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Abstract 
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1.Introduction 
 

     In this paper, we have taken the graph to be undirected, finite and simple graph. A colouring of vertices of 

G is a mapping f : V(G)  {1,2,3…..k} for every vertex ,v the integer )(vf    is called the colour of v . If no 

two adjacent vertices have the same colours then f   is called proper colouring. A proper total colouring of a 

graph G is a mapping f from V(G) UE(G) to {1,2,3...,k} such that,  

a) For all u,vV(G) if uvE(G) then f(u)≠f(v) 

b) For all e1,e2E(G), e1≠e2 if  e1,e2  have a common end vertex then f(e1)≠f(e2)     

c) For all uV(G), eE(G) if u is the end vertex, then f(u)≠f(e) 

d) It is called a avd total colouring if ][][ vu    where eefu |)({][  is incident to v}U{f(v)}.  

The avd total chromatic number of G denoted by ),(Gat  is the minimum number of colours needed is an avd 

total colouring of G. Therefore, GkGat |{)(  is avd total k-colourable}. A cut vertex is a vertex the removal 

of which disconnect the remaining graph. M. pilsniak and M. Wozniak first introduced that a proper total 

colouring of   is a proper total colourings distinguishing adjacent vertices by sums if for a vertex ),(Vv  

the total sum of colours of the edges incident to v and the colour of v, denoted by f(v), are distinct for adjacent 

vertices. Here we constructed the splitting graph  GS '
 formed from the cartesian product of cycle and path 

graphs and we obtained the bounds for  GS '
 using AVD-total colouring for various non-negative values of 

m and n. We begin with some basic definitions and notations. 

 

Definition 1.1. The cartesian product of simple graphs G and H is denoted by G × H whose vertex set is 

V(G)×V(H) and v=(v1,v2) and u=(u1,u2) are adjacent if v1=u1 and v2 is adjacent to u2 in H or v1 is adjacent to 

u1 in G and v2=u2 in H. 
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Definition 1.3. For a graph G, the splitting graph  GS '  of a graph G is obtained by adding a new vertex 'v  

corresponding to each vertex v of G such that )()( 'vNvN   

Example 1.4.           a)  G            v1     

 

                                                                                                            

 

                                   v2                                            v3 

 

                                    b)   GS '                                              v1
1 

                                          

 v1 

   

                        

   v2                                 v3               
 

 
 

                                                                    v2
1 

  v3
1 

 

Definition 1.5. Let G be a graph and let V(G) be the set of all vertices of G and let {1,2,3…k}  denotes the 

set of all colours which are assigned to each vertex of G. A proper vertex colouring of a graph G is a mapping 

C : V(G)  {1,2,3…..k}such that C(u) ≠ C(v) for all arbitrary adjacent vertices u,v   V(G). 

 

Definition 1.6. If G has a proper vertex colouring then the chromatic number of G is the minimum number of 

colours needed to colour G. The chromatic number of G is denoted by )(G   

 

Definition 1.7.  Let G be  a simple graph and    is total colouring of G.   is an AVD-total colouring if for 

all u,v V(G), uv adjacent we have C(u) ≠ C(v). Here C(u) : set of colours that occur in a vertex u. 

 

2.AVD-total chromatic number of )(' nm CCS    

Theorem 2.1 

     Let Cm and Cn be two cycle graphs of order m and n respectively. Let G=Cm × Cn be the cartesian product 

of two cycle graphs and let  GS '
 be the splitting graph then the AVD-chromatic number of  GS '

is given 

by .3,2)]([ '  nmGSa  

Proof: Let Cm and Cn be two cycle graphs of order m and n respectively. Let G=Cm × Cn be the cartesian 

product of two cycle graphs and let  GS '
 be the splitting graph. Let W={w1,w2,w3,…..wm} be the vertex set 

of Cm and U={u1,u2,u3.....un} be the vertex set in Cn. The graph G has mn vertices and 2mn edges. By definition 

of splitting graph,  GS '
 has 2mn vertices and it has 6mn edges. This Theorem can be proved using two cases.                                                                                                                                                
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Case1: when m=n=even, i.e., when ...3,2,122  llnm Then, 
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be the vertex set of order 484 2  ll and  
8168,2,1 2......)(



ll

eeeGE  (where ei =vivi+1 :1≤i≤n-1) be  the edge 

set of order 8168 2  ll . By the definition of splitting graph, adding the new vertices {vi
’:1≤i≤n-

1}corresponding to the vertices {vi:1≤i≤n} of G, which are added to obtain  GS ' . In  GS ' , the vertex set is 

given by V(  GS '  )= {vi:1≤i≤n}U{vi
’:1≤i≤n}with 8168 2  ll  vertices and the edge set 

E(  GS '  )={ vivi+1 :1≤i≤n-1}U{ vivi+1
’
 :1≤i≤n-1}U{ vi

’
 vi+1 :1≤i≤n} with 244824 2  ll edges. In, particular, 

when m=4,n=4 , the graph G has 16 vertices and 32 edges and the graph  GS '  has 32 vertices and 96 edges. 

Here V(  GS '  )= {vi:1≤i≤n}U{vi
’:1≤i≤n} and E(  GS '  )={ vivi+1 :1≤i≤n-1}U{ vivi+1

’
 :1≤i≤n-1}U{ vi

’
 

vi+1 :1≤i≤n}. Now we assign the AVD total colour the graph  GS '  as follows:                                                                                

we construct total colouring with distinguishable vertices,(i.e.,)   is the total colouring of G, if  is an AVD 

total colouring if  uv V(G) uv adjacent. We have C(u) ≠C(v). Here C(u): Set of colours that occur in a 

vertex u. The colour sets corresponding to each vertices are as follows :   

C(v1)=C(v7)={2,3,5,6,7,8,9,10},C(v2)=C(v4)=C(v5)=C(v10)=C(v13)=C(v15)={1,2,3,4,5,7,8,9, 

10},C(v3)=C(v12)={1,2,3,5,6,7,8,9,10},C(v6)=C(v9)=C(v11)={1,3,4,5,6,7,8,9,10},C(v8)=    

C(v14)={1,2,3,4,6,7,8,9,10}C(v16)={1,2,4,5,6,7,8,9,10}C(
'

1v )=C( '

2v )=C( '

3v )=C( '

4v )=C( '

5v )   

C( '

6v )=C( '

7v )=C( '

8v )=C( '

9v )=C( '

10v )=C(
'

11v )=C( '

12v )=C( '

13v )=C( '

14v )=C( '

15v )=( '

16v )={6,7,8,9, 10}. The 

adjacent vertices have distinct colour sets. which satisfies the condition of AVD-total colouring. Hence the 

minimum number of colour needed to AVD-total colour the graph S’(G) is 2 .(i.e.,)  ,2)]([ ' GSa

when ...3,2,122  llnm  

case:2 when m and n are odd and distinct. (i.e.,) if 12  lm , 32  ln  ....2,1l   
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be the vertex set of order 384 2  ll and  
8168,2,1 2......)(



ll

eeeGE  be the edge set of order .6168 2  ll By 

definition of splitting graph, V(  GS '
)= {vi:1≤i≤n}U{vi

’:1≤i≤n} be the vertex set of order 6168 2  ll  and 

E(  GS '
)={ vivi+1 :1≤i≤n-1}U{ vivi+1

’
 :1≤i≤n-1}U{ vi

’
 vi+1 :1≤i≤n} be the edge set of order 184824 2  ll . 

Suppose m=3, n=5 we have the graph G has 15 vertices and 30 edges and  GS '
 has 30 vertices and 90 edges. 

Here V[  GS '
]=30, E[  GS '

]=90, we assign the colours as follows: 

C(v1)=C(v4)=C(v8)={1,2,3,4,6,7,8,9,10},C(v2)=C(v6)={1,2,3,4,5,7,8,9,10},C(v3)=C(v11)=C(v14)={1,2,4,5,6,

7,8,9,10},C(v5)=C(v12)={2,3,5,6,7,8,9,10},C(v7)=C(v10)=C(v13)={1,3,4,5,6,7,8,9,10},C(v9)=C(v15)={1,2,3,5

,6,7,8,9,10}C(
'

1v )=C(
'

2v )=C(
'

3v )=C(
'

4v )=C(
'

5v )C(
'

6v )=C(
'

7v )=C(
'

8v )=C(
'

9v )=C(
'

10v )=C(
'

11v )=C(
'

12v )=     

C(
'

13v )=C(
'

14v )=C(
'

15v )=(
'

16v )={6,7,8,9,10}. The adjacent vertices have distinct colour sets. which satisfies the 

total colouring with distinguishable vertices. We need 2 colour for proper AVD total colouring. 

Therefore ,2)]([ ' GSa proceeding in this manner, for m and n are odd and distinct we have the AVD-
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chromatic number of  GS '  is 2 . (i.e.,) ,2)]([ ' GSa for 12  lm , 32  ln  ....2,1l from 

case 1 and 2 we have ,2)]([ ' GSa    m,n≥3. 

Example 2.2. when m=3 and n=3. The cartesian product of  G=C3 × C3 is given in figure 1. 
 

 

       (u1,w1)           (u1,w2)         (u1,w3)   
      

                                              v1                            v2                 v3             

                          

   

                                                                  (u2,w2) 

            

                              (u2,w1)      v4                 v5                v6  (u2,w1)   

                                                                   

                     v7                  v8                        v9 

                (u3,w1)        (u3,w2)       (u3,w3)  

 

Figure 1. G=C3 × C3 

  

The Splitting graph of  G=C3 × C3 is denoted by  GS '   is shown in figure  

 
 

Figure 2.  GS '
 

 

From figure 1 and 2 the graph G has 9 vertices and 18 edges and the graph  GS '
has 18 vertices and 54 

edges. By proper AVD-total colouring we have,  C(v1)={1,3,4,5,6,7,8,9,10} C(v2)={2,3,4,5,6,7,8,9,10} 

C(v3)={1,2,3,4,5,6,7,8,9} C(v4)={1,2,3,5,6,7,8,9,10} C(v5)={1,2,3,4,6,7,8,9,10} C(v6)={1,3,4,5,6,7,8,9,10} 

C(v7)={2,3,4,5,6,7,8,9,10} C(v8)={1,2,3,5,6,7,8,9,10} C(v9)={1,2,3,4,5,6,7,9,10} C(
'

1v )=C(
'

2v )=                   

C(
'

3v )=C(
'

4v )=C(
'

5v )   C(
'

6v )=C(
'

7v )=C(
'

8v )={3,6,7,8} 
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3. AVD-total chromatic number of )(' nm PPS   

 

Theorem: 3.1. 

     Let Pm and Pn be two path graphs of order m and n respectively. Let G= Pm × Pn be the cartesian product 

of two path graphs and let  GS '  be the splitting graph then the AVD-chromatic number of  GS '  is given 

by .3,2)]([ '  nmGSa  

Proof: 

Let Pm and Pn be the path graphs of order m and n respectively. Let G= Pm × Pn be the cartesian product of 

two graphs. Let  GS '  be the splitting graph, the vertex set of Pm be W={w1,w2,….wm} and the vertex set of 

Pn be U={u1,u2,…..un}. The graph G has mn vertices and 2mn-(m+n) edges and the splitting graph  GS '  has 

2mn vertices and 4mn edges. This theorem can be proved in the following cases 

Case(i): when m=n are equal and odd i.e., 12  lnm  ....2,1l    
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be the vertex set and  
8168,2,1 2......)(



ll

eeeGE  be the edge set in G. By the definition of splitting graph, 

V(  GS '  )= {vi:1≤i≤n}U{vi
’:1≤i≤n} with 488 2  ll vertices and the edge set is E(  GS '  )={ vivi+1 :1≤i≤n-

1}U{ vivi+1
’
 :1≤i≤n-1}U{ vi

’
 vi+1 :1≤i≤n} with 81616 2  ll edges. In particular, for m,n=3 the graph G has 

9 vertices and 12 edges and the splitting graph  GS '  has 18 vertices and 36 edges. Here 

V(  GS ' )={(v1,v2,……vn) U (v1
’,v2

’….vn
’)} E(  GS ' )={(e1,e2,…en)U(e1

’,e2
’…..en

’)} where ei=vivi+1 and 

ei
’=(vi

’vi+1)U(vivi+1
’). Now we assign the AVD-total colour the graph  GS '  as follows: (i) we construct total 

colouring with distinguishable vertices. The colour sets corresponding to each vertices are given below :  

C(v1)={1,3,4,8,10},C(v2)={2,3,4,5,7,8,9}C(v3)={3,4,2,9,8}C(v4)={2,4,1,5,8,7,9}C(v5)={3,1,4,5,6,7,8,9,10}

C(v6)={1,4,5,2,7,10,9}C(v7)={1,3,5,7,9}C(v8)={2,3,4,6,7,8,10}, 

C(v9)={3,4,5,8,10}C(
'

1v )=C( '

3v )={1,8,7}C(
'

2v )={1,7,8,9}=C(
'

4v )={1,7,8,10}C( '

5v )={1,7,8,9, 

10}C( '

6v )=C( '

8v ){1,8,9,10} C( '

7v )={17,9} C( '

9v )={1,9,10}. The adjacent vertices have distinct colour sets. 

Thus the proper AVD-total colouring, Therefore 3,2)]([ '  nmGSa and l=1 proceeding in this way 

for m and n are equal and odd. We have the AVD-chromatic number of  GS '
 is 2)]([ ' GSa when 

12  lnm  ....2,1l   

Example 3.2 when n=3,m=3 The cartesian product of G=P3 × P3 is given in figure 3. 
 

  

               (u1,w1)           (u1,w2)             (u1,w3) 

 v1                                 v2                                 v3 

  

                          (u2,w1)           (u2,w2)             (u2,w3)                                                                                                                      

    v4                                v5                                  v6 

    

                           (u3,w1)           (u3,w2)            (u3,w3)                                                                                                                                                
    v7                     v8                     v9       

 

Figure 3. G=P3 × P3   
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Figure 4. The splitting graph of G=P3 × P3 is denoted by  GS '  is shown in figure 4. 

 

 

 
 

 

From figure 1 and 2 the graph G has 9 vertices and 18 edges and the graph  GS ' has 18 vertices and 36 

edges. By proper AVD-total colouring we have,  C(v1)={1,3,4,5,6} C(v2)={2,3,4,5,6,7,8} 

C(v3)={1,3,4,5,6,} C(v4)={2,3,4,5,6,7} C(v5)={1,3,4,5,6,7,8,9,10} C(v6)={2,3,4,6,7,9,10} C(v7)={1,3,4,7,8} 

C(v8)={2,3,4,5,8,9,10} C(v9)={1,3,4,7,8} C( '

1v )= {3,6,8}C( '

2v )={3,4,5,7}C( '

3v )={3,6,7}                                  

C( '

4v )={3,6,7,8}C( '

5v )={3,7,8,9,10}C( '

6v )={3,6,8,9}C( '

7v )={3,7,8}C( '

8v )={3,7,8,10} C( '

9v )={3,9,10} 

Theorem 3.3. 

               Let Pm and Pn be two path graphs of order m and n respectively. Let G= Pm × Pn be the cartesian 

product of two path graphs and let  GS '  be the splitting graph then the AVD-chromatic number of  GS '  is 

given by 2,2)]([ '  nmGSa . 

Proof: 

 Let Pm and Pn be the two path graphs of order m and n respectively. Let G= Pm × Pn be the cartesian 

product of two path graphs and let  GS '
 be the splitting graph. Let W={w1,w2,….wm} be the vertex set of 

Pm and  U={u1,u2,…..un} be the vertex set of Pn. The graph G has mn vertices. We prove this theorem by the 

following cases. 

Case1: when m is even and n is odd, i.e., if lm 2 , 12  ln  ....2,1l

}....2,1;121;21/),{()(  lljliuwGV ji be the vertex set and the edge set 

of G is   
144,2,1 2......)(



ll

eeeGE  By the definition of splitting graph adding the new vertices }1:{ , nivi   

corresponding to the vertices }1:{ nivi   of G. which are added to obtain  GS '
. In particular, when m=2, 

n=5 the graph G has 10 vertices and 13 edges and the graph  GS '
  has 20 vertices and 39 edges. Here 

V(  GS '
)={(v1,v2,……vn) U (v1

’,v2
’….vn

’)} E(  GS '
)={(e1,e2,…en)U(e1

’,e2
’…..en

’)} where ei=vivi+1 and 

ei
’=(vi

’vi+1)U(vivi+1
’). Now we assign the AVD-total colour the graph  GS '

 as follows: (i) we construct total 

colouring with distinguishable vertices. The colour sets corresponding to each vertices are given below :  

 

 

C(v1)={1,3,4,6,7},C(v2)={2,3,4,6,7},C(v3)=C(v6)=C(v7)={2,3,4,5,6,7,8}C(v4)=C(v5)=C(v6)=C(v8)={1,3,4,5,

6,7,8},C(v9)={1,3,5,6,7},C(v10)={2,3,5,7,8},C(
'

1v )={3,8,7}C(
'

2v )=C(
'

9v )=C(
'

10v )={3,6,7}C(
'

3v )=            

C(
'

4v )=C(
'

5v )C(
'

6v )=C(
'

7v )=C(
'

8v )={3,6,7,8}. 
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Case 2: when m and n are even and distinct, i.e., if lm 2 , 22  ln  ....2,1l  

}....2,1;221;21/),{()(  lljliuwGV ji be the vertex set and the edge set of 

G is  
ll

eeeGE
64,2,1 2......)(


   . By the definition of splitting graph, For m=4, n=2, we have the graph G has 8 

vertices and 10 edges and the splitting graph  GS '  has 16 vertices and 30 edges. Here  V(  GS '  )= {vi:1≤i≤n}

U{vi
’:1≤i≤n} and E(  GS '  )={ vivi+1 :1≤i≤n-1}U{ vivi+1

’
 :1≤i≤n-1}U{ vi

’
 vi+1 :1≤i≤n}. By proper AVD-total 

colouring we have, First we construct total colouring with distinguishable vertices. The colour sets 

corresponding to each vertices are given below C(v1)={1,3,4,6,7}, C(v2)={2,3,4,6,7} C(v3)=C(v6)={2,3,4, 

5,6,7,8}C(v4)=C(v5)={1,3,4,5,6,7,8}C(v7)={2,3,4,7,8},C(v8)={1,3,4,6,7},C( '

1v )=C( '

2v )=         C( '

7v )={3,6,7}, 

C( '

3v )=C( '

4v )=C( '

5v ) = C( '

6v )={3,6,7,8},C( '

8v )={3,7,8}.  From case 1 and case 2 we have the adjacent vertices 

have distinct colour sets. Which satisfies the condition of AVD-total colouring and the minimum number of 

colour needed to AVD-total colour the graph  GS '  is 2 . Therefore proceeding in this way for all m and 

n are even and distinct, the AVD-total chromatic number of  GS '  is 2 . Hence 

2,2)]([ '  nmGSa . 

Example 4.2 when m=4, n=2. The cartesian product of  G= P4 × P2 is given in figure 5. 

                                         (u1,w1)          (u1,w2) 
                                                       

                                                  

                                          (u2,w1)          (u2,w2) 
 

                                                    

                                                     (u3,w1)          (u3,w2) 
              

                                

                                            (u4,w1)          (u4,w2) 

 

Figure 5. G= P4 × P2 From figure 5, the graph G has 8 vertices and 10 edges. The splitting graph of figure 5 

is shown in figure                                                                                                                                                    

 

Figure 6.  GS '
 

 

 

From figure 1 and 2 the graph G has 8 vertices and 10 edges and the graph  GS '
has 16 vertices and 30 

edges. By proper AVD-total colouring we have,  C(v1)={1,3,5,6,7} C(v2)={2,3,5,6,7} C(v3)={2,3,4,5,6,7,8} 

C(v4)={1,4,3,5,6,7,8}C(v5)={1,3,4,5,6,7,8} C(v6)={2,3,4,5,6,7,8} C(v7)={2,4,5,7,8} C(v8)={1,3,5,7,8}         

C(
'

1v )=C(
'

2v )={5,6,7}C(
'

3v )=C(
'

4v )=C(
'

5v )   C(
'

6v )={5,6,7,8}C(
'

7v )=C(
'

8v )={5,7,8} 

4. AVD-total chromatic number of )(' nm CPS    

 In this section we obtain the splitting graph of G formed from the cartesian product of path and cycle 

graphs and we determined the bounds for the splitting graphs using the concept of AVD-total colouring. 
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Theorem 4.1: 

     Let Pm and Cn be two  graphs of vertices m and n respectively and let G= Pm × Pn be the cartesian product 

of two graphs and let  GS '  be the splitting graph then the AVD-chromatic number of  GS '  is given by 

22)]([ '  mGSa  and n>2. 

Proof: 

     Let Pm and Cn be two  graphs of vertices m and n respectively. Let G= Pm × Pn be the cartesian product of 

two graphs and let  GS '  be the splitting graph. Let W={w1,w2,….wm} be the vertex set in Pm and  

U={u1,u2,…..un} be the vertex set in Cn.. The graph G has mn vertices and 2mn-n edges. The splitting graph 

 GS '  has 2mn vertices and 4mn+n edges. We shall prove this theorem in different cases.  

Case 1: when m and n are even and distinct. i.e., lm 2 , 12  ln  ....2,1l

}....2,1;221;21/),{()(  lljliuwGV ji be the vertex set and the edge set of 

G is  
268,2,1 2......)(




ll
eeeGE  . By the definition of splitting graph, V(  GS '  )= {vi:1≤i≤n}U{vi

’:1≤i≤n} and 

E(  GS '  )={ vivi+1 :1≤i≤n-1}U{ vivi+1
’
 :1≤i≤n-1}U{ vi

’
 vi+1 :1≤i≤n}. In particular, when m=2, n=4 and when 

l=1; we have G has 8 vertices and 12 edges and  GS '  has 16 vertices and 36 edges. Now we assign AVD-

total colour the graph  GS '  as follows: First we construct total colouring with distinguishable vertices. The 

colour sets corresponding to each vertices are given below: C(v1)=C(v3)=C(v6)=C(v8)={1,3,4,5,6,7,8}                                         

C(v2)=C(v4)=C(v5)=C(v7)={2,3,4,5,6,7,8};C( '

1v )=C( '

2v )=C( '

3v )=C( '

4v )=C( '

5v )C( '

6v )=              

C( '

7v )=C( '

8v )={3,6,7,8}. Hence 22)]([ '  mGSa , n=4 and 1l . Proceeding in this manner, For n 

and m are even and distinct. we have the AVD-chromatic number of  GS '  is 2 . i.e., 2)]([ ' GSa  

when lm 2 , 12  ln  ....2,1l  

Case 2: when m is even and n is odd, i.e., lm 2 , 12  ln  ....2,1l  

}....2,1;221;21/),{()(  lljliuwGV ji  be the vertex set and the edge set 

of G is  
128,2,1 2......)(



ll

eeeGE . By the definition of splitting graph, V(  GS '  )= {vi:1≤i≤n}U{vi
’:1≤i≤n} 

and E(  GS '
 )={ vivi+1 :1≤i≤n-1}U{ vivi+1

’
 :1≤i≤n-1}U{ vi

’
 vi+1 :1≤i≤n}. In particular, suppose m=2, n=5 and 

1l  ; The graph G has 10 vertices and 15 edges and the graph  GS '
 has 20 vertices and 45 edges. Now we 

assign AVD-total colour the graph  GS '
 as follows. First we construct total colouring with distinguishable 

vertices. The colour sets corresponding to each vertices are given below : C(v1)=C(v3)=C(v7)= 

C(v9)={1,3,4,5,6, 

7,8};C(v2)={2,3,4,5,6,7,8};C(v4)={1,2,3,4,6,7,8};C(v5)=C(v8)={2,3,4,5,6,7,8};C(v6)={1,2,3,56,7,8}C(v10)=

{1,2,3,4,5,6,8};C(
'

1v )=C( '

2v )=C( '

4v )=C( '

7v )=C( '

8v )={3,6,7,8};C( '

3v )=C( '

9v )= {3,1,7,8}; C( '

5v )={3,2,7,8}; 

C(
'

6v )={3,4,7,8}; C(
'

10v )={3,2,5,8}. Hence the minimum number of colours needed to AVD-total colour this 

graph is 2 . Therefore, 2)]([ ' GSa for all m=2, n>2. Proceeding in this way for m is even and n is 

odd we have the AVD-chromatic number of  GS '
 is 2  ie., 2)]([ ' GSa  when lm 2 , 12  ln

 ....2,1l    

 

 

 

 

Example 4.2 when m=2 and n=4. The cartesian product of  G= P2 × C4 is shown in figure 7 
    (u1,w1)                    (u1,w2) 

 v1                          v2      

  

                            (u2,w1)                    (u2,w2) 

     v3                         v4 

      

                            (u3,w1)                     (u3,w2)  

   v5                          v6  

    (u4,w1)                     (u4,w2)  
    v7                           v8  

          

Figure 7. G= P2 × C4 The splitting graph of figure 7 is shown in figure 8.  
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Figure 8.  GS '  

From figure 1 and 2 the graph G has 9 vertices and 18 edges and the graph  GS ' has 18 vertices and 54 

edges. By proper AVD-total colouring we have,  C(v1)={1,3,4,5,6,7,8} C(v2)={2,3,4,5,6,7,8} 

C(v3)={1,3,4,5,6,7,8} C(v4)={2,3,4,5,6,7,8} C(v5)={2,3,4,5,6,7,8} C(v6)={1,3,4,5,6,7,8} 

C(v7)={2,3,4,5,6,7,8} C(v8)={1,3,4,5,6,7,8}C( '

1v )=C( '

2v )=C( '

3v )= C( '

4v )=C( '

5v )   C( '

6v )=C( '

7v )=                    

C( '

8v )={3,6,7,8}                                                                                                    

Conclusion : 
  In this paper, we have established the chromatic and AVD-chromatic number of splitting graphs 

formed from the cartesian product of path and cycle. We discussed the relationship between the AVD-

chromatic number and chromatic number with different parameters. Subsequently, this work can be 

additionally extended to simple graphs formed from various graph products. 
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