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Abstract: The strength of modern cryptography algorithms are based on the factors such as keys-space, transmission 

techniques and fundamental process of executing one-way/trapdoor functions which are said to be intractable. But 

modern cryptography is vulnerable to advancement in technology and computing power that can make possible billions 

guesses of keys within a short period of time. In other words, by the evolvement of high-speed computers such as 
quantum computers, the popular schemes used in modern cryptography are becoming insignificant. As a way-forward, 

the quantum mechanics and computer engineering together offer a new way for securing data known as quantum 

cryptography with major primitive such as quantum key distribution (QKD). QKD provides secure key distribution over 

a network by the laws of quantum physics and ensures that encryption keys are transmitted securely even in the presence 

of eavesdropper. This paper focuses on quantum cryptography and how it contributes value to a long-time strategy 

pertaining to completely secure key distribution. The scope of this paper covers the weaknesses of modern/classical 

cryptosystems, the fundamental concepts of quantum cryptography that contributes to its strength such as entanglement, 

superposition and quantum uncertainty. Finally, the paper demonstrates, through evaluation method, that all the family of 

one-way/trapdoor functions is tractable on quantum system. 
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I. INTRODUCTION 

Cryptography ensures that communication in the presence of adversary i.e. people can communicate securely and 

selectively. Today almost every system that needs secure communication uses cryptography as it protects the privacy and 

confidentiality qualities of information.  

Research works by Sheila (2011) and Madeline (2015) showed that no system is perfectly secure for a long period of 

time and no encryption scheme is capable of ensuring 100% security of information against adversary. The reasons for 

these can be traced back to computer speed and length of key. Modern cryptography is vulnerable to both technological 

progress of computing power and evolution in mathematics to quickly reverse one-way functions such as that of factoring 

large integers. High-powered supercomputers can crack many of today’s standard encryptions, and those encryption 

schemes that are not breakable now will become so in the near future as the speed and power of supercomputers continue 

their ever-accelerating uptick while the development of quantum computers also make it worse. Modern cryptography 

algorithms are based on the fundamental process of factoring large integers into their primes, which is said to be 

“intractable”. Nullification of this assumption is possible using a system that acts faster than adversary capability. Lastly, 

the encryption procedures involve transmitting part of the encryption key alongside the encrypted message and part is 

maintained by third party on a so call secure server such as public key infrastructure (PKI). The security of our 

information therefore depends on the degree of security of third party server which we cannot tell.  

To secure information for the future, the experts have introduced quantum physics into cryptography, which leads to 

evaluation of quantum cryptography. While the most well-known primitive of this discipline is quantum key distribution 

(QKD), there exist others like quantum coin tossing, quantum money, quantum copy protection, quantum private 

channels, blind quantum computation and quantum public key encryption (Anne & Christian, 2015). Unlike traditional 

cryptography, where the security is usually based on the fact that an adversary is unable to solve a certain mathematical 

problems such as one-way and trapdoor function, QKD achieves security through the laws of quantum physics. More 

precisely, it is based on the fact that an eavesdropper, trying to intercept the quantum communication, will inevitably 

leave traces which can thus be detected. In this case, the QKD protocol aborts the generation of the key. 

Consequence to the development of Quantum cryptography, European Union members have announced their 

intention to invest in the research and development of a secure communications system based on this technology (Sheila, 

2011). The system, known as SECOQC (Secure Communication based on Quantum Cryptography), will serve as a 

strategic defense against the Echelon intelligence gathering system. In addition, a handful of quantum information 

processing companies, including MagiQ Technologies and ID Quantique, are implementing quantum cryptography 
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solutions to meet the needs of businesses, governments, and other institutions where preventing the unauthorized 

disclosure of information has become a critical success factor in maintaining a competitive advantage over adversaries.  

Similarly, Quantum computing is a worthwhile theoretical area to study (Madeline, 2015) as it will also have a radical 

effect on the usability of some of the algorithms employed today such as Shor's Algorithms for Integer Factorization and 

Discrete which include Fourier Transform, Integer Factorization, and Finding Discrete Logarithms, all which can be 

solved in polynomial time.  

 

II. LITERATURE REVIEW 

2.1 Non-quantum Cryptography  

The modern, non-quantum cryptography, the ones implemented on classical computers is based on a gap between 

efficient algorithms for encryption for the legitimate users versus the computational infeasibility of decryption for the 

adversary; it requires that one have available primitives with certain special kinds of computational hardness properties. 

Of these, perhaps the most basic is a one-way function. Informally, a function is one-way if it is easy to compute but hard 

to invert. Other primitives include pseudo-random number generators, and pseudorandom function families, from such 

primitives; it is possible to build secure encryption schemes. 

According to Shafi and Mihir (2008), modern cryptography abandons the assumption that the adversary has available 

infinite computing resources, and assumes instead that the adversary's computation is resource bounded in some 

reasonable way. Similarly, the encryption and decryption algorithms designed are probabilistic and run in polynomial 

time. The running time of the encryption, decryption, and the adversary algorithms are all measured as a function of a 

security parameter k which is a parameter which is fixed at the time the cryptosystem is setup”. Thus, when we say that 

the adversary algorithm runs in polynomial time, we mean time bounded by some polynomial function in k. 

 

2.2 Limiting Factors of Non-quantum Encryption Scheme 

The security of any cryptosystem depends on keeping some or all of the elements of the cryptovariable(s) or key(s) 

secret (Feryal, 2003) and effective security are maintained by manipulating the size (bit length) of the keys and by 

following proper procedures and policies for key management. The factors are discussed below; 

A. Key Distribution Factor 

In key distribution, one must worry about two (related) issues: the lack of authenticity and key secrecy (Shafi and 

Mihir, 2008). One of the challenges in symmetric encryption is that both the sender and the recipient must have the secret 

key. Also, if either copy of the key falls into the wrong hands, messages can be decrypted by others and the sender and 

intended receiver may not know the message was intercepted. The primary challenge of symmetric key encryption is 

getting the key to the receiver, a process that must be conducted out of band (meaning through a channel or band other 

than the one carrying the ciphertext) to avoid interception. 

The problem with asymmetric encryption is that holding a single conversation between two parties requires four keys. 

Moreover, if four organizations want to exchange communications, each party must manage its private key and four 

public keys. In such scenarios, determining which public key is needed to encrypt a particular message can become a 

rather confusing problem, and with more organizations in the loop, the problem expands. This is why asymmetric 

encryption is sometimes regarded by experts as inefficient.  

B. Computing Power Factor 

Roel, (2015) noted that the strength of a cryptographic algorithm is expressed in the total amount of computations an 

adversary needs to perform to recover the secret key. It is often referred to as the computational complexity of the cipher. 

Obviously the strength of many encryption applications and cryptosystem is measured by the key size or keyspace. 

Typically, the length of the key increases the number of random guesses that have to be made in order to break the code. 

Creating a larger universe of possibilities increases the time required to make guesses, and thus a longer key directly 

influences the strength of the encryption. Contrarily, the increasing rate of computing power has already been observed in 

1965 by Gordon Moore, co-founder of Intel. The Moore’s law observes that computers get faster and faster. Moore 

noticed a pattern that processor speed doubles every 18 months e.g PC in1987, speed was 1.5 Mhz, up till 2002 when the 

speed became 1.5 GHz. Similar pattern also occurs for memory and storage. But this doubles every 12 months e.g. 

Maximum Hard disk requirement in 1991 was 20 Mega bytes but rose in 2002 to 30 Giga bytes. 

Similarly, Cheng-Jing (2008) in his work prefers to call cipher “computationally secure” rather than “unconditionally 

secure”. The latter is true if no matter how much the ciphertext is intercepted, there is not enough information to 

determine the corresponding plaintext uniquely. By the way, we have to realize that all ciphers are breakable if given 
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unlimited resources, therefore, the latter is countered. So generally speaking, the former is sometimes more meaningful 

according to Cheng-Jing (2008), which means if it can be broken by systematic analysis with available limited resources. 

Computationally secure is established with the two criteria meet at the same time: 

i. the cost of breaking the cipher exceeds the value of the encrypted information. 

ii. the time required to break the cipher exceeds the useful lifetime of the information. 

The observations are well explanatory and also take us close to the point. If information has no value to the hacker, he 

will not border spending his resources on hacking it. In other words, if the value on the information matters to the hacker 

he will go to any length to get a system with high computation power to break it within a reasonable time.  

Furthermore, in a lecture notes on encryption by Shafi and Mihir (2008), they argued that in modern 

cryptography, we speak of the infeasibility of breaking the encryption system and computing information about 

exchanged messages whereas historically one spoke of the impossibility of breaking the encryption system and finding 

information about exchanged messages. They noted that the encryption systems which they described and claimed 

“secure" with respect to the new adversary are “not secure" with respect to a computationally unbounded adversary.  

C. Third Party System Insecurity Factor 

According to Cloud Security Alliance (2016), the digital certificate certifies the ownership of a public key by the 

named subject of the certificate. This allows others (relying parties) to trust that signatures or assertions made by the 

private key (that correspond to the public key) are certified. In this model, a certificate authority (CA) is a trusted third 

party that is trusted by both the subject (owner) of the certificate and the party relying upon the certificate. CAs are 

characteristic of many public key infrastructure (PKI) schemes. If a central authority ensures that a unique certificate is 

assigned to each entity in a system, then an attacker cannot fake multiple identities. A trusted certificate is the only 

reliable method to defend against Sybil attacks. 

Ordinarily, Public Key Infrastructure (PKI) is employed to solve the challenge of trust that the public key used in 

communications with a person really is the public key of that person. Normally, PKI consists of a trusted third party. The 

challenge is how to be sure the PKI system itself is not vulnerable. If the system itself is vulnerable it means the 

information on it such as the keys managed on the system are not secure.  

 

2.3 Quantum Information and Cryptography    

Quantum cryptography is the art and science of exploiting quantum mechanical effects in order to perform 

cryptographic tasks (Anne & Christian, 2015). One of the primitives is QKD. The relationship between quantum 

information and cryptography is almost half-a-century old (Anne & Christian, 2015) Still today, the two areas are closely 

intertwined: for instance, two of the most well-known results in quantum information stand out as being related to 

cryptography: quantum key distribution (QKD) (Bennett & Brassard, 1984) and Shor's factoring algorithm (Shor, 1994). 

The predictions of quantum mechanics defy our everyday intuition and are partly responsible for the bewildering 

possibilities in the quantum world (Anne & Christian, 2015). The functionality is beyond what classical physics can 

offer: since any digital record can be copied, classical information simply cannot be used for uncloneability. Concepts 

such as; 

 superposition - a particle can be in multiple places or states at the same time,  

 entanglement - particles are correlated beyond what is possible classically and so the state cannot be described 

individually and  

 quantum uncertainty -observing one property of a particle intrinsically degrades the possibility of observing another 

 

2.4 Quantum Information Representation 

Quantum cryptosystem takes advantages of full parallelism provided by superposition quality of quantum system as 

illustrated in equation 2.1-2.3. The system evaluates entire function in a single run as shown in Figure 1. A qubit (or 

QUantum BIT) is similar in concept to a standard 'bit' - it is a memory element. It can hold not only the states '0' and '1' 

but a linear superposition of both states, α|0> +β |1>. Therefore, the system takes advantage of parallelism architecture to 

process information faster than conventional computers.  

00, 01, 10, 11 

|  = .  𝑐00 |00   + 𝑐01 |01 + 𝑐10 |10  + 𝑐11 |11 
(2.1) 

(2.2) 
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|  =  ∑ 𝑐𝑖1𝑖2… 𝑖𝑁𝑖1𝑖2… 𝑖𝑁
| 𝑖1𝑖2 … 𝑖𝑁   

 

1

2
 [|00  + |01  + |10  + |11 ] 

      
1

2
 [𝑓(00)|00 + 𝑓(01)|01 + 𝑓(10)|10 + 𝑓(11)|11 ] 

 

A. Quantum Key Distribution (QKD)  

Quantum key distribution (QKD) is a primitive quantum cryptography (QC) that offers unconditional security 

between two remote parties that employ one-time pad encryption to encrypt and decrypt messages using a shared secret 

key, even in the presence of an eavesdropper with infinite computing power and mathematical genius (Mario et. al, 

2017). While quantum computing remains speculative, QKD systems have already been realized in several commercial 

and research settings worldwide (Mario et. al, 2017).  

A QKD link obviously requires the existence of quantum computer or detector, (Sheila, 2011), communication 

protocol, a quantum channel, used to transmit the prepared qubits, but also needs a classical authenticated channel to 

extract a secret key from a set of raw detections (Jesus et. al., 2013). Figure1 illustrates a notional QKD system 

configured to securely generate the secure shared key K, which is used to encrypt/decrypt sensitive data, voice, or video 

communications (Logan et.al, 2017). The QKD system consists of a sender “Alice”, a receiver “Bob”, a quantum channel 

(i.e., an optical fiber or direct line of sight free space path), and a classical channel (i.e., a conventional networked 

connection). Alice is shown with a laser source configured to generate and prepare single photons, known as quantum 

bits or “qubits”. The encoded photons are then transmitted over the quantum channel to Bob, whom measures them using 

specialized single photon detectors.  

 

B. Conjugate Coding 

It is also referred to as quantum coding. It is based on the principle that we can encode classical information into 

conjugate quantum bases. This primitive is extremely important in quantum cryptography in fact, the vast majority of 

quantum cryptographic protocols exploit conjugate coding in one way or another. The significance of conjugate coding to 

cryptography is summarized (Anne and Christian, 2015) by two key features that were, remarkably, already mentioned 

and exploited in Wiesner (1983): 

 Measuring in one basis irrevocably destroys any information about the encoding in its conjugate basis. 

 The originator of the quantum encoding can verify its authenticity; however, without knowledge of the encoding 

basis, and given access to a single encoded state, no third party can create two quantum states that pass this 

verification procedure with high probability. 

The most well-known QKD protocols are the prepare-and-measure-based Bennett-Brassard-84 (BB84) and Bennett-

92 (B92) protocols and the entanglement based Ekert-91 (E91) protocol described in (Sheila, 2011). Figure 2 shows 

conjugate coding and key distribution, using BB84 protocol, with the applications of the two key features summarized 

above.  

f 

Figure 1: Quantum parallelism. All functions evaluations in a single run 

(2.3) 
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III. RESEARCH METHOD 

The research survey used cover some mathematical formalism of quantum information as it pertains to quantum 

cryptography. The plan is aimed at showing the limits to traditional cryptosystem and then we can prove the strengths of 

quantum cryptography taking the candidates of one-way function as case study. For the purpose of the work, effort is 

concentrated on analyzing algorithms which is fundamental to cryptosystem. Today’s public key exchange schemes such 

as Diffie-Hellman and encryption algorithms like RSA respectively rely on the computational hardness of solving the 

discrete log problem and factoring large primes. We therefore make attempt to survey these cryptographic algorithms and 

show their run time complexity on both classic and quantum computing.  

Algorithms for QKD  

Quantum computers are particularly efficient at finding hidden cyclic subgroups in key spaces; using Shor’s 

algorithm (Medeline, 2015) and this significantly reduce the time taken to factor large numbers, for example. The 

enhanced parallel processing potential and the ability to use “quantum methods” will reduce the time needed to solve the 

hard mathematical problems underlying the security of RSA, ElGamal algorithms, and their equivalent Elliptic Curve 

versions.  

A. The Quantum Fourier Transform (QFT)  

Linear complexity plays a very important role in the theory of stream ciphers so it is not surprising that the Discrete 

Fourier Transform (DFT) has been applied to problems in advanced cryptology. DFT is an algorithm that takes a signal 

and determines the frequency content of the signal (sequence of numbers). The equation for the DFT: 

𝑋(𝑘) =  ∑ 𝑥(𝑛)𝑒−𝑖2𝜋𝑘𝑛/𝑁

𝑁−1

𝑛=0

                         (3.1) 

where we sweep k from 0 to N-1 to calculate all the DFT coefficients. When we say 'coefficient' we mean the values of 

X(k), so X(0) is the first coefficient, X(1) is the second etc. It is calculating the correlation between a signal x(n) and a 

function 𝑒−𝑖2𝜋𝑘𝑛/𝑁.  

Using the following identity 

𝑒−𝑖𝜃 = 𝐶𝑜𝑠𝜃 − 𝑖𝑆𝑖𝑛𝜃                                         (3.2) 

With a little bit of algebra we can turn it into this: 

𝑋(𝑘) =  ∑ 𝑥(𝑛)𝐶𝑜𝑠 (
2𝜋𝑘𝑛

𝑁
) − 𝑖 

𝑁−1

𝑛=0

∑ 𝑥(𝑛)

𝑁−1

𝑛=0

𝑆𝑖𝑛 (
2𝜋𝑘𝑛

𝑁
)       (3.3) 

Quantum Fourier Transform (QFT) is exactly analogous to the classical Discrete Fourier Transform (DFT), which is 

typically used to examine the periodicity and other properties of an n-component vector of complex numbers (Madeline, 

Figure 2: Raw key exchange using BB84 protocol 

Source: Sheila, 2011 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                www.jetir.org (ISSN-2349-5162) 

JETIR1906L90 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 621 
 

2015). For a given input vector α = (α1, α2… αn-1,) and the resultant output β = (β 1, β 2,... β n-1,)  of the DFT is specified by 

(3.4) 

𝛽𝑦 ≡
1

√𝑁
 ∑ 𝛼𝑥 exp (2𝜋𝑖

𝑥𝑦

𝑛
)

𝑛−1

𝑦=0

                   (3.4) 

Similarly, the QFT, whose gate is denoted UDFT, linearly operates on an arbitrary N = log(n)-qubit quantum state |
in

=

 ∑ αx|xn−1
x=0        

𝑈𝐷𝐹𝑇 | =  ∑ α𝑦|y
n−1

x=0
                (3.5) 

where the αy are the discrete Fourier transforms of the αx.  

QFT can be solved in polynomial time (Mario et. al, 2017) by applying Shor’s algorithm on a quantum computer 

(Madeline, 2015, Adrian, 2015). The problem of finding the period r of the function f(a) ≡ xa 1 (mod n), where x is any 

integer that is coprime (sharing no common factors) with n. It is possible to show that once r is found, the factors of n can 

be computed in polynomial time as gcd(xr/2 + 1) and gcd(xr/2). 

The QFT can be implemented in O(N log N +log 1/ϵ), and all measurement steps are constant in time. The algorithm 

therefore has an overall complexity ϵ O(N3). Classical implementations of the DFT, such as the fast Fourier transform 

algorithm, require 𝑂(𝑁2𝑁
) gates. In contrast, the QFT can be implemented as an 𝑂(𝑁2) algorithm. 

B. Large Integer Factorization  

The most basic primitive for cryptographic applications is a one-way function which is “easy" to compute but “hard" 

to invert. Several candidates which seem to posse the above properties have been proposed such as Discrete Logarithm 

Problem (DLP), Finite Field Discrete Logarithm Problem (FFDLP) etc  

The most obvious way of cracking RSA is to factor a user’s n = pq into the primes p and q. When we talk about the 

problem of factoring, we assume that we are looking for a single non-trivial factor of a number n, so we can assume n is 

odd. Factoring: The function f: (x; y)  xy is conjectured to be a one way function. The asymptotically proven fastest 

factoring algorithms to date are variations on Dixon's random squares algorithm. It is a randomized algorithm with 

running time 

𝐿(𝑛)√2                            (3.6) 

where L(n) = 𝑒√log 𝑛 log log 𝑛 . 

The number field sieve by Lenstra, Lenstra, Manasee, and Pollard with modifications by Adlemann and Pomerance is a 

factoring algorithm proved under a certain set of assumptions to factor integers in expected time  

𝑒((𝑐+𝑜(1))(log 𝑛)
1
2(log log 𝑛)

2
3                      (3.7) 

 

Example of Shor’s algorithm for Prime factorization problem, given an integer N, find its prime factors 

15 = 3 𝑋 5  15 =  3 𝑥 5  

9999999942014077477 =  3162277633 𝑋 3162277669 

Time to solve: 

𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙    −       2
𝑂[𝑙𝑛(𝑁)

1
3]

                      (3.8) 

𝑄𝑢𝑎𝑛𝑡𝑢𝑚   −    𝑂[𝑙𝑛(𝑁)2]                       (3.9) 

 

All algorithms proposed for factoring are intractable, for example Trial Division, Fermat Factorization, Pollard rho 

Factorization, Brent’s Factorization Method, Pollard p-1 Factorization 

C. The Discrete Logarithm Problem (DLP) 

The DLP is the problem of finding a such that ga ≡ x (mod p), where g is a generator of the multiplicative group 

modulo a prime p.  

The function f : (p, g, x)   (𝑔𝑥  𝑚𝑜𝑑 𝑝, 𝑞, 𝑥) 𝑤here p is a prime and g is a generator for 𝑍𝑝
∗is conjectured to be a one-

way function. Computing f(p, g, x) can be done in polynomial time using repeated squaring. However, the fastest known 

proved solution for its inverse, called the discrete log problem is the index-calculus algorithm, with expected running 
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time𝐿(𝑛)√2. An interesting problem is to find an algorithm which will generate a prime p and a generator g for 𝑍𝑝
∗ in 

polynomial time.  

The algorithm requires 3 quantum registers of length N such that p ≤ 2N < 2p, each initialized to the state 0. The first 

step is to apply the HN gate to the first two registers (again to take advantage of parallel computation) in order to put the 

system in the global state  

Next, the third register is used to compute the modular exponent f(y, z) = gyxz (mod p), We now apply the inverse of 

the QFT gate onto the first two registers, at which point the state becomes approximately 

| →  
1

√r
 ∑ |

al

r

r−1

t=0

|l/r |̂(al, l)              (3.10) 

With this algorithm, the DLP can therefore be solved in polynomial time.  

 

D. Finite Field Discrete Logarithm Problem (FFLDP) 

Let Fq be a finite field. Let 𝑔 generate 𝐹𝑞
∗. Let 𝑏 ∈ 𝐹𝑞

∗. Then 𝑔𝑖 = 𝑏 for some positive integer 𝑖 ≤ 𝑞 − 1. Determining 

i given Fq, g and b is the finite field discrete logarithm problem (FFDLP), which is (to our current knowledge) as hard as 

factoring (Edward, 2010). 

Let us take for example, 2 generates 𝐹101
∗ . So we know 2𝑖 = 3 (𝑖. 𝑒 2𝑖  ≡ 3(𝑚𝑜𝑑 101))  has a solution. It is i = 69. 

Similarly, we know 2𝑖 = 5 has a solution; it is i = 24. How can we solve such problems faster than brute force? Some 

solutions were presented in (Edward, 2010) faster than brute force. But they are nonetheless not fast.  

For cryptographic purposes, consider 10300 < q < 10600 where q is a (large) prime or of the form 2d. Notation, if 𝑔𝑖 =

𝑏 then we write 𝑙𝑜𝑔𝑔(𝑏) = 𝑖.  In the above example, for q = 101 we have 𝑙𝑜𝑔2(3) = 69 (𝑆𝑖𝑛𝑐𝑒 𝑒69  ≡ 3(𝑚𝑜𝑑 101)).  

The best known algorithms for solving the FFLDP take as long as those for factoring, and so are sub-exponential.  

In Quantum computing, the algorithm requires 3 quantum registers of length N such that p ≤ 2N < 2p, each initialized 

to the state 0. The first step is to apply the HN gate to the first two registers (again to take advantage of parallel 

computation) in order to put the system in the global state such as 

                    (3.11) 

Next, the third register is used to compute the modular exponent f(y, z) = gyxz (mod p), by applying the inverse of the 

QFT gate onto the first two registers, at which point the state becomes approximately. 

| →  
1

√r
 ∑ |

al

r

r−1

t=0

|l/r |̂(al, l)                          (3.12) 

Measuring the first two registers then gives values for al=r and l=r modulo p (where l is variable), from which the desired 

discrete logarithm a may be deduced by applying a continued fractions algorithm (Madeline, 2015)  

 

IV. ALGORITHMS EVALUATION 

We proceed to present the result of the comparison of runtime complexity of the algorithms on both classical and 

quantum cryptography. Our comparison starts with information representation between the both schemes then the results 

follow. The results show that the algorithms, most especially the candidates of one-way function, take polynomial time 

with quantum cryptography while they are intractable with classical counterpart.  
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Table 4.1: Summary of run time complexity of Classical and Quantum Cryptography 

 
Classical Cryptosystem 

Quantum 

Cryptosystem 

Long Integer Factorization 

𝑒√log 𝑛 log log 𝑛
√2

 

2
𝑂[𝑙𝑛(𝑁)

1
3]

 

𝑂(𝑁3) 

𝑂[𝑙𝑛(𝑁)2] 

Fourier Transform 𝑂(𝑁2𝑁
) ϵ 𝑂(𝑁2)), 𝑂(𝑁2) 

Finding Discrete Logarithms 𝑒((𝑐+𝑜(1))(log 𝑛)
1
2(log log 𝑛)

2
3
 𝑂(𝑁3) 

 

V. DISCUSSION 

The implementation of the algorithms proved the breaking of traditional cryptography which are intractable and 

infeasible to implement on classical computer due to its limited computing power. Intractable algorithms on classical 

cryptosystem are now easy to manage on quantum cryptosystem since they run in polynomial time. Such algorithms are 

fundamental to cryptography, therefore reducing their time complexity indicates that any encryption scheme based on 

them will be easily broken. These algorithms are all factoring-based problems such as Finite Field Discrete Logarithm 

Problem (FFLDP), Large Integer Factorization Problem (LIFP), and Discrete Fourier Transform (DFT) which are 

implemented in scheme like DES and RSA. 

 

VI. CONCLUSION 

Quantum computer breaks today’s cryptosystem through superposition quality; ability to take full advantage of 

parallelism to solving factoring-based problems which are fundamental to modern cryptographic techniques. Similarly, 

quantum key distribution (QKD) secures privacy and confidentiality of information even in the presence of adversary 

using entanglement quality such that tampering with it would be known quickly. Asymmetric cryptography as we know 

it now will be no more, and different asymmetric schemes will have to be devised. Symmetric cryptography will need to 

use keys which are twice as long as now, to achieve the same level of security. Quantum computers therefore force 

cryptography into a new age. 

Quantum cryptography is still in its infancy and so far looks very promising. This technology has the potential to 

make a valuable contribution to e-commerce and business security, personal security, and security among government 

organizations. If quantum cryptography turns out to eventually meet even some of its expectations, it will have a 

profound and revolutionary effect on all of our lives. 
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