
© 2019 JETIR June 2019, Volume 6, Issue 6                                                              www.jetir.org (ISSN-2349-5162) 

 

JETIR1906M93 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 621 
 

Elimination of States using State Minimization 

Approach 
1Saroj Kumar, 2Dr. Santosh Kumar, 3Priya Singh 

1Research Scholar, 2Associate Professor - MUIT - Lucknow 
1Computer Science and Engineering 

1Maharishi University Information Technology, Lucknow, India 
 

Abstract :  This paper presents an entirely new technique for calculating and removing dead states, unreachable states and 

indistinguishable states with unreachable states, dead states and any other states that lead to final state(s). A central problem 

in Automata theory is to minimize a given Deterministic Finite Automata (DFA). DFA minimization is an important topic that 

can be applied both theoretically and practically. When there are dead states or unreachable states or indistinguishable states 

in a DFA, then the time complexity of to minimize the DFA is increases drastically. In DFA, it is not easy to determine dead 

states, unreachable states and even difficult to identify and remove indistinguishable states when it is attached to the some 

states that lead to the final state. And removing these useless states from deterministic finite automata is very necessary to 

generate useful strings. We proposed an algorithm which removes all the useless states that are not involved in the string 

generation and also remove all the indistinguishable and redundant states. Also if we follow given technique and algorithm, 

after selecting useful state we can minimize simply of deterministic finite automata. 

 

Keywords - Automata, Deterministic Finite Automata - DFA, Unreachable State, Dead State, Indistinguishable State, IS-

Indistinguishable State, US-Unreachable State, DS-Dead State, DFA-Deterministic Finite Automata 

I. INTRODUCTION 

Automata- It is define as a system where some information, material or energy is transmitted, transformed or used to perform 

actions without the actual participation of man. And in other words we can describe as a machine for generating regular 

expression, context free grammar, context sensitive grammar and recursive endurable language. A finite automaton can be 

represented by a 5-tuple (Q, Σ, δ, q o, F), where [3, 4, 5].  

 

1. Q is a finite nonempty set of states.  

2. Σ is a finite nonempty set of input called the input alphabet.  

3. δ is the next state function, δ : D → 2Q where D is a finite subset of Q × Σ*  

4. q o: initial state: q o⊆Q  

5. F: set of final states: F⊆Q  
 

Above definition is valid for both DFAs (deterministic finite automata), and NFAs (nondeterministic finite automata) [6,7].   

 

Deterministic Finite Automata: DFAs are called deterministic because following any input string, we know exactly which state 

it’s in and the path it took to get there. [8].Deterministic finite automata (DFA) can be described by 5tuples (Q, Σ, δ, q0, F), 

where  

  

1. Q is a finite non-empty set of states   

Σ is a finite non-empty set of symbols   

δ is the next state  function, that is, δ: Q × Σ → Q.  q0 is the initial state; q o ⊆Q F is a set of final states of Q (i.e. F⊆Q) called 

accept states [9]. 
 

Transition functions can also be represented by transition table as shown in table 1.1. A finite automata is represented by ({0, 1, 

2, 3}, {0}, δ, {0}, {3}) where, δ is shown in the following table [10]. 

 

State(Q) Next State δ(q,0) 

0 1 

1 2 

2 3 

3 3 

 

Table 1.1: Transition Table representing transition function of DFA 

 

 

 

 

 

 

 

 

 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                              www.jetir.org (ISSN-2349-5162) 

 

JETIR1906M93 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 622 
 

Transition function can also be represented by transition diagram as shown in figure 1.1. 

 

 
 

Figure 1.1: Deterministic finite automata corresponding to table 1.1. 

 

2.     PROBLEM 

 

The problem is to identifying and removing the useless states that do not take part in string generation and redundant states from 

the deterministic finite automata. Indistinguishable state is the one of the major issue for DFA. First of all, we try to know what is 

the unreachable state, dead state and indistinguishable state. 

 
Unreachable state: All those states which can never be reached from initial state are called inaccessible states or unreachable 

state.  

 

Dead state: All those non final state which transit to itself for all input symbol in Σ are called Dead state.   

 

Indistinguishable state: State p and q are indistinguishable if, staring in p and q, every string leads to the same state of “finality” 

(i.e., the strings fail or succeed together.)  

 δ * (p, w) ∈ F => δ * (q, w) ∈ F, and  

 δ * (p, w) ∉ F => δ * (q, w) ∉ F,  

 for all string w ∈ ∑*  

 

There are some more partial indistinguishable states that uselessly increase the number of states in the DFA as we will see in the 

example from proposed algorithm. 

 
 

Figure 2.1: Deterministic finite automata with unreachable state, dead state and indistinguishable state. 

 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                              www.jetir.org (ISSN-2349-5162) 

 

JETIR1906M93 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 623 
 

In the above figure (that we take as example for illustrating our technique), we assume that the transitions from the states at 

unspecified input alphabet are connected to a dead state (not shown in above figure). In the above figure, states q8 and q9 are 
unreachable states because if we take any string from initial state q0 to q8 or q9 then it is not possible. And states q2, q3 and q7 are 

dead states. And q1 and q6  are somewhat redundant or partially indistinguishable states that is very difficult to detect by running 

techniques but with our proposed technique, it will be easy to remove any redundant state. 

 

3. PROPOSED TECHNIQUE 

 

In the proposed technique, we have to remove all the redundant or useless states before generating useful states for minimization. 

In the first example, we take indistinguishable state having unreachable state and dead state. And we have to remove one of the 

indistinguishable states which have more unreachable state and dead state. Then reachable state and dead state are automatically 

removed from dead state. 

In the second example, we take indistinguishable state having unreachable state and dead state and some other states that can lead 

to final state. 

3.1 EXAMPLE1 

In proposed approach first of all take only one input symbol from initial state and move simultaneously with changing accepting 
input symbol state as shown in below figure. 

 
 

Figure 3.1.1: Deterministic finite automata. 

 

Step1. Find Indistinguishable State. 

In the above figure, taking outgoing input symbol from q0 are a, b, c, aa, ab, ac, ad, ba, bb, bc, bd, aba, bba, abba, bbba and in 

these input symbols aa, ba, aba, bba, abba, bbba are accepting symbols and a, b, c, ab, ac, ad, bb, bc, bd are rejecting symbols. We 

can see view trace by JFLAP simulator [11]. In the accepting symbol, ba string is common other than aa string. States q2 and q3 

are satisfy the condition for indistinguishable state. 

i.e.,  δ (q2, ba) ∈ F => δ (q3, ba) ∈ F 

          ba ∈ ∑* 
So  q2 and q3 are equivalent state then we have to remove one of the equivalent state for generating useful state. 

 

Step2.  Check which indistinguishable state have more unreachable and dead state: 

Check for q2: 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                              www.jetir.org (ISSN-2349-5162) 

 

JETIR1906M93 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 624 
 

 
 

Figure 3.1.2: Deterministic finite automata with ‘ac’ and ‘ad’ input symbol. 

 
In above figure, no any state generating accepting input symbol. ‘ac’ and ‘ad’ are rejecting input symbol. So we can see view 

trace by JFLAP simulator.   

So both q7 and q8 are dead state. 

 

 

 

Check for q3: 

 
 

Figure 3.1.3: Deterministic finite automata with ‘bc’ and ‘bd’ input symbol. 

 

In above figure, no any state generating accepting input symbol. ‘bc’ and ‘bd’ are rejecting input symbol. So we can see view 

trace by JFLAP simulator.   
So both q5, and q6 are dead state. And finally q2 and q3 have same number of dead states but as we can find through proposed 

algorithm that state q5 is unreachable state, so we have to remove state q3 and merge the transition of q3 in q2 state. 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                              www.jetir.org (ISSN-2349-5162) 

 

JETIR1906M93 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 625 
 

    
Figure 3.1.4: Deterministic finite automata with no any indistinguishable state. 

 

Step3. Remove Dead state and unreachable state: 

    
 

Figure 3.1.5: Deterministic finite automata with q0 finalized state. 

 
In above figure we finalize state q0 because this state generating accepting input symbol with final state and take next input 

symbol. 

    
Figure 3.1.6: Deterministic finite automata with after finalized all the state including in accepting symbol. 

 

In the figure, state q1 is finalizing because this state including accepting input symbol ‘ba’, ‘aa’ again we will take next input 

symbol. If no any input symbol is accepting then we will take next possible input symbol. Again if no input symbols are accepting 

then repeat it whenever all possible input not finished. When all possible inputs are taken so we will remove all non-final state as 

shown in below figure. In above figure final state indicate accepting string generated by using these state and non- final state 

indicated no any string generated by using these state. 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                              www.jetir.org (ISSN-2349-5162) 

 

JETIR1906M93 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 626 
 

    
Figure 3.1.7: Deterministic finite automata without unreachable state and dead state. 

 

In this figure all final state available and no any non- final state available. Final state shows these state are including in accepting 
string. Now next step for proposing technique, remove all finalized label of state except initialized form means in initial form of 

deterministic finite automata initial state was q0 and final state was q1 so these state are not same as a previous form and all 

updated label should be remove. As shown in below figure.   

    
Figure 3.1.7: Deterministic finite automata with useful states 

 

In above figure all useful state available means only whose state is available those are including in accepting string and all Dead 

state remove in this process. So this is a proposed technique for removing unreachable state, Dead state and indistinguishable state 

of deterministic finite automata. 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                              www.jetir.org (ISSN-2349-5162) 

 

JETIR1906M93 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 627 
 

     3.2 EXAMPLE2 

Let us take our problem statement example with are having dead state, unreachable state, and redundant states. 

   
Figure 3.2.1: Deterministic finite automata with unreachable state, dead state and indistinguishable state. 

In the above example, all steps of our proposed algorithm is utilized because this example do not contain direct indistinguishable 

states but having more complicated redundant states. Proceeding according to our proposed algorithm, we found states q1 and q6 

as redundant states as follows:   

Strings generated by q1 ignoring loops and repeated strings is ‘ad’ and that by state q6 is ‘a’ and ‘da’. 

As both these states are transited from same source and have self loops on same symbol, the strings generated by these states are 
compared. ‘ad’ and ‘a’ are same to one symbol and differ afterwards. Hence, according to our proposed algorithm and other steps 

of removal of dead state and unreachable states as that of previous example and hence we skip these procedures and the final 

DFA is as shown below. 

 
Figure 3.2.2: Deterministic finite automata with useful states 

As we can see from the above two figures that the strings generated by these two DFAs are same. 

Proceeding as our proposed algorithm hyper-minimization of DFA can also be achieved having some finite number of errors. 

 

4. PROPOSED ALGORITHM 

 

INPUT: A = (Q, Ʃ, δ, q0, q f) – Deterministic finite automata.  

OUTPUT: A = (Q’, Ʃ, δ’, q0’, q f’) – Deterministic finite automata without useless and redundant state. 

 

1. For (q ∈ Q)  /*all state belong to given set of deterministic finite automata *\ 

2. Go to (q i <- Initial State) /* go to initial state *\ 

3. If (δ i-Fi ->q f)  /* this show transition function if any state reach to final state that means input string is accepted *\ 

4. If (δ (q m, a) ∈ F = = (δ (q n, a) ∈ F || δ (q m, a) ∉ F = = (δ (q n , a) ∉ F /* this show these state are indistinguishable. And 

n= 1,2,3,……; m= 1,2,3……; m ≠ n; a ( input symbol ) ∈ ∑*(non-empty finite set of input symbols) *\ 

5. THEN GOTO STEP 15 

6. For (q ∈ Q)  /*all state belong to given set of deterministic finite automata *\ 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                              www.jetir.org (ISSN-2349-5162) 

 

JETIR1906M93 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 628 
 

7. Generate all the strings starting from each and every state that reach to final state of the DFA ignoring the repeated 

strings (eg. – self loops, loops via other states etc.) /* the number of strings will be finite as we do not consider strings 

generated from loops *\ 

8. END FOR 

9. For each of the state q i and q j ∈  {Q – q0} ( having the self loops and other loops on the same symbol (if any)), where q i  

≠ q j and both the states q i and q j generated or transited from the same previous state. 

10. Compare the first, second, third and so on...symbol of all the strings generated by q i to the corresponding symbols of all 

the strings generated by q j. 

11. If first symbol matches  

THEN 

12. If the string not matches after m symbols then make the transition as before. /* no redundant states exist*\ 

13. ELSE IF all symbols of all strings matches then GOTO STEP 18 

14. END ELSE 

15. END IF 

16. ELSE CONTINUE  

17. END ELSE 

18. END IF 

19. END FOR 

20. If (q m -> q m next ∉ F > q n -> q n next ∉ F) /* this show q n have more dead state. 

21. q n<-Remove, /* remove indistinguishable state and connecting input symbol from q n to its previous state is merge with 

q m state.*\ 

22. ELSE  

q m<-Remove,/* remove indistinguishable state and connecting input symbol from qm to its previous state is merge with 

q n state.*\ 

23. Go to (q i <- Initial State) /* go to initial state after removing the indistinguishable state for dead state  *\ 

24. Else   

Go to (q i <- Initial State) /* go to initial state *\ 

25. END ELSE 

26. END IF 

27. MAKE q i-fi <-  Final State /* if any iteration for accepting state then all the state including in this iteration should be 

final state* 

28. ELSE 

q i -> q next  /*if input string is not accepted then move to another state q next *\ 

29. END ELSE 

30. END IF  

31. END FOR 

32. For (q’ ∈ q f ‘) /*after checking all possible input string according to proposed technique all useful state should be final 

state*\ 

33. If (q’ ∈! q f ‘) Then /* unreachable state*\ 

34. q’ <- Remove /* remove unreachable state*\ 

35. END IF  

36. END FOR 

37. For (q’ ∈ q f ‘)) /* after removing unreachable state all useful state present and all state shuld be final state *\ 

38. if(q initial ∈ q f ‘) Then /* checking proposed initial state is final or not *\ 

39. q initial <- previous position /* if proposed initial state is final the it will form previous state*\ 

40. Else  

      q’ ∈ q f ‘ Then /* all proposed state is final state*\ 

41. q f ‘ <- Previous position /* all proposed state become previous state*\ 

42. END ELSE 

43. END IF 

44. END FOR 

 

 

5. CONCLUSION AND FUTURE WORK 
 

It is very challenging in the automata theory to choose the useful state of Deterministic Finite Automata and hence it is also 

difficult at introductory level to understand and learn. In this paper, we remove almost each and every Indistinguishable State, 

Unreachable State, Redundant State and Dead State in DFA and hence the resultant DFA is almost minimal. Proposed algorithm 

is to find the useful state of the deterministic finite automata. JFLAP simulation for determine useless states and remove the states 

that are not useful in generating strings. Also it gives technique and algorithms, after selecting useful state minimize simply of 

deterministic finite automata. 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                              www.jetir.org (ISSN-2349-5162) 

 

JETIR1906M93 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 629 
 

In this paper all the useless states and indistinguishable states when it is attached to the useless states or some other states that lead 

to the final state but the removal of redundant states takes somewhat more time. So for future workc is work on this particular 
dimension to decrease the time taken in removing redundant states. We can work on minimization of deterministic finite automata 

in future time in order to extend our work. 

   

 

REFERENCES 
[1] Alfred V. Aho, “Constructing a Regular Expression from a DFA”, Lecture notes in Computer Science Theory,     September 27, 2010, 

Available at http://www.cscolum bia.edu/ ~aho/cs3261/lectures. 
[2] Susan Rogers. Java Formal Language Automata Package (JFLAP), February 2006. http://www.jflap.org.   
[3] Hao Wang, Student Member, IEEE, Shi Pu, Student Member, IEEE, Gabe Knezek, Student Member, IEEE, and Jyh-Charn Liu, 

Member, IEEE, MIN-MAX: A Counter-Based Algorithm for Regular Expression Matching, IEEE TRANSACTIONS ON 
PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 1, JANUARY 2013.  

[4] Domenico Ficara, Member, IEEE, Andrea Di Pietro, Student Member, IEEE, Stefano Giordano, Senior Member, IEEE, Gregorio 
Procissi, Member, IEEE, Fabio Vitucci, Member, IEEE, and Gianni Antichi, Member, IEEE, Differential Encoding of DFAs for Fast 

Regular Expression Matching, IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 3, JUNE 2011. 
[5] Domenico Ficara, Member, IEEE, Andrea Di Pietro, Student Member, IEEE, Stefano Giordano, Senior Member, IEEE, Gregorio 

Procissi, Member, IEEE, Fabio Vitucci, Member, IEEE, and Gianni Antichi, Member, IEEE, Differential Encoding of DFAs for Fast 
Regular Expression Matching, IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 3, JUNE 2011.  

[6] Jean-Charles Delvenne and Vincent D. Blonde, Complexity of Control on Finite Automata, IEEE TRANSACTIONS ON 
AUTOMATIC CONTROL, VOL. 51, NO. 6, JUNE 2006.  

[7] Attila Csenki, Flowgraph Models in Reliability and Finite Automata: IEEE TRANSACTIONS ON RELIABILITY, VOL. 57, NO. 2, 
JUNE 2008. 

[8] R. W. Butler, “Reliabilities for feedback systems and their saddle point approximation,” Statistical Science, vol. 15, pp. 279–298, 

2000. 
[9] Gruber H. and Holzer, M., ”Provably shorter regular expressions from deterministic finite automata”, LNCS, vol. 5257, pages 383–

395. Springer, Heidelberg (2008). 
[10] H. Gruber and J. Johannsen, “Optimal lower bounds on regular expression size using communication complexity”, In Proceedings of 

the 11th International Conference Foundations of Software Science and Computation Structures, volume 4962 of LNCS, pages 273–
286, Budapest, Hungary, March–April 2008. 

[11] M. Procopiuc, O. Procopiuc, and S. Rodger, Visualization and Interaction in the Computer Science Formal Languages Course with 
JFLAP, 1996 Frontiers in Education Conference, Salt Lake City, Utah, p. 121125, 1996 

[12] Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., Mohri, M.: OpenFst: A general and efficient weighted  finite-state transducer library. 
In: Proc. 12th Int. Conf. Implementation and Application of Automata (CIAA). LNCS, vol. 4783, pp. 11_23. Springer (2007).  

[13] S. H. Rodger. Jap web site, 2011. www.jflap.org .  
[14] Susan H. Rodger, Eric Wiebe, Kyung Min lee, Chris Morgan, Kareem Omar, and Jonathan Su. Increasing engagement in automata 

theory with jap. In Fourtieth SIGCSE Technical Symposium on Computer Science Education, pages 403{407. SIGCSE, March 2009.  

 

 

http://www.jetir.org/
http://www.jflap.org/

