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Abstract: Molecular dynamics simulations were carried out on system Cu100-XZrX (X=50, 55, 60) by 

employing the embedded atom method (EAM) based potentials. In this work is the structural behaviour of 

Cu100-XZrX (X=50, 55, 60) were studied by calculating radial distribution functions at various temperature 

range. 
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Introduction 

The excellent properties of metallic Cu-Zr alloy over their counterparts have attracted the attention of the 

scientific and industrial communities [1–4]. The challenge lies in predicting the internal structure of alloys in 

order to predict glass forming compositions and thus, has been an active area of research [5–10].Several 

empirical rules and criteria have been proposed to predict the structure of alloy system to predict glass 

forming ability (GFA) followed by rigorous experimentation [11–14]. Certainly, these rules have played an 

important role in providing enough information to synthesize bulk metallic glasses (BMGs), but experiments 

have also suggested that a minor change in composition can effectively change GFA [15]. Hence, it is essential 

to employ simulations and modelling methods for the study of structure of alloy to reduce the associated time, 

energy and costs associated with these studies. Binary alloys are basically simple to model and as a result of 

the possibility of wide glass forming compositions in Cu–Zr binary systems. Additionally, Cu–Zr systems 

have experimental data availability [13, 14] for the comparison, and accessibility of EAM potentials for Cu 

and Zr elements for simulation. One such simulation method which can be used to understand the behaviour 

of metallic glasses at the atomic level and to predict GFA is Molecular dynamics (MD). 

In the present work, MD simulations have been applied to binary Cu100-XZrX (X=50, 55, 60) alloys in order to 

study the structural behaviour of alloy system by calculating radial distribution functions at various 

temperature range. 

Method 

The molecular dynamics simulation (MD) of the copper-zirconium alloy was carried out using constant 

number of particles-pressure-temperature (NPT) ensemble. To model the atomic interactions, EAM potentials 

provided with in Large-scale atomic/molecular massively parallel simulator software (LAMMPS) [16,17] was 

used to simulate the Cu 100-x Zr x (x = 50, 55, 60) alloy systems. The simulated system consisted of 5000 

atoms in a cubic unit cell of B2 structure with in periodic boundary conditions. First, the model system was 

heated at 300 K to relax the system, then temperature was raised up to 3000 K and held there for 400 

picoseconds (ps) in order to allow atoms to forget their initial structure. After that, the system was rapidly 

cooled to 2100 K and then slowly cooled from liquid state to 300 K at a cooling rate of 1 × 1011 K/s. At each 

temperature, the quantities of interest were obtained by taking averages over 80 ps. The MD time step selected 

for the simulation was 2 fs (1 fs = 1 × 10 −15 second). 
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Result 

Structural features of a system, particularly for liquids and amorphous structures can be calculated using radial 

distribution function (RDF). The RDF can be calculated as 

∫ 𝜌𝑔(𝑟). 4𝜋𝑟2𝑑𝑟 = 𝑁 − 1

∞

𝑟=0

 

Where N denotes the number of atoms in shell of thickness dr at distance r in the simulation cell  

Figure (1) presents the RDF of the model structure Cu100-XZrX (X=50,55,60) at room temperatures 300 K. We 

started our simulation from the FCC structure, which can be observe from the RDF that the first- nearest-

neighbour positions are occupied by dissimilar atoms only and the Second  nearest neighbour positions are 

occupied by similar atoms only 

 

 

 

 

 

 

 

Figure (1) Supercell containing 5000 atoms after cooling 

          However, at 3000 K the emergence of wide peaks in the RDF Fig.2 shows that the model has melted 

and in a liquid state. For example, g(r) Cu-Zr indicates a peak at the first nearest-neighbour distance 2.44 Å, 

which is close to the value in liquid state of the pure element 
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Figure (2) RDF at 3000 K  during equilibration state 
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Upon cooling to 300 K at the rate of 30 K/ ps, we can also see that the feature of long range disorder in 

the RDF Fig. (3) and the second peaks of g(r) Cu-Zr, g(r)  Cu-Cu, and g(r) Zr-Zr are distinctly split as well, 

showing the formation of an amorphous phase. The first peak of unlike pairs is relatively sharp compared with 

those of like atom pairs, which qualitatively suggests a preferred interaction of unlike atom pair 

 

 

 

 

 

 

 

 

 

Figure (3) RDF after quenching at 300 K 

                

      However, the RDFs of Cu100-XZrX (X=50,55,60) show  similar pattern with compositions, which is not 

fully clear, but this may happen due to the insignificant change in thermal entropy when compared to the 

configurational entropy of alloys, which play the important role in glass formation. 

   

Conclusion 

Radial Distribution functions (RDFs) were calculated from MD simulation, for binary Cu100-XZrX (X=50, 55, 

60) to understand the structure at various temperature range. Distinct splitting of the second peaks has been 

observed in a Cu-Zr, which was due to randomness of atoms also an indication of glassy phase. Although 

RDFs are almost superimposed, irrespective of the composition variation; But they provide us a much useful 

information about the local structure of amorphous alloys. 
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