithms. As the Experimental results show,

Enhanced Greedy Block Failure Recovery Algorithm clearly

outperforms HDFS-EC and aHDFS.

81

40
35

26 25

64

28
20 18 1720 21 19 16 15

0
10
20
30
40
50
60
70
80
90

1 8 64 512 4

T
im

e
 /

s

Value Size

Map Execution Time on EGBFRA, aHDFS and

HDFS-EC
HDFS-EC

aHDFS

EGBFRA

45
42

38
35

41

15
18 19

12

17
14 15 13 11

14

0
5

10
15
20
25
30
35
40
45
50

1 8 64 512 4

R
E

d
u

c
e
 T

im
e
 (

se
c
o

n
d

s)

Value Size

Reduce Time measures with existing HDFS-EC,

AHDFS and proposed EGBFRA

HDFS-EC

aHDFS

EGBFRA

100
92 90 87 85

58

10 12
17 18

42

9 10
15 17

0

20

40

60

80

100

120

1 8 64 512 4

S
h

u
ff

li
n

g
 C

o
st

Value Size

Shuffling Time with existing HDFS-EC, AHDFS

and proposed EGBFRA

HDFS-EC

aHDFS

EGBFRA

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906L24 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 173

REFERENCES

[1] Gartner says solving ’big data’ challenge involves more than just

managing volumes of data.

[2] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop

distributed file system,” in Mass Storage Systems and

Technologies (MSST), 2010 IEEE 26th Symposium on, May

2010, pp. 1–10.

[3] D. Ford, et al., “Availability in globally distributed storage

systems,” in Proc. 9th USENIX Symp. Operating Syst. Des.

Implementation, 2010, pp. 61–74.

[4] D. Borthakur, “The hadoop distributed file system: Architecture

and design, 2007,” Apache Software Foundation, Forest Hill,

MD, USA, 2012.

[5] B. Calder, et al., “Windows azure storage: A highly available

cloud storage service with strong consistency,” in Proc. 23rd

ACM Symp. Operating Syst. Principles, 2011, pp. 143–157.

[6] D. Borthakur, “The hadoop distributed file system: Architecture

and design, 2007,” Apache Software Foundation, Forest Hill,

MD, USA, 2012.

[7] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and J.

Kelly, “The quantcast file system,” Proc. VLDB Endowment,

vol. 6, no. 11, pp. 1092–1101, 2013.

[8] J. Wang, P. Shang, and J. Yin, “Draw: A new data-grouping-

aware data placement scheme for data intensive applications

with interest locality,” in Cloud Computing for Data-Intensive

Applications. Berlin, Germany: Springer, 2014, pp. 149–174.

[9] M. Xia, M. Saxena, M. Blaum, and D. A. Pease, “A tale of two

erasure codes in HDFS,” in Proc. 13th USENIX Conf. File

Storage Technol., 2015, pp. 213–226.

[10] Yuanqi Chen, et al., “aHDFS: An Erasure-Coded Data Archival

System for Hadoop Clusters,” IEEE TRANSACTIONS ON

PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO.

11, NOVEMBER 2017.ACM SIGMOD Int. Conf. Manage.

Data, 2017, pp. 1013–1020.

[11] L. Cristofor, “ARtool: Association rule mining algorithms and

tools,” 2006.

http://www.jetir.org/

