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Abstract The compound Harris (CH) distribution is introduced. Probabilities of the distribution are evaluated. Some of the 

statistical, distributional and reliability properties of the distribution are discussed. A characterization of the distribution is 

established using its S- function. Simulation and estimation of parameters are done using method of moments and probability 

generating function (pgf) based BHHJ method. Fitting of the distribution is carried out using a real life data. 
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1. Introduction 

A larger class of distributions can be created by the process of compounding any two discrete distributions. The compound 

distribution arises as follows. Let N be counting random variable with pgf QN (t) and X1, X2, ... be independent and identically 

distributed (iid) counting random variables with pgf Q(t). Assuming that Xis’ are independent of N, the random sum Y = 
∑   

 
    (where N = 0 implies Y = 0). The term ’compounding’ reflects the idea that the pgf of the new distribution QY (t) is 

written as QY (t)  =   QN (Q(t)) where QN (t) and Q(t) are called primary and secondary distributions respectively. 

In insurance context, this distribution can arise naturally. If N represents the number of accidents arising in a portfolio of 

risks and Xi, i = 1, 2, ...N represent the number of claims from the accidents, then Y represents the total number of claims from 

the portfolio. 

One of the standard stochastic models used in various areas of applied probability such as insurance risk theory and queuing 

theory is the random sum (compound) model. The literature on such models is voluminous, both from an analytic and a 

numerical view point. Compound distributions are specially useful for modeling outcomes exhibiting overdispersion. ie. a 

greater amount of variability than would be expected under a certain model. 

Willmot (1989) derived a number of asymptotic formulae for some discrete compound distributions which have been found 

to be useful for modeling. These formulae provide insight into the distributional form and often complement recursive 

computational algorithm which are cubersome in the right tail of the distribution. Many distributional and reliability aspects of 

a geometric sum have been obtained in the literature. Shanthikumar (1988) has proved that DS- DFR property is preserved 

under geometric sum. Brown (1990) showed that a geometric sum Y = ∑   
 
     always have the new worse than used (NWU) 

property whatever the distribution of X is. Other distributional properties of geometric sum can be found in Kovats et al. 

(1992), Willmot (2002) and Willmot et al. (2001). 

Methods for analyzing dental caries and associated risk indicators have evolved considerably in recent decades. The use of 

zero- inflated or hurdle models is increasing. Vergenes et al. (2016) showed that zero-inflated and hurdle models can both be 

expressed as a compound sum. Using the same compound sum, they fitted the compound negative binomial distribution for 

dental caries data. Associated with the notion of bulk queue, Romeo (2015) derived the distribution of number of customers 

say, Y(t) that arrive in an arbitrary bulk arrival queue system during any period of time t where Y(t) can be considered as a 

compound random variable. 

Here we introduce a new distribution, namely, Compound Harris (CH) distribution by compounding Harris distribution given 

by (1.1) with a standard discrete distribution and discuss some of its properties. Harris in 1948 introduced a pgf given by
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     ,  k  >  0 integer, 0  <  p  <  1 , p  +  q =  1.                                                 (1.1) 

     

He introduced this pgf while considering a simple discrete branching process where a particle either splits into (k+1) identical 

particles or remains the same during a short time interval ∆t. The probability distribution corresponding to the pgf QN (t) is 

called Harris distribution and is denoted by H0 (p, k, 
 

 
 ). This distribution has support 0, k, 2k,… where k is a positive integer. 

When k = 1, it reduces to geometric distribution. 

Harris distribution plays a key role in schemes with random sums in general and in branching processes and time series 

models in particular. Its pgf had been discussed in the context of branching processes (Harris (1948)), N- sums and N- 
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extremes (Satheesh et al. (2002), Satheesh et al. (2002a)) where N is Harris distributed. Satheesh et al. (2005) have developed a 

time series model that has an inherent N- sum structure. Satheesh et al. (2004) have shown that a Harris- sum of Harris 

distribution is again Harris. 

Harris distribution had been used to demonstrate the notion of random infinite divisibility with respect to non- negative 

integer- valued random variables (Sandhya (1996)). Sherly (2007) has shown that H0 (p, k, 
 

 
) is infinitely divisible and self- 

decomposable. Also they have presented the Harris distribution as an appropriate marketing distribution for a specific 

manufacturing unit. 

The discussion begins with the expression for probabilities of CH distribution. The difficulty in evaluation of probabilities 

arises from the presence of convolutions, but such evaluation is important for many applications. Pan jer’s (1981) recursive 

formula is a good choice. However, another technique known as Fast Fourier Transform (FFT) technique is employed here to 

evaluate the probabilities, following Embrechts et al. (2009). Section 2 deals with the numerical evaluation of CH probabilities. 

The graphs are also plotted.  Statistical and distributional properties are discussed in sections 3 and 4 respectively. Section 5 

deals with the reliability properties of the distribution. Estimation of parameters using moment method and BHHJ method are 

done using simulated data in section 6. Section 7 deals with fitting of the distribution using a real life data set. 

2. Compound Harris Distribution  

Definition 2.1 

A counting random variable Y is said to follow compound Harris (CH) distribution if its pgf is given by 
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where Q(t) is the pgf of Xi , i = 1, ...N, a set of random variables independent of N. Here Y is a random sum  and 

we write Y ~ CH (k, p, p   where    is the parameter of distribution of Xi and Y is said to have gap k. The distributions  of  N, 

Xi and Y are called primary, secondary and compound distributions respectively. 

Compound Harris Probabilities 

Let  
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itqtQ   be the pgf of secondary distribution. Then the CH probabilities g0 , g1 , g2, … are the coefficients of  t0, t1, 

t2, ... in the expansion of QY (t) and we get 

                      






 

 k
kk qqpg

1

0

1

0 1   

                    1g   










1

1

0

1

01

1

1 kkkk qqqqqp     

                        
 

     
   [     

 ] (
 

 
  ) *       

            
 [  

      ]+ and so on. 

It is quite difficult to get compact expressions for higher probabilities. So they are evaluated numerically. 

Evaluation of Probabilities 

Panjer’s recursive formula is a widespread standard technique for the evaluation of compound probabilities. This algorithm has 

received great attention in many areas such as actuarial science and operations research. Kaas et al. (2008) gave a detailed 

treatment for both its theory and application. Das et al. (2011) reviewed and extended the formula for evaluation of compound 

negative binomial distribution. Here we evaluate the CH probabilities using FFT. For example, assume that Q(t) is the pgf of 

geometric distribution with success probability p = 0.5 and support {0, 1, 2,...}. 

  The following R commands are used to evaluate the corresponding CH probabilities 

    CH (k, p, 0.5) 

 

1. M ← 128 

2. k ← 2 

3. f ← dgeom (0 : (M − 1), prob = 0.5) 

4. f hat ← f f t ( f , inverse = FALS E) 

5. f khat ← f hat ∗ f hat 

6. u
 

k

fkhatq

p
1

*1 









  

 
 
7. g ← (1/M) ∗ f f t (u, inverse = TRUE) 
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The vector g contains the probability masses on 0, 1, 2, ... (M-1) where M is a truncation point.  The probabilities are not 

displayed here as it takes much space. The probabilities in the case of any discrete secondary distribution can be evaluated in 

similar way. In this work we concentrate on geometric secondary distribution on 0, 1, 2,.. . The graphs of CH probabilities with 
geometric, binomial and uniform secondary distributions at different values of p are plotted  below. 

                                              

                                                  Fig 2.1 CH with secondary distribution geometric (k=2, p =0.5) 

 

 

                                         

 

 

 

                                    Fig 2.2 CH with secondary distribution Binomial (k=2, p =0.5, size=10 ) 
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                                        Fig 2.3 CH with secondary distribution Uniform (k=2, p =0.2, N=5) 

 

 

 

 

                                                     

Remark 2.1 Irrespective of any secondary distribution, CH distribution has mode at Y = 0. 

Remark 2.2 Even though Harris distribution has its probabilities at 0, k, 2k ... , CH distribution has probabilities at all points 0, 

1, 2 ... 

3. Statistical Properties 

 Quantiles 

The quantile function is one way of prescribing a probability distribution and it is an alternative to the pmf and the 
cumulative distribution function (cdf). The discrete cdf is a step function, so it does not have an inverse function. Given a 
probability p0, the quantile for p0 is defined as the smallest value of the random variable Y for which F(y) ≥ p0 . 

Closed form expression for quantiles are not easy to derive as the distribution function is not in a compact form. The 
quantile values at different probabilities for CH (2, p, 0.5) are tabulated below for simulated samples. 

 

                                                                   Table3.1 Quantiles for k=2 

 

 
probabilities 

 

0.2 

 

0.3 

 

0.4 

p0 
0.5 

 

0.6 

 

0.7 

 

0.8 

 

0.9 

 

0.99 
p=0.8 0 0 0 0 0 0 0 0 6 

p=0.5 0 0 0 0 0 0 1 4 12 

p=0.2 0 0 0 0 2 4 8 12 32 

p=0.1 0 0 1 3 6 10 15 26 65 

 
Remark 3.1 It is evident from the tables that skewness of CH distribution becomes higher as the parameter p increases. For 
p=0.8 the quantile values up to 0.9 are zero whereas for p=0.1 the quantile value corresponding to 0.4 is not zero. 

Moments 
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         i.e. CV(Y) > 1. 

Skewness 

The third central moment µ3 is given by 

 

  3(Y) =       [   
    ]            
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Obviously, the nature of skewness depends upon the behaviour of secondary distribution. The various states of skewness of 
CH distribution are displayed in the body of the following table. 

 

                                                                    

  

  

  

  

 

4.  Distributional  Properties

Let us see whether negative binomial distribution having pgf (
  

     
)

 

 
 is compound Harris. Consider the pgf of CH     

distribution, given by 
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For Q(t) to be a pgf, all terms on the RHS should be positive. But this happens when    > p. Also Q(1) = 1. Hence the given 
negative binomial distribution is CH when the condition     > p is satisfied. 

Relationship between CH and CEG distributions 

Sandhya et al.(2019) defined CEG distribution as follows. 

A discrete random variable is said to have CEG distribution if it admits the pgf given by p[   [    ] ]   where Q(t) is the 
pgf of secondary distribution, k > 0, integer, o < p < 1 and p + q = 1. 

Let Y1 , Y2, ... be iid CH random variables on {0,k,2k,…}.Then 

  ∑   
    

    has CEG distribution on {0, k, 2k, ...}. 

  

 

 

Proof: 

               We have         
      

 

   [   [    ] ]
  

     ,  i= 1, 2, 3,… 

            

                 Then    ∑   
    

 
(t) = ∏    

    
    

                                              = p[   [    ] ]   
  

which is the pgf of CEG distribution on {0, k, 2k, ...}. Hence  ∑   
    

 follows CEG distribution. 

 

 

   
  𝑋 > 0   

  𝑋    
  𝑋 < 0 

µ3(X) > 0 positively skewed positively skewed Nothing can be in f erred 

µ3(X) = 0 positively skewed symmetric negatively skewed 

µ3(X) < 0 Nothing can be inf erred negatively skewed negatively skewed 
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  Remark 4.1  When N is Harris H0 (p, k, 
 

 
), Sherly et al. (2007) proved that 

 

 
 is negative binomial with index parameter  

 

 
. 

But     this property is not preserved under compounding. 

 

R and S functions 

R and S functions are generating functions which may be used to characterize a probability distribution. The R function is 

given by 

RY (t) =    
 

 
   [QY (t)]

k  [Q(t)]k−1 Q’(t) , 0 ≤  t < 1                       (4.1) 

All terms in the RHS of (4.1) are absolutely monotone. Steutel (2004) has proved that absolute monotonicity of R- function 

is a necessary and sufficient condition for the infinite divisibility of a pgf. Thus we can state the following result on CH 

distribution. 

Proposition 4.1 CH distribution is infinitely divisible. 

 The S- function, S Y (t) of CH distribution is the generating function of the sequence  (s j)  where   s j =    
 

    qj+1, 

j = 0, 1, 2.... Here we assume that Q(t) has support {1, 2, ...}. 

Then            ∑    
  

    

                         =  ∑    
 

        
  

      

                         = 
 
 
 

 
  Q(t) 

                     t         
 

  Q(t)                                                                                                                                (4.2) 

  

The following theorem characterizes CH distribution based on its S- function. 

Theorem 4.1  A positive function QY with QY (1−) = 1 is the pgf of CH distribution iff QY has the form  

         

QY (t) =     (0)[  [        ]
 ]

  

  ,  0     

with     an absolute monotone function. 

Proof: Let QY (t) be the pgf of  CH distribution 

                    i.e. QY (t) = QY (0) [   [     ] ]
  

       where  QY (0)=  
 

  

                                       =     (0)[  [        ]
 ]

  

        from  (4.2) 

where S Y (t) is absolutely monotone by its construction. 

On the otherhand, let QY (t) = QY (0) [  [         ]
 ]

  

  

Substituting for t S Y (t) from (4.2), we get QY (t) =  QY (0) [   [     ] ]
  

     
 
 
 which is the pgf of CH distribution. 
   
 Remark 4.2     QY (t) = QY (0) [  [        ]

 ]
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5. An AR(1) process corresponding to CH distribution 

    Satheesh et al. (2006) discuss an AR(1) process wherein the sequence {Yn,i} of random variable satisfies 

           ∑         
   ∑       

 
                                  with probability p 

                            = b  ∑       
 
    + ∑     

 
               with probability 1-p 

       with innovation sequence {εn,i} and some 0 < b < 1. 

              Assuming    Y0, i    n,i    and marginal stationarity of {Yn i}, we get for n = 1, 

 

                                                Φ(t) =,
      

             
-

 

 
  ,         a= 

 

 
                                                                               (5.1) 

 

 

Here φ. (.) is the characteristic function of Yn, i ∀ i = 1, 2, ...n. They also mention that for  (5.1) to be satisfied, Y1,i is Harris (1,a,k) 

sum stable. Following the discussion therein, it has been shown that  under the assumption     Y0, i    n,i    a sequence {Yn,i} of 

random variable defines the stationary AR(1) scheme (5.1) iff  Yn i is generalized semi-  - Laplace (
 

 
    ).  

A discrete analogue of (5.1) gives the distribution of {Yn,i} as discrete generalized semi- Mittag Leffler (a,b,k) law with 

pgf   ,
 

        
-

 

 
                         satisfies           (      )        =1 ,  for some  α       ]  

 

Satheesh et al.(2006) also conclude that  the discrete analogue of AR(1) scheme (5.1) defines the stationary AR(1)  process 

 for all b       iff      is discrete generalized ML with pgf  

,
 

          
-

 

 
 , k>0 integer  ,  α       ] and  λ>0. 

  If        is  to have a finite mean,, the above scheme characterizes the negative binomial law with pgf   ,
 

         
-

 

 
 ,  λ>0. 

   When      ∑     
 
               could be the quantity of water flowing through a river with k tributes  or the number of 

patients in a hospital with k different specialities and so on. 

    Thus we have the following scheme. 

    Consider AR(1) process {    } with innovation sequence  {    } given by  

                                            ∑        
                                                  with probability p 

                                                            =   ∑       
 
    + ∑     

 
               with probability 1-p                              (5.2) 

Here k is a positive integer,   is the innovation sequence and assume that  Y0 i   Yn-1,i  ,   i. 

                      Then  [   t ]
  = p + [   t ]

   [   t ]
         

                                                  t  =  *
 

   [     ]
 
+ 

 

        where  q=1-p 

Thus we have the following theorem. 

     Theorem 5.1  A sequence {Yn,i} given by (5.2) defines a stationary AR(1) process for some p iff it is Harris sum of 

        innovations {εn,i} 

6.  Reliability 

Reliability theory has grown in the last decades into an independent discipline by drawing tools from several areas including 

mathematics, statistics, probability theory and actuarial science. In the recent past, special roles of discrete distribution is 

getting recognition from the analysis in the field of reliability theory. In this context, the well known distributions namely, 

geometric, negative binomial and their compounds are known discrete alternatives for distributions such as exponential, gamma 

and so on. Reliability classification of compound geometric distribution has been considered by various authors including 

Shanthikumar (1988), Brown (1990), Cai et al. (2000), Willmot (2001). Brown (1990) demonstrated that compound geometric 

distribution is NWU. This result was generalized by Cai et al. (2000). Willmot (2002) has derived an explicit convolution 

representation for the equilibrium residual life time distribution of compound zero modified geometric distribution. Second 

order reliability properties are proved to be preserved under geometric compounding. 

  Some of the basic reliability properties of CH distribution are discussed in this section. 

Hazard Rate 

The hazard function also known as failure rate is defined as the ratio of probability mass function (pmf) and the survival 

function. As no closed form for the pmf is not available, hazard rate values for given values of Y are calculated and tabulated 

below. The values are also plotted. 
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Fig 6.1 Hazard function graph 

 

 

 

 

                                                                                  Table 6.1 Hazard function 

 
Hazard rate values at p = 0.9 p = 0.6 p = 0.3 p = 0.1 

0 24.4899959 4.4494897 1.5190360 0.560617 

1 0.4576713 0.3283632 0.1920512 0.0886152 

2 0.5433406 0.3787203 0.2115220 0.0938000 

3 0.5970280 0.4006159 0.2171446 0.0936868 

4 0.6325582 0.4119836 0.2169806 0.0906794 

5 0.6568934 0.4167057 0.2145456 0.0878098 

6 0.6739232 0.4178774 0.2113831 0.0850768 

7 0.6859900 0.4171841 0.2081523 0.0826301 

8 0.6945860 0.4155576 0.2051147 0.0804847 

9 0.7007034 0.4135134 0.2023550 0.0786119 

10 0.7050240 0.4113336 0.1998825 0.0769730 

11 0.7080281 0.4091683 0.1976768 0.0755310 

12 0.7100612 0.4070935 0.1957083 0.0742543 

13 0.71137506 0.4051436 0.1939467 0.0731165 

14 0.7121556 0.4033304 0.1923641 0.0720964 

15 0.7125411 0.4016533 0.1909364 0.0711765 

16 0.7126352 0.4001059 0.1896427 0.0703427 

17 0.7125157 0.3986788 0.1884656 0.0695834 

18 0.7122413 0.3973619 0.1873903 0.0688890 

19 0.7118562 0.3961450 0.1864042 0.0682513 

20 0.7113939 0.3950187 0.1854968 0.0676638 

21 0.7108796 0.3939743 0.1846590 0.0671207 

22 0.7103321 0.3930037 0.1838831 0.0666772 

23 0.7097658 0.3920999 0.1831626 0.0661492 

24 0.7091912 0.3912566 0.1824915 0.0657132 

25 0.7086160 0.3904682 0.1818651 0.0653062 

26 0.7080459 0.3897296 0.1812789 0.0649254 

27 0.7074851 0.3890365 0.1807292 0.0645685 

28 0.7069364 0.3883848 0.1802126 0.0642336 

29 0.7064018 0.3877710 0.1797263 0.0639188 

 

 



© 2019 JETIR June 2019, Volume 6, Issue 6                                                     www.jetir.org (ISSN-2349-5162) 

JETIR1906M12 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 105 
 

 

DFR/IFR property 
 
In this section we examine whether the DFR/FR property of secondary distribution is preserved under  

Harris compounding. Willmot et al. (2000) has established that compound geometric distribution is DFR  

if the secondary distribution consideredis DFR. But this is not the true in the case of CH distribution. 

We have       (
 

   [    ] 
)

 

 
  is the pgf of CH random variable Y, where k is positive integer and Q(t) 

 is the pgf of a DFR random variable. Here [    ]  is the pgf of the sum  ∑    
 
    where      

  are iid  

random varaibles. Let       [    ]   and        is the pgf of DFR random variables as DFR property  

is preserved undersummation. 

                                        Now  [     ]
  

 

        
   

 

 Here LHS is the pgf of  ∑    
 
   . But it is obtained as the pgf of compound geometric distribution. Hence∑    

 
    

 is compound geometric which is DFR, provided the secondary distribution is DFR (Willmot et al. (2001)).  

This does not mean that each Yi is DFR. Hence in general, CH distribution is not DFR even if the secondary  

distribution is DFR. 

Result 6.1 CH class is not a subclass of DFR class in general. 

The following example illustrate this result. 

Let Q(t)=   be the pgf  of secondary distribution. 
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                      Then the tail probabilities are given by 
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   Now 
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               for n=0 which means that Y is not DFR. 

Result 6.2 CH distribution with IFR secondary distribution need not be IFR. 

The following example will illustrate this result.  

Example : 

Let the pmf values of secondary distribution be 
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     , n=1, 2, … 
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 Also  
    

    
 

    

  
 for all n=0, 1, 2, …. 

 which implies that the secondary distribution is IFR. 

 Here Q(t) = 
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                          which implies that Y is not IFR.         
 

7. Simulation and Estimation 

   Parameter estimation enables inferences to be made regarding an unknown population from which data are observed. One of 

the popular classical estimation methods especially for well- behaved data sets, is the maximum likelihood estimation (MLE). 

Moment estimation is the well-known easiest method of estimation. The use of pgf in statistical inference has been proposed as 

a tool in estimation due to its simplicity compared to pmf in many instances. For CH distribution, the pmf and hence likelihood 

function has no closed form, but pgf has. Density based divergences such as BHHJ density power divergence proposed by Basu 

et al. (1998) is a familiar measure used in parameter estimation. It relies on a tuning parameter, say, α, which may take any 

value greater than or equal to zero. It is preferable to have 0    , to control the trade- off between robustness and 

efficiency. Considering the simplicity of pgf compared to pmf, a pgf- based BHHJ divergence proposed by Ying et al. (2016) is 

used here. 

         Hence we use moment estimation method and pgf- based BHHJ divergence method   to estimate the parameters k, p,  

    and p  . 

 

Moment estimation 

Moment estimation of the parameters is done using simulated data in two cases. 

Let m1, m2, m3 denote the first, second and third raw moments of the observed data and let X ∼ Geom (  ) with    = 1−    

Case 1: When p is unknown. 

In this case, the moment estimator of p is obtained by solving the equation 

p    m1 −  q    = 0 

The solution is given by      ̂  
  

        

                                                   

Table 7.1 Moment estimates using simulated sample of size 70 , no. of replications 50 

                                                                                                  

 

 

 

 

 

 

 

p  k=2 k=3 k=4 

 Estimate 0.8074814 0.0.8164207 0.8214758 

0.8 Mean bias 0.0074814 0.0164207 0.0214757 

 MSE 0.00066896 0.0091760 0.0113855 

 
Estimate 0.5130934 0.5158931 0.5187968 

0.5 Mean bias 0.0130934 0.0158930 0.0187968 

 MSE 0.0067074 0.0085674 0.0109913 

 
Estimate 0.2079216 0.2112153 0.2148126 

0.2 Mean bias 0.0079216 0.0112153 0.0148126 

 MSE 0.0015232 0.0024962 0.0036479 
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Case 2: When all the parameters are unknown. 

The estimates are obtained by solving the equations using R package namely, ”nleqslv”.The equations are given by 

p   m1 −  q    = 0 

 

p2 (  )2 m2 − (k q + q2)(   )2 −  p q   = 0 

 

p
3
 (  )

3
 m3 − (k2

 q + (k
2
 + 3k) q

2
 + q

3
)(   )

3
 − ((3 k p + p

2
) q + 3pq

2
) (  )

2
 − q p

2   = 0 
 

 

 

Table 7.2.  

Moment estimates using simulated sample of size 100 and no. of replications 20. 

 

                        k = 2 k = 3 
 

    ̂  ̂   ̂   ̂  
 

̂    ̂  
                      Mean estimate 1.5164424 0.2080640 0.2135049 1.9042805 0.2132912 0.2227791 
0.2 Mean bias 0.4835575 0.0080640 0.0135049 1.0957194 0.0132291 0.0227791 

                           MS E 0.3503904 0.0002091 0.0002985 1.2959158 0.0004110 0.0007374 

 

                     Mean estimate 2.8191141 0.3388437 0.3502273 3.6960500 0.3169342 0.3310487 

0.2   0.5 Mean bias 0.8191141 0.1611562 0.1502273 0.6960500 0.1830657 0.1310487 

                          MS E 1.1385585 0.0266163 0.0234378 0.9970731 0.0340820 0.0180187 

 

                    Mean estimate 5.8810397 0.5092079 0.5359977 10.7943664 0.5397125 0.5687469 

         0.8 Mean bias 3.8810397 0.2907920 0.335997 7.6443664 0.3002874 0.3587469 

                          MS E 21.4376947 0.0875494 0.1159118 78.3795997 0.0898922 0.1272151 

 

Mean estimate 1.438309 0.338274 0.341241 2.211987 0.338938 0.343955 

0.2 Mean bias 0.561691 0.138274 0.158758 0.788012 0.138937 0.156045 

MS E 0.465817 0.019449 0.025618 0.3081907 0.1091214 0.0023525 

 

Mean estimate 1.834514 0.505018 0.520036 3.151498 0.489018 0.500321 

0.5   0.5 Mean bias 0.165486 0.00502 0.02004 0.151500 0.010982 0.000320 

MS E 0.437821 0.000977 0.001606 0.9441009 0.001367 0.001845 

 

Mean estimate 3.684506 0.659172 0.683049 4.571494 0.668147 0.619301 

0.8 Mean bias 1.684506 0.1408275 0.183049 1.571494 0.131852 0.119930 

MS E 0.437821 0.000977 0.001606 0.9441009 0.001367 0.001845 
 

Mean estimate 0.8020734 0.5056412 0.5104788 1.5026967 0.4882644 0.4928845 

0.2 Mean bias 1.1979266 0.3056412 0.2895211 1.4973032 0.2882644 0.3071154 

MS E 1.5819736 0.0939173 0.0845165 2.512619 0.0836085 0.09518216 

 

Mean estimate 1.1053586 0.6599926 0.6724095 1.5285452 0.6633971 0.6851016 

0.8   0.5 Mean bias 0.8946413 0.1599926 0.1275904 1.4714547 0.16339712 0.1148984 

MS E 1.1415040 0.02668992 0.0178603 2.9954447 0.0281028 0.0153317 

 

Mean estimate 1.9752651 0.7791797 0.8073766 2.1911323 0.7813517 0.7276945 

0.8 Mean bias 0.0247048 0.0208202 0.0073766 0.8088676 0.0186482 0.0723054 

MS E 1.7345995 0.0010850 0.0009111 4.5742116 0.0023653 0.0632000 

 

 

Remark 7.1 Moment estimation gives best results when p, and    are almost equal to 0.5, as evident from table 7.2 
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∼ j 

  

 

 

 

 

 

 

BHHJ estimation 

BHHJ divergence based on pgf is defined as 

         ∫ *          (  
 

 
)      

       
 

 
  

      +   
 

 
 , α>0                                                   (7.1) 

                 
  , (θ    t         t   space) is the pgf and       

 

 
∑     

    , 0<t<1 

is the empirical probability generating function (epgf). BHHJ estimates are obtained by minimizing equation (7.1) using 

”nloptr” package in R. 

 

Case 1: When p is unknown. 

 
                          Table 7.3 BHHJ estimates using simulated sample of size 70 , no. of replications 50 

     = 0.5 

p   k=2  k=3  k=4                                   

Estimate         0.7925005     0.8042435 0.8138073 

0.8 Mean bias -0.00074994 0.0042435 0.0138073 

MSE 0.0005762 0.0082556 0.0111561 

 
Estimate 0.509999 0.5086318 0.5071159 

0.5 Mean bias 0.0099990 0.0086317 0.0071159 

MSE 0.0060967 0.0078889 0.01037649 

 
Estimate 0.2065957 0.2118345 0.2200707 

0.2 Mean bias 0.0065956 0.0118344 0.0.020070 

MSE 0.001983 0.0033062 0.0054444 

 

 

Case 2: When all the parameters are unknown. 

 

  Table 7.4 BHHJ estimates using simulated sample of size 100 and no. of replications 20 (    = 0.5)  
k = 2 k = 3 

p   ̂  ̂    
 ̂  ̂  ̂ (  

 ̂
  

                    Mean estimate 3.2125076 0.0539601 0.1095357 3.0534499 0.0470384 0.0596125 

0.2 Mean bias 1.2125076 0.1460398 0.3904642 0.0965500 0.1629615 0.4653874 

       MS E 3.2178643 0.0250673 0.1761482 0.6967293 0.0275795 0.2128576 

 

                 Mean estimate 1.3039595 0.3850635 0.4332183 1.4302299 0.3315287 0.3726456 

0.5 Mean bias 0.6960404 0.11493646 0.0667816 1.5697008 0.1684712 0.1273543 

      MS E 0.5149379 0.0137210 0.0049671 2.5094628 0.0285802 0.0165706 

 

                  Mean estimate 3.0544282 0.5965741 0.6453194 3.9033686 0.4944442 0.5944632 

0.8 Mean bias 0.9544282 0.2434258 0.1203194 0.9033686 0.3055557 0.0944637 

      MS E 4.7671513 0.0850707 0.0272367 5.87606592 0.11205037 0.02428556 

 

8. Real life data set 

International health authorities recommend that infants be exclusively breastfed for 6 months, then introduction of 

complementary foods and continued breastfeeding until 12 months of age and then thereafter as long as mutually desired. In 

order to determine factors affecting the frequency of formula feeds by breastfeeding women, a longitudinal infant feeding 

study was conducted in Perth, Australia in 1992-93. The analysis was based on 209 subjects and the variable of interest was the 

number of bottle feeds that an infant had received in the 24th week of birth. Lee et al.(2006) used this data to fit zero-inflated 

Poisson (ZIP) regression model. The Akaike information criterion (AIC) and Bayesian information criterion (BIC) are not used 

here to measure goodness of fit as the the likelihood function cannot be put in a closed form. Hence fitting of distributions are 

done using Chi square test. Expected frequencies for fitting Poisson and ZIP models are displayed in columns 4 and 5 of table 

7.1 as given by Lee et al. The values of k, p, and pj of CH distribution are obtained as k  , p = 0.624041,    = 0.633006 by 

method of moments. The given data is overdispersed. ZIP model is also overdispersed. The p values show that CH distribution 

provide a better fit. 
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                                                            Table 8.1 Fitting of CH distribution. 

 

No. o f bottle feeds Observed frequency  

CH 

Expected frequency 

Poisson 
 

ZIP 

 0 180 179.1466 164 180 

 1 9      11.6610 31 13 

 2 9      7.5578 7 8 

 3 6      4.5181 3 4 

 4 2      2.6174 2 2 

 5 1      1.4983 1 1 

 6 0       0.8549 1 1 

 7 1       0.4880 0 0 

 8 1       0.6579 0 0 

 Total 209 209 209 209 

Chi square value  1.576329 20.03102 2.480769 

d. f 1 2 1 

p value 0.2092903 0.0000447 0.1152459 

 
Here the estimate of k = 2 has a practical significance. When carrying out the study, the sampling can be done in groups of 

two, which will lead to less labour in sampling but more efficient results. 

 

 

 
Fig 8.1 Breastfeeding Graph 

 
 

 

Conclusion 

Compounding of probability distributions, especially discrete distributions, gives rise to a richer class of probability 

distributions other than classical distributions. Keeping this in mind, we have introduced a new distribution, namely,  CH 

distribution, by compounding Harris distribution with a standard discrete distribution.As the derivation of pmf of the 

distribution is not easy, we have evaluated the CH probabilities using FFT technique.The graphs of pmf values show that the 

mode is at Y =  0 and the distribution is skwed.  The overdispersion property of the distribution gives an indication  to the 

applicability of the distribution in the fields like actuarial science, medical science, biology etc. Discussion on the basic 

reliability properties brings out the point that DFR property of secondary distribution is not preserved under Harris 

compounding as geometric compounding. Moment estimation gives best results particularly when the probability p lies in the 

neighborhood of 0.5. A real life data set of breast feeding infants in Australia is analyzed and CH distribution is seen to be a 

best fit for the data. We may be able to use this model in similar situations when the data is zero- inflated. 
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